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Abstract. We aim at the construction of a Hidden Markov Model (HMM) of as-
signed complexity (number of states of the underlying Markov chain) which best
approximates, in Kullback-Leibler divergence rate, a given stationary process. We
establish, under mild conditions, the existence of the divergence rate between a
stationary process and an HMM. Since in general there is no analytic expression
available for this divergence rate, we approximate it with a properly defined, and
easily computable, divergence between Hankel matrices, which we propose as an
approximation criterion.
Keywords. Hidden Markov Model, approximation, stochastic realization, diver-
gence rate.

1 Introduction

The probabilistic characterization of HMMs was first given by Heller (1965).
The problem analyzed was: among all finitely valued stationary processes Yt,
characterize those that admit an HMM representation. To some extent the re-
sults of Heller are not quite satisfactory, since the proofs are non-constructive.
Even if Yt is known to be representable as an HMM, no algorithm has been de-
vised to produce a realization i.e. to construct, from the laws of Yt, a Markov
chain Xt and a function f such that Yt ∼ f(Xt) (i.e. they have the same
laws). As stated, the problem has attracted the attention of workers in the
area of Stochastic Realization Theory, starting with Picci and Van Schup-
pen (1984), see also Anderson (1999). More recent references with related
results are Vidyasagar (2004) and Vanluyten et al. (2006). While some of the
issues have been clarified a constructive algorithm is still missing.

In this short paper we direct our attention to the approximation of sta-
tionary processes by HMMs and cast it as a Nonnegative Matrix Factorization
(NMF) problem in terms of certain Hankel matrices. In Lee and Seung (1999)
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numerical procedures for NMF have been proposed and convergence proper-
ties of some of them have been studied in Finesso and Spreij (2005); they turn
out to be very close to those of the EM algorithm, although the algorithm
for NMF is completely deterministic.

This paper develops and extends some preliminary ideas presented in
Finesso and Spreij (2002). Proofs and more details can be found in Finesso
et al. (2008).

2 Mathematical Preliminaries on HMMs

In this paper we consider discrete time Hidden Markov Models (HMM) with
values in a finite set. We follow Picci (1978), Picci and van Schuppen (1984),
see also Anderson (1999), for the basic definitions and notations.

Let Y = (Yt)t∈Z be a discrete time stationary stochastic process defined
on a given probability space {Ω,A, P} and with values in the finite set (al-
phabet) Y of cardinality m. Y∗ will denote the set of finite strings of symbols
from the alphabet Y, with the addition of the empty string. The probabil-
ity distribution of the process induces a map p : Y∗ → [0, 1] as follows. Let
v ∈ Y∗, v = y0 · · · yk for some k, then p(v) = P (Y0 = y0, . . . , Yk = yk).
The map p represents the finite dimensional probability distributions of the
process Y , sometimes referred to as pdf. Let Y be an HMM, with underly-
ing Markov chain X taking values in another finite set X of cardinality N ,
the size of the HMM. The probability distribution of a stationary HMM is
specified by the m nonnegative matrices {M(y), y ∈ Y} of size N ×N with
elements

mij(y) = P (Yt+1 = y, Xt+1 = j | Xt = i).

We also need a probability (row) vector π of size N , such that π = πA, where
A :=

∑
y M(y). The matrix A is the transition matrix of the Markov chain

(Xt)t∈Z and π is an invariant vector of A. Since the state space is finite, such
an invariant vector exists, and is unique if A is irreducible.

Let w ∈ Yn (the set of strings of length n) be given by w = y1 · · · yn. Then
p(w) can be written in terms of the matrices M(yi) as

p(w) = πM(y1) · · ·M(yn)e,

and for any pair of strings u and v in Y∗, one has

p(uv) = πM(u)M(v)e,

where e = (1, . . . , 1)>.

We recall the weak stochastic realization problem (Picci (1978)) for HMMs,
which we state as follows. Let Y be an HMM with law PY (·), find matrices
M(y) that induce the law PY (·). A solution is inherently non-unique.
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The realization problem is unsolved in general. In the present paper we
propose to look for an approximate realization. The advantage of this alter-
native approach is that it can also be used as a procedure to approximate
any given stationary distribution by that of an HMM. We formulate this
approximate realization problem as a problem of optimal approximation in
divergence rate, to be defined in the next section.

3 Divergence rate, existence and minimization

In this section we recall the definition of the divergence rate between pro-
cesses, as previously given in for instance Juang and Rabiner (1985) for two
HMMs. Consider a process Y = (Yt)t∈Z with values in Y under two probabil-
ity measures P and Q. We interpret P and Q as the laws of the process in the
path space Y∞. Let p(y0, . . . , yk) = P (Y0 = y0, . . . , Yk = yk) and q(·) like-
wise. For reasons of brevity, we write p(Y k

0 ) for the likelihood p(Y0, . . . , Yk)
and likewise we also write q(Y k

0 ).

Definition 1. Let Q and P be measures on Y∞ with q and p as the cor-
responding families of finite dimensional distributions. Define the divergence
rate of Q with respect to P as

D(Q‖P ) := lim
n→∞

1
n

EQ

[
log

q(Y n−1
0 )

p(Y n−1
0 )

]
(1)

Theorem 1. Let Y be a process with values in Y. Let Q be an arbitrary
stationary distribution of Y on Y∞ and P a stationary HMM distribution on
Y∞. Assume that

(i) the distributions of all finite segments (Y0, . . . , Yn−1) under Q are abso-
lutely continuous with respect to those under P .

(ii) Q admits an invariant probability measure µ∗ on Y i.e.

µ∗(y) =
∑
y0

Q(Y1 = y|Y0 = y0)µ∗(y0).

(iii) (Yt)t∈Z is geometrically ergodic under Q i.e. ∃ρ ∈ (0, 1)

|Q(Yn = y|Y0 = y0)−Q(Yn = y|Y0 = y′0)| = O(ρn) ∀y, y0, y
′
0 ∈ Y.

Then the limit in (1) exists and is finite.

Remark 1. A sufficient condition that ensures the absolute continuity condi-
tion of Theorem 1 is

(i′)
∑

j

mij(y) = P (Yt+1 = y|Xt = i) > 0, ∀y ∈ Y, ∀i ∈ X .
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The problem we alluded to at the end of Section 2 is

Problem 1. Given Q, a stationary measure on Y∞, solve inf
P

D(Q‖P ), where

the infimum is taken over all stationary HMM distributions of size N .

This problem is well defined under the conditions of Theorem 1, since the
divergence rate is then guaranteed to exist. There is however a major problem.
No analytic expression is known for the divergence rate, when Q is arbitrary
and P an HMM measure (except for a Markov law P , that we will treat in
Remark 2). This is even the case if Q itself is an HMM measure, see Han and
Marcus (2006) for some recent results. A similar observation has already been
made in Blackwell (1957), where the entropy rate of an HMM was studied
for the first time. This motivates an alternative approach. In the next section
we will approximate the abstract minimization problem with a, in principle,
numerically tractable one. For this we will need the Hankel matrix involving
all finite dimensional distributions of a stationary process and that of an
HMM. This is the topic of the next section.

Remark 2. The minimization problem can be solved explicitly if P runs
through the set of all stationary Markov distributions. The minimizing dis-
tribution P ∗ in this case is such that the transition probabilities P ∗(Yt+1 =
j|Yt = i) of the approximating Markov chain coincide with the conditional
probabilities Q(Yt+1 = j|Yt = i) and the invariant (marginal) distribution
under P ∗ is the same as the one under Q. A similar result holds for approxi-
mation by a k-step Markov chain. Unfortunately, such appealing closed form
solutions do not exist if the minimization is carried out over stationary HMM
measures.

4 Hankel matrix for stationary processes

Given an integer n, we define two different orders on Yn: the first lexico-
graphical order (flo) and the last lexicographical order (llo). These orders
have been introduced in Anderson (1999). In the flo the strings are ordered
lexicographically reading from right to left. In the llo the strings are ordered
lexicographically reading from left to right (the ordinary lexicographical or-
dering). On Y∗ we define two enumerations: (uα)flo and (vβ)llo. In both cases
the first element of the enumeration is the empty string. For (uα)flo we then
proceed with the ordering of Y1 according to flo, then with the ordering of
Y2 according to flo, and so on. The enumeration (vβ)llo is obtained by having
the empty string followed by the ordering of Y1 according to llo, then by the
ordering of Y2 according to llo, and so on. In both cases the length of a string
increases monotonically with the index α or β.

Definition 2. For a stationary process with pdf p(·) the Hankel matrix H is
the infinite matrix with elements p (uαvβ), where uα and vβ are respectively
the α-th and β-th elements of the two enumerations.
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Fix integers K, L ≥ 0. Let u1, u2, . . . , uγ with γ = mK be the enumeration
according to the flo of the mK strings of length K. Similarly let v1, v2, . . . , vδ

with δ = mL be the enumeration according to the llo of the mL strings of
length L. Let us denote by HKL the (K, L) block of H of size mK×mL given
by its elements p(uivj) with i = 1, . . . , γ and j = 1, . . . , δ.

Proposition 1. Let H be the Hankel matrix of an HMM. The following
factorizations hold true.

HKL = ΠKΓL,

with

ΠK :=

 πM(u1)
...

πM(uγ)

 , ΓL :=
[
M(v1)e · · · M(vδ)e

]
.

5 Divergence rate approximation

First we define the informational divergence between two positive matrices.

Definition 3. Let M,N ∈ Rm×n
+ . The informational divergence of M rela-

tive to N is
D(M‖N) =

∑
ij

(Mij log
Mij

Nij
−Mij + Nij)

It follows that D(M‖N) ≥ 0 with equality iff M = N . The divergence rate
between two processes can be approximated by the informational divergence
between their Hankel matrices, as we will demonstrate now.

Let Q and P be measures as in Theorem 1. Denote by Hnn and HP
nn the

(n, n) block of their Hankel matrices. A typical element of Hnn is

q(2n)(uivj) := Q(Y 2n−1
0 = uivj) ∀ui ∈ Yn in flo,∀vj ∈ Yn in llo,

and a typical element of HP
nn has a similar expression. The informational

divergence between the Hankel blocks is

D(Hnn‖HP
nn) =

∑
ui,vj∈Yn

q(2n)(uivj) log
q(2n)(uivj)
p(2n)(uivj)

= EQ

[
log

q(Y 2n−1
0 )

p(Y 2n−1
0 )

]
which, when compared to the definition of divergence rate, provides the fol-
lowing

Theorem 2. Assume that P and Q are as in Theorem 1. Then the diver-
gence rate exists and

lim
n→∞

1
2n

D(Hnn‖HP
nn) = D(Q‖P ).
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This theorem motivates the use of 1
2nD(Hnn‖HP

nn), for n large enough, as
an approximation of the divergence rate between Q and P . In Finesso et
al. (2008) an algorithm is presented that results in an approximate HMM re-
alization of a given stationary process. It involves at each step an approximate
Nonnegative Matrix Factorization problem. At the heart of the algorithm lies
the factorization property of HP

nn as in Proposition 1. The NMF problem that
replaces Problem 1 is

min
Πn,Γn

D(Hnn‖ΠnΓn)

under the constraints e>Πne = 1 and Γne = e.
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