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On the Markov property of a "nite hidden Markov chain
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Abstract

In this paper we study the question of the conditions under which a hidden Markov chain itself exhibits Markovian
behaviour. An insightful method to answer this question is based on a recursive "ltering formula for the underlying chain.
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1. Introduction and preliminaries

The question whether a (deterministic) function of a Markov chain inherits the Markov property, has
received much attention in the literature over the past years.See Section 2 for a short discussion on this. In
this paper we pose the same question for a random function of a Markov chain. We provide an answer based
on two di:erent approaches. In Section 2, we use known results by Rubino and Sericola for deterministic
functions of a Markov chain by considering a bivariate chain. In Section 3, we present a solution based
on recursive "ltering that is easier to interpret. We continue this section by introducing some notation and
presenting some preliminary results.
Let (�;F; P) be a probability space on which all the random variables to be encountered below are de"ned.

Consider the following model for a hidden Markov chain (HMC):

Xt = AXt−1 + �t ; X0 (1.1)

Yt = HtXt (1.2)

Here the state process X is modelled as a Markov process on the set E = {e1; : : : ; en} of basis vectors of
Rn. Moreover, this process is supposed to be time-homogeneous with A the matrix of one step transition

E-mail address: spreij@science.uva.nl (P. Spreij).
1 Tel.: +31-20-525-6070; fax: +31-20-525-5101

0167-7152/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved
PII: S0167 -7152(00)00216 -9



280 P. Spreij / Statistics & Probability Letters 52 (2001) 279–288

probabilities: Aij = P(Xt+1 = ei|Xt = ej). The process {�t} is then a martingale di:erence sequence adapted
to the "ltration generated by X . This way of representing a "nite Markov chain is common in engineering
literature (see Elliott et al., 1995, p. 17). For Markov processes where the time set is not necessarily discrete,
a similar more general representation holds, see Spreij (1998).
The observation or output process Y , a random transformation of the state process, takes its values in the

set F={f1; : : : ; fm} of basis vectors of Rm. The matrices {Ht} form an iid sequence, independent of {Xt}, and
each column of any of these matrices is assumed to be a random element of F . Their common distribution is
speci"ed by the expectation EHt =G. Clearly, each Ht is the incidence matrix of a random map from E into
F . Indeed, if Yt = ht(Xt), with the ht random map from E into F , then we can write Yt =

∑n
i=1 ht(ei)1{Xt=ei}.

So we de"ne Ht=[ht(e1); : : : ; ht(en)] to get (1.2). We assume (without loss of generality) the non-degeneracy
condition that none of the rows of G is zero.
De"ne the "ltration F= {Ft} by Ft = �{X0; : : : ; Xt ; H0; : : : ; Ht}. Clearly, both X and Y are adapted to this

"ltration, and so is the sequence {�t} which is even a martingale di:erence sequence w.r.t F, because of
the independence of the sequences {Xt} and {Ht}. The conditional probabilities in the next proposition are
essentially as in Baum and Petrie (1966).

Proposition 1.1. The joint process (Xt; Yt) is Markov with respect to F and the conditional transition prob-
abilities are given by

P(Xt = ei; Yt = fj|Ft−1) = eTi diag(AXt−1)GTfj: (1.3)

Proof. Notice "rst that the indicator of the event {Xt = ei; Yt = fj} equals eTi XtY
T
t fj. Hence we can rewrite

the conditional probability in Eq. (1.3) as E[eTi XtY
T
t fj|Ft−1]. So we compute

E[XtY T
t |Ft−1] = E[XtX T

t H
T
t |Ft−1]

= E[E[XtX T
t H

T
t |Ft−1; Ht]|Ft−1]

= E[E[XtX T
t |Ft−1; Ht]HT

t |Ft−1]

= E[E[diag(Xt)|Ft−1; Ht]HT
t |Ft−1]

= E[diag(AXt−1)HT
t |Ft−1]

= diag(AXt−1)E[HT
t |Ft−1]

= diag(AXt−1)GT:

The result follows.

We give an alternative expression for the matrix of one step transition probabilities of the joint chain (X; Y ).
The state space of this chain consists of all the nm pairs (ei; fj). These are renamed and ordered as follows:
s(j−1)n+i = (ei; fj) for i ∈ {1; : : : ; n} and j ∈ {1; : : : ; m}. Clearly, the map (i; j) �→ (i − 1)m + j is bijective
from {1; : : : ; n} × {1; : : : ; m} onto {1; : : : ; nm}.
Instead of working with (X; Y ) we will use the chain Z that carries the same information and which is

de"ned by Zt = vec(XtY T
t ). Recall that the vec-operator applied to a matrix results in a vector where all the

columns of this matrix are stacked one beneath the other (Magnus and Neudecker, 1988, p. 30). Working
with the process Z has the advantage that it has a similar representation as Eq. (1.1), see Eq. (1.11) below.
Clearly, the state space of Z is the set of basis vectors of Rnm. If we call this set {z1; : : : ; znm} we see that

(Xt; Yt)= sk i: Zt = zk . Notice also the following relations. Zt =Yt ⊗Xt , Xt =(1Tm⊗ In)Zt and Yt =(Im⊗ 1Tn )Zt .
Here Im is the m-dimensional identity matrix and 1n is the n-dimensional column vector with all its elements
equal to one.
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According to Proposition 1.1, we now get that the nm × nm matrix Q of transition probabilities of Z can
be decomposed as a matrix with m2 blocks Qij that are equal to diag(Gi:)A, where Gi: is the ith row of G.
For a more compact formulation we introduce the following notation. Let �(G) be the nm× n matrix de"ned
by

�(G) =



diag(G1:)

...

diag(Gm:)


 :

In the next lemma we gather some computational results for the delta-operator. These will be used throughout
the rest of the paper.

Lemma 1.2. For any matrices G ∈ Rm×n; M ∈ Rp×m and N ∈ Rp×n and for any vectors w ∈ Rn; v ∈ Rm
we have

MG = (M ⊗ 1Tn )�(G); (1.4)

(1Tm ⊗ N ) diag(vec(GT)) = N�(G)T; (1.5)

diag(w)GT diag(v) = �(G)T(diag(v)⊗ w); (1.6)

(Im ⊗ diag(w)) vec(GT) = �(G)w; (1.7)

N diag(1TmG) = (1Tm ⊗ N )�(G); (1.8)

vec(diag(w)GT) = �(G)w: (1.9)

Proof. By direct calculation.

Using the notation �(G) we can now write

Q = �(G)A(1Tm ⊗ In): (1.10)

This expression for Q can also be obtained as follows. By de"nition of Q we have E[Zt+1|Ft] =QZt . So we
compute the conditional expectation

E[Zt+1|Ft] = E[vec(Xt+1Y T
t+1)|Ft]

= vec(E[Xt+1Y T
t+1|Ft])

= vec(E[Xt+1X T
t+1H

T
t+1|Ft])

= vec(diag(AXt)GT)

= (Im ⊗ diag(AXt)) vec(GT)

=�(G)AXt

=�(G)A(1Tm ⊗ In)Zt

=QZt:

Here we used, in the "fth equality, a known result for the vec-operator of the product of three matrices (see
Magnus and Neudecker, 1988, p. 30) and in the sixth equality equation (1.7).
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From this computation it follows that Z can be represented by

Zt = QZt−1 + "t ; (1.11)

where " is the martingale di:erence sequence w.r.t. F.
Furthermore, if p0 =EX0 and P0 = diag(p0), then the initial distribution of Z is given by the vector EZ0 =

vec(P0GT). Indeed, EZ0 = E vec(X0Y T
0 ) = vec(E diag(X0)HT

0 ) = vec(P0GT). Notice that vec(P0GT) =�(G)p0.
Similarly, we have that if X has an invariant probability vector #, then �(G)# is an invariant probability

vector for Z . Indeed,

Q�(G)#= �(G)A(1Tm ⊗ In)�(G)#= �(G)A diag(1TmG)#;

because of (1.8), but since the column sums of G are all equal to one, this is nothing else but

�(G)A diag(1Tn )#= �(G)A#= �(G)#:

We close this section with the observation that the law of the bivariate process (X; Y ) (equivalently that of Z)
is completely determined by the parameters A, G and p0. This follows from Eq. (1.11) and the observation
that " is also a martingale di:erence sequence with respect to the "ltration generated by (X; Y ). Hence, any
process (X; Y ) with this law can be thought of as being generated by the set of equations (1.1) and (1.2).

2. On the Markovian character of Y

In this section, we put forward a set of simple conditions such that the process Y is Markov again. We
use (in this section, cf. Section 3 for an alternative approach) the results of Rubino and Sericola (1991)
who studied the problem of weak lumpability of "nite Markov chains. This problem is simply to answer the
following question: under what condition is a given (deterministic) transformation of a Markov chain again
Markov? It has been known for a long time that the Markovian behaviour of the transformed process in
general depends on the initial distribution of the chain. If one requires the function of a Markov chain also
to be Markov for any choice of the initial distribution, then the chain is said to be strongly lumpable. These
problems have been studied in the literature for a long time. Apart from the already mentioned paper (Rubino
and Sericola, 1991) there is a rather old paper (Burke and Rosenblatt, 1958) and a discussion of these issues
in the books by Kemeny and Snell (1960) and Rosenblatt (1974). Recently, Ledoux (1995) and Ball and Yeo
(1993) dealt with these problems for denumerable Markov chains.
In the continuous time case we mention the paper by Rubino and Sericola (1993), where a uniformization

approach is used and the results of Rubino and Sericola (1991), and the paper by Rogers and Pitman (1981)
for Markov processes with an arbitrary state space. The main condition for a transformed process to be
Markov, in this paper (condition (5)) applied to "nite state processes, is nothing else but the known criterion
(3) on Kemeny and Snell (1960, p. 135).
Rubino and Sericola (1991) characterized the set of all initial distributions for which the deterministically

transformed process is Markov, which they call AM, and showed that this characterization is "nite dimensional.
We use their result as follows. We view the process Y (being a random transformation of X ) as a de-

terministic transformation of the jointly Markov process (X; Y ), equivalently of the process Z as in the "rst
section, and we require that Y is Markov for any initial distribution p0 of X . Notice that this is not the same
as requiring that Y has to be Markov for any choice of the distribution of (X0; Y0) or of Z0, since Y0 depends,
in our context, in a special way on X0 via Eq. (1.2) for t = 0. Speci"cally, if the initial distribution of X
is p0, so EX0 = p0, then the initial distribution of Y is given by EY0 = E[H0X0] = E[H0]E[X0] = Gp0. The
idea then is to give conditions under which the vector (pT

0 ; (Gp0)T) or—with a little abuse of notation—the
vector EZ0 = vec(P0GT) belongs to the set AM for any p0.
Since we will use the results of Rubino and Sericola (1991), we recall some facts of this paper, and

translate these into the terminology that we use (which also leads to a more transparent notation).



P. Spreij / Statistics & Probability Letters 52 (2001) 279–288 283

Suppose that one is given a homogeneous Markov chain " with state space {1; : : : ; N} and matrix of
transition probabilities Q. Let b be a map de"ned on the state space onto {1; : : : ; M}, where M 6 N . The
problem under consideration is whether the process %=b(") is again a Markov chain [in Rubino and Sericola
(1991) this process is called the lumped chain]. Introduce the incidence matrix B with elements Bij=1{b( j)=i}.
Let B(i) be the ith row of B. Let p ∈ RN be a probability vector, the set of all such probability vectors is
denoted by A. By A+ we denote the subset of A consisting of the probability vectors that have strictly
positive entries only. By pB(i) we denote the probability vector (B(i)p)−1 diag(B(i))p for i=1; : : : ; M . Assume
that " admits an invariant distribution whose probability vector is denoted by #.
For any vector p ∈ A, we write P = diag(p) and we denote by B+

p the right pseudo-inverse of B de"ned
by B+

p =PBT(BPBT)−1 if BPBT is invertible. In particular, if the chain is irreducible then # is unique and all
its elements are strictly positive, so that B+

# is well de"ned.
In Rubino and Sericola (1991) the following sets are de"ned (although described in a rather di:erent way):

A1 = {p ∈ A: BQB+
p = BQB+

# }, and recursively for j ¿ 2, Aj = {p ∈ Aj−1: QpB(i) ∈ Aj−1 ∀i=1; : : : ; M}.
In Rubino and Sericola (1991) the following result is proved.

Lemma 2.1. If p corresponds to the initial distribution of "; then % is a Markov chain i7 p ∈ ⋂N
j=1 A

j=AN .
So AM =AN .

In the same paper one can "nd also an algorithm that determines this intersection in at most N steps.
In the next theorem we formulate a necessary and suOcient condition for Y to be Markov. Later on we

will use Theorem 3.1 for an alternative proof. Before stating Theorem 2.2 we want to stress that, although in
principle Lemma 2.1 contains the complete solution of the problem, one should "nd necessary and suOcient
conditions in terms of the parameters A and G of the bivariate process (X; Y ) and this is precisely what
Theorem 2.2 tells us.

Theorem 2.2. The process Y is Markov for all initial distributions p0 of X i7 the following condition holds:
the matrix

GAPGT diag(Gp)−1 (2.1)

with P = diag(p) is independent of the vector p ∈ A+.
Equivalently; i7 the map M : A+ → Rm×m de<ned by M (p) = GAPGT diag(Gp)−1 is constant. If Y is

Markov; then the matrix of one step transition probabilities is given by the common value of (2:1) for
p ∈ A+.

Proof. The proof is an application of Lemma 2.1. So we take " equal to Z , Q = �(G)A(1Tm ⊗ In), N = nm,
M = m, B = Im ⊗ 1Tn . The "rst thing to do is to "nd an expression for BQB+

p for p in the nm-dimensional
simplex and for the special form p=�(G)p0 where p0 is the initial probability vector of X , since all initial
distributions of Z are of this type (see Section 1).
All the matrix computations that are involved here are rather straightforward, but tedious. Therefore, we

only give some intermediate results, which are the following. For p = �(G)p0 and P = diag(p) we get
BPBT = diag(Gp0).
Next, we compute BQPBT = (Im ⊗ 1Tn )�(G)A(1

T
m ⊗ In)P(Im ⊗ 1n). In order to get a decent expression for

this we use some properties concerning the �-operator.
Applying (1.4) with M = Im and (1.5) with N = P0 (P = (Im ⊗ P0) diag(vec(GT))), we get

BQPBT = (Im ⊗ 1Tn )�(G)A(1
T
m ⊗ In)P(Im ⊗ 1n)

=GA(1Tm ⊗ In)(Im ⊗ P0) diag(vec(GT))(Im ⊗ 1n)
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=GA(1Tm ⊗ P0) diag(vec(GT))(Im ⊗ 1n)

=GAP0�(G)T(Im ⊗ 1n)

=GAP0GT:

So, we get

BQB+
p = GAP0GT diag(Gp0)−1: (2.2)

Next, we are going to check whether QpB(i) ∈ A1. First we determine pB(i). Since B(i) = fT
i ⊗ 1Tn , we get

pB(i) = (Gi:p0)−1fi ⊗ P0GT
i: .

It is convenient to introduce the following notation. Let di(p0)=AP0GT
i: (Gi:p0)−1, and Di(p0)=diag(di(p0)).

Then

QpB(i) =�(G)A(1Tn ⊗ Im)(Gi:p0)−1fi ⊗ P0GT
i:

=�(G)di(p0)

= (Im ⊗ Di(p0)) vec(GT): (2.3)

Then, it easily follows that B diag(QpB(i))BT=diag(Gdi(p0))=diag(GAP0GT
i: )(Gi:p0)−1, and BQ diag(QpB(i))

BT = GADi(p0)GT. Hence,

BQB+
QpB(i) = GADi(p0)GT(diag(Gdi(p0)))−1 (2.4)

=GA diag(AP0GT
i: )G

T(diag(GAP0GT
i: ): (2.5)

Now we make the following observation. For each i and all p0, the vector di(p0) is again a probability
vector. Hence, since by assumption the map M is constant, the resulting matrix in (2.4) is the same as in
(2.2). It follows that p= �(G) ∈ A1 implies QpB(i) ∈ A1, or in other words p ∈ A2. But then, obviously,
all the Aj are the same, which concludes the proof.

The condition that (2.1) shares the same value for all p can be veri"ed by means of the next corollary.
Recall that the Hadamard product u�v of two vectors u and v of the same dimension is de"ned as the vector
with the product of the ith components of u and v as the ith component.

Corollary 2.3. The process Y is Markov for any initial distribution of X i7 the ith and jth columns of the
matrix GA are equal, whenever G:i � G:j �= 0.

Proof. The condition that (2.1) is constant in p is equivalent to the requirement that GA[diag(p)GT diag(Gq)−
diag(q) diag(Gp)] = 0 for any p; q ∈ A+. The expression on the left-hand side of this equation is bilinear in
p and q and hence determined by taking for p and q basis vectors ei and ej of Rn, in which case we get,
with G:i and G:j the ith and jth columns of G respectively,

GA[eiGT
:i diag(G:j)− ejGT

:j diag(G:i)] = 0: (2.6)

Because GT
:i diag(G:j) = GT

:j diag(G:i) = (G:i � G:j)T, Eq. (2.6) becomes

GA(ei − ej)(G:i � G:j)T = 0; (2.7)

and hence we obtain GA(ei − ej) = 0 if G:i � G:j �= 0, which proves the corollary.
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Example. Let

A=




1
2

1
3

1
6

1
4

1
3

5
12

1
4

1
3

5
12


 and G =

[ 1
2

2
3

1
3

1
2

1
3

2
3

]
:

Then

GA=

[ 1
2

1
2

1
2

1
2

1
2

1
2

]
:

Hence Y is a Markov chain for all initial conditions of X . Its transition matrix is[ 1
2

1
2

1
2

1
2

]
:

It is easy to check that no deterministic function of X is a Markov chain.
Like in Rubino and Sericola (1991) one can also ask the question ‘for which initial distributions of X is

the process Y Markov?’ The answer is given below. We omit the proof, but return to this in Section 3. We
need some additional notation.
Let I be an arbitrary point in {1; : : : ; m}n; I=(i1; : : : ; in) say. De"ne the maps dI; k : A → A by dI;0(p)=p

and for k ¿ 1 recursively by

dI; k(p) = A diag(dI; k−1(p))GT
ik :(Gik :dI; k−1(p))−1:

Theorem 2.4. The process Y is Markov if the initial distribution p0 of X satis<es for all I ∈ {1; : : : ; m}n
and for all k = 0; : : : ; n the following condition:

GA diag(dI; k(p0))GT diag(GdI; k(p0))−1 = GA diag(#)GT diag(G#)−1: (2.8)

Remark. The condition of this theorem is equivalent to requiring that each of the vectors dI; k (p0) belongs
to the kernel of the matrix

(Im ⊗ GA) diag(vecGT)(G#⊗ In − G ⊗ #): (2.9)

As in Rubino and Sericola (1991) this requirement can be transformed into a system of linear equations that
p0 is supposed to satisfy. Hence the set of p0 satisfying this system of equations is the intersection (possibly
empty) of a linear subspace of Rn and the n-dimensional simplex.

3. Filtering

In this section we give some "ltering and prediction formulas. By the "ltering problem for a hidden Markov
chain (X; Y ) we mean the determination for each t of the conditional law of Xt given Y0; : : : ; Yt . Apart from
the fact that these formulas are of interest in their own right, they are also helpful in studying the Markovian
character of a hidden Markov chain. This has been observed implicitly by Rogers and Pitman (1981), where
they write (p. 574) that their criterion (1) for Y = + ◦ X (here + is a deterministic transformation) to be
Markov is unsatisfactory, since ‘one has to be able to calculate the conditional distribution of Xt given the
whole history of + ◦ X up to time t’, but this is just rather easy in our case where the state space is "nite.
For each t we denote by FY

t ; the �-algebra generated by Y0; : : : ; Yt . Since the state space of X is a set of
basis vectors, the conditional law of Xt given Y0; : : : ; Yt , is completely determined by the conditional expectation
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E[Xt |FY
t ]. The prediction problem is to determine for each t the conditional law of Xt+1 given Y0; : : : ; Yt , that is

completely characterized by the conditional expectations E[Xt+1|FY
t ]. We will use the notations E[Xt |FY

t ]=X̂ t

and E[Xt+1|FY
t ] = X̂ t+1|t . Similarly we write E[Yt+1|FY

t ] = Ŷ t+1|t .
In the book by Elliott et al. (1995), recursive formulae for unnormalized "lters are obtained by a measure

transformation. It is possible to obtain in particular Eq. (3.2) below from equation (4:3) on p. 28 of Elliott
et al. (1995). For the convenience of the reader we give in the appendix an elementary proof based on an
approach, that directly leads to a simple recursive formula for the (normalized) conditional probabilities itself,
instead of a recursion for the unnormalized conditional probabilities.
We return to the setting of Section 1 and we give the recursive "ltering formula for the stochastic system

with the HMC Y as its output. The following holds.

Theorem 3.1. (i) The conditional distribution of the Xt given Y0; : : : ; Yt is recursively determined by

X̂ t = diag(AX̂ t−1)GT diag(GAX̂ t−1)−1Yt; (3.1)

with initial condition X̂ 0 = P0GT diag(Gp0)−1Y0. Here p0 = EX0 and P0 = diag(p0).
(ii) The conditional distribution of the Xt given Y0; : : : ; Yt−1 is recursively determined by

X̂ t+1|t = A diag(X̂ t|t−1)G
T diag(GX̂ t|t−1)

−1Yt; (3.2)

with initial condition X0|−1 = EX0 = p0.
(iii) The conditional expectation Ŷ t+1|t = E[Yt+1|FY

t ] is given by

Ŷ t+1|t = GA diag(X̂ t|t−1)G
T diag(GX̂ t|t−1)

−1Yt: (3.3)

Remark. If we de"ne for x ∈ Rn+ the matrix Gx := diag(x)GT diag(Gx)−1, then Eqs. (3.1)–(3.3) take the
form X̂ t = GAX̂ t−1

Yt; X̂ t+1|t = AGX̂ t|t−1
Yt and Ŷ t+1|t = GAGX̂ t|t−1

Yt .

One may check if under the condition that Y is a deterministic function of X (in which case the columns
of G are basis vectors of Rm), the matrices Gx are right pseudo-inverses of G.
We return to the questions posed in Section 2. The condition that (2.1) is constant in p in Theorem

2.2 was seen to be necessary and suOcient for Y to be Markov for any initial condition of X . In view of
Eq. (3.3) this is no surprise. We see that the conditional expectation Yt+1|t depends on Y0; : : : ; Yt−1 through
the matrix GAGX̂ t|t−1

, using previously introduced notation. Hence we have the Markov property for Y if

and only if this matrix is independent of the speci"c values of X̂ t|t−1. In particular, if we allow the initial
condition X0|−1 = EX0 to be arbitrary, then we have that Y is Markov i: the matrix GAGp is independent of
p, which is again the condition of Theorem 2.2.
Using the expression (3.3) it is now also possible to give an answer (although less elegant) to the other

question posed in Section 2, namely which initial distributions of X yield the process Y Markov?
It was observed in Kemeny and Snell (1960) that if there exists an initial probability vector p that yields a

deterministic function of X Markov, then the same is true for the initial vector Ap and hence for an invariant
vector #, if there exists one. We claim that this is also true in our case, where Y is a random function of X ,
because of the following argument. Let p be an initial probability vector of X , then Z = Y ⊗ X has initial
probability vector �(G)p (cf. Section 1). We have also seen that Q�(G)p = �(G)Ap, which is the initial
probability vector of Z if X has Ap as initial distribution. Since Y is a deterministic function of Z , we can
apply the observation in Kemeny and Snell (1960) to get our claim.
For a compact condition on p we introduce some auxiliary notation. De"ne for p ∈ A+ the matrix

T (p) = AGp = A diag(p)GT diag(Gp)−1 ∈ Rn×m. The prediction equation (3.2) tells us that if we start the
recursion in a vector p, then X̂ 1|0=T (p)Y0 and from (3.3) we get Ŷ 1|0=GT (p)Y0. Consider now the columns
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T (p)i (i=1; : : : ; m) of T (p). If Y0 =fi is realized, then we get X̂ 2|1 = T (T (p)i)Y1 and Ŷ 2|1 =GT (T (p)i)Y1.
So if we want that Y is Markov we need to have that for all i the matrix GT (T (p)i) is equal to the matrix
GT (p). This can be continued for the next incoming observations Yt , t ¿ 2, and the resulting condition on
p that yields Y a Markov chain is the one described in Theorem 2.4.
A relatively simple suOcient condition on p that yields Y Markov is

T (T (p)i) = T (p) for all i = 1; : : : ; m: (3.4)

Indeed if (3.4) holds, then we have X̂ t+1|t = T (p)Yt for all t, and hence Ŷ t+1|t = GT (p)Yt . Notice that it is
possible to rewrite (3.4) explicitly as a set of linear equations in p.

Appendix A. Proof of the filter formulas

For X̂ t=E[Xt |FY
t ] we also write E[Xt |Y t]. Here Y t is a vector that represents all the observations Y0; : : : ; Yt .

One possible de"nition—which is the one we take—of Y t is a recursive one: Y 0 =Y0 and for t ¿ 1 we have
Y t = Yt ⊗ Y t−1. So Y t is mt+1-dimensional. First we use the well-known result for conditional expectations
given a "nitely generated �-"eld or a random variable with a "nite range. With the presently introduced
notation, this result can be conveniently formulated for our problem as

X̂ t = E[Xt(Y t)T] diag(EY t)−1Y t: (A.1)

For simplicity we assume that the inverse in (A.1) exists, although similar calculations can be carried out by
replacing it with the Moore–Penrose inverse, or equivalently by deleting the entries of the vector Y t that have
zero expectation as well as the corresponding entries of EY t .
Let Kt = E[Xt(Y t)T]. We give "rst a recursive formula for Kt .

Kt = �(G)T(Im ⊗ AKt−1): (A.2)

Furthermore, EY t = E[Y tX T
t ]1n = KT

t 1n = (Im ⊗ (AKt−1)T) vec(GT), which equals vec(GAKt−1) by a familiar
rule for the vec-operator (see Magnus and Neudecker, 1988, p. 31). Write now Dt=diag(EYt). One can check
that

D−1
t Y t = (Im ⊗ Y t−1) diag(GAKt−1Y t−1)−1Yt: (A.3)

Then we use Eqs. (A.1) and (A.3) to write

X̂ t =�(G)T(Im ⊗ AKt−1)(Im ⊗ Y t−1) diag(GAKt−1Y t−1)−1Yt

=�(G)T(Im ⊗ AKt−1Y t−1) diag(GAKt−1Y t−1)−1Yt

= diag(AKt−1Y t−1)GT diag(GAKt−1Y t−1)−1Yt: (A.4)

Eq. (A.4) follows from application of (1.6) with v = 1m and the preceding equality follows from the mul-
tiplication rule for Kronecker products (Magnus and Neudecker, 1988, p. 28). Now we make the following
observations. For any non-zero number d; it holds that diag(w)GT diag(v)−1 = diag(dw)GT diag(dv)−1. We
apply this observation to equation (A.4) with d= (Y t−1)TD−1

t−1Y
t−1 to obtain

X̂ t = diag(AKt−1D−1
t−1Y

t−1)GT diag(GAKt−1D−1
t−1Y

t−1)−1Yt: (A.5)

But this is exactly Eq. (3.1) in view of Eq. (A.1) with t − 1 instead of t.
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