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Abstract - I n  this  paper we consider the a p  
proximate realization problem for finite valued 
hidden Markov models i.e. stochastic processes 
Y = f ( X )  where X is a finite state Markov chain 
and f a many-to-one function. Given t h e  laws 
p y ( . )  of Y t h e  weak realization problem consists in  
finding a Markov chain X and a function f such 
tha t ,  at least distributionally, Y - f ( X ) .  T h e  ap- 
proximate realization problem consists in  finding 
X and f such t h a t  Y and f(X) are close. T h e  
approximation criterion we use is t h e  informa- 
tional divergence between properly defined non- 
negative (componentwise) matrices related to t h e  
processes. To construct the realization we apply 
recent results on t h e  approximate factorization of 
nonnegative matrices. 

I. INTRODUCTION 
Let {K, t E Z} be a stationary finitely valued stochas- 

tic process that admits a representation of the form 
yt = f(Xt) where { X t , t  E Z} is a finite Markov chain 
and f is a many-to-one function. We call such a process 
a Hidden Markov Chain (HMC). 

Under well known conditions on f ([9]) a HMC inherits 
the Markov property of X, and becomes a finite Markov 
chain itself, but this case is non-generic. In general a 
HMC need not be a Markov chain of any linite order and 
will therefore exhibit long-range dependencies of some 
kind. Theoretical work on the specific class of HMC's 
has proceeded along two main lines. The early contri- 
butions, inspired by the work of Blackwell and Koopman 
(1957) [31, concentrated on the probabilistic aspects. The 
basic question was the characterization of HMC's. More 
specifically the problem analyzed was: among all finitely 
valued stationary processes Yl characterize those that ad- 
mit a HMC representation. This problem was solved by 
Heller 161 in 1965. To some extent Heller's result is not 
quite satisfactory since his methods are non-constructive. 
Even if Yt is known to be representable as a HMC, no al- 
gorithm has been devised yet to  produce, from the laws 
of Yl,  a Markov chain X t  and a function f such that 
Yl - f ( X l )  (i.e. they have the same laws). Since then 
the problem has attracted the attention of workers in the 
area of Stochastic Realization Theory, starting with Picci 
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and Van Schuppen ([SI and the references therein), see 
also [l] for recent results and a survey of older ones, and 
while some of the issues have been clarified a construc- 
tive algorithm is still missing. The first contributions 
dealing with statistical aspects were made in the late six- 
ties. Baum and Petrie [2] studied maximum likelihood 
estimation of the parameters of a HMC proving consis- 
tency and asymptotic normality of the MLE. They also 
provided an algorithm for the numerical computation of 
the MLE basically inventing the EM algorithm that be- 
came popular only later thanks to the work of Dempster, 
Laird and Ruhin. 

In this paper we will direct our attention to  the approx- 
imate realizations, based on recent results on the nonneg- 
ative matrix factorization problem (NMF) 171, [lo] and 
we will also present an algorithm to numerically carry 
out the construction. The convergence properties of this 
algorithm are also studied and they turn out to be much 
like those of the EM algorithm [5 ] ,  [ll].  

11. HMC'S AND STOCHASTIC SYSTEMS 

Definition. A process Y is called a hidden Markov 
chain (IfMC) if there is a function f and a Markov chain 
X such that Y = f ( X ) .  

A different (equivalent) definition is given in terms of 
the output of a stochastic system 

Definition. A pair (X, Y )  of stochastic processes taking 
values in the finite set X x y is  said to be a stationary 
finite stochastic system (SFSS) i f  

i )  (X, Y) is jointly stationary. 
ii) For all t ,  XI,. . . , zlr  y,, . . . , yt it holds that 

P(K+1 = .,Xt+l = .  I Y: = y ; , x ;  =.I) 
= P(yt+l = . ,Xt+l  = ' I xt = I t )  

The processes X and Y are called respectively the state 
and the output of the SFSS. 

Definition. A stochastic process Y with values in y is 
a Hidden Markov Chain (HMC) if it has the same distri- 
bataon as the output of a SFSS. 

The probability distribution of an HMC is completely 
specified by 
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the matrices {M(y),y E Y }  with elements Theorem. (Heller) p y ( . )  is the pdf  of an HMC iff the 
set Cy := conv{py(. I U )  : u E Y.} is contained in a 
polyhedral stable subset of C'. mij(y)=P(&+l =y,Xt+1 =j 1 x, =i). . an initial (stationary) distribution vector ?r such Weak stochastic realization problem. Let Y be a 
HMC with pdf p y ( , ) .  Find an SFSS ( X ,  P) such tliat the 
pdf P P ( . )  = P Y ( , ) .  

that ?r = nA, where 

A := M(y) 
Y 

is the transition matrix of the MC X. 

Definition. For a word U = y1 yz . . . yn define: 

M ( v )  := M(YI)M(Yz).'.M(y,), 
a square matrix 

g(v) := ?rM(u),  a row vector 
h(v) := M ( v ) e ,  a column uector, 

with e = ( 1 , .  . . , 1). 

It easily follows from the definitions that the p r e  
bability distribution function (pdf) p(yy) = P(Yl = 
yl,. . . , Y, = y,,) is given by 

P ( Y ~  = aM(yd . . .M(y , ) e ,  

Any such SFSS is called a realization of Y ,  and the prob- 
lem reduces to finding matrices ( A ,  By) that specify its 
distribution. The realization is inherently non-unique. 
The number d = 1x1 is called the dimension of the red- 
ization. The minimal dimension of a realization of Y is 
called order of the HMC. 

The realization problem is unsolved in general. Helier's 
theorem doesn't help since its proof is not const,ructive. 
The following special case sheds some light on the solu- 
tion. 

Static realization problem. Given a joint pdf PO(.,  .) 
and integer d ,  find, if it exists, a triple of rv's (Y+, X ,  Y - )  
such that 
(i) the support of X has cardinality d 
(ii) the marginal pdf of (Y+, Y - )  is PO 

(iii) Y+ and Y -  are C I  given X .  

and for any two words U and v The following result characterizes the joint pdf's admit- 
ting a realization 

Theorem. 
ifl the positive matrix Po = IIpa(i,j)lI can be factored as 

p(uv) = n M ( u ) M ( v ) e  = g(u)h(v), 
The static realization problem has a solution 

Factorization hypothesis: 

P(Y,+i = Y,Xt+l = j I xt = i) Po = G H ,  
= p(&+l = Y I xt+l = j)p(xt+l = j I xt = i, where G and H are positive mat,jces with inner size d ,  

Define with d = 1x1 The smallest d for which the solution exists is called the 
positive rank of PO. bi, := P(Y, = y I X t  = i) 

By := diag{bl,, by, .. b d , } .  Definition. Compound sequence matrices (c.s.m.) Let 
p (  .) be a given pdf,  and v1 . . U,, U ;  . . . U; w o d s  fmm Y.. 
The c.s.m. P is The factorization hypothesis then reads 

M(Y) = AB, 

If Y = f ( X ) ,  a deterministic function of X, then biy E 
{ O ,  l} with b,, =. 1 iff f(i) = y and the factorization 
hypothesis holds. Since it is always possible to represent 
an HMC as a deterministic function of a MC, we will 
assume w.1.o.g. the factorization hypothesis. 

111. REALIZATION OF AN HMC 
Let Y be a finite valued stationary process with pdf 

p y ( . ) .  Heller's theorem characterizes the subset of fi- 
nite valued stationary processes that are HMC's. Let 
c' be the convex set of probability distributions on Y.. 
A convex subset C C C' is polyhedral stable if C = conv 
{q1(.) ; . .  ,qc(.)}  and for 15 i 5 c and Vy E Y the con- 
ditional distributions gz(. / y) := - E C. 

P = P(v1 ' '.U,,, U ;  ' . ' U ; )  = IIp(viv;)Iji,j 

The rank ofp(.)  is  defined as the maximum of the ranks 
of all possible c.s.m. i f  such maximum exists or +cc ulA- 
erwise. 

If p ( , )  is the pdf of an HMC which admits a represcri- 
tation of dimension d then since p(viv;) = g(v;)h(v;) one 
has 

P = G H  

where G, H are n x d and d x n matrices 

Let k = lYl, then 

Lemma. The rank of an HMC is a lower bound to its 
order. Moreover the distribution of Y is completely deter- 
mined by the kd x kd c.s.m. with elements p(au'), whcre 
U and U' exhaust all words of length d .  



IV. APPROXIMATE REALIZATION OF HMC'S 

The following considerations prompt the interest for 
the approximate realization problem for HMC's. 

(i) There is no algorithm to construct an exact realization 
of a given HMC of known order. 

(ii) The order of the HMC: may be too large 

(iii) Wc might be interested in approximating a general 
pdf with an HMC of given dimension. 

Our aim will be the constrnction of an approximate red- 
ization of assigned (low) dimension. To this end we apply 
recent results on the problem of approximate nonnegative 
matrix factorization ( [ 7 ] )  which we briefly recall. 

Definition. Let M and N be nonnegative (component- 
wise) matrices of the same site, th€iT informational di- 
vergence is defined as 

It holds that D(M1JN) 2 0 with equality i n  M = N .  

Approximate nonnegative matr ix  factorization. 
Given P,  a positive n x m matrix, and integer k < n,m, 
find positive matrices G and H ,  of sizes n x k, k x m 
respectively, such that 

D(PIIGH) is minimized. 

If k = 1, then the minimizing G and H are proportional 
to the row sums and column sums of P. The problem has 
no closed form solution for k > 1, but a recursive algo- 
rithm for the construction of the optimal G and H has 
been developed ((71). We are now ready to formulate the 
main problem. 

Approximate realization of a n  HMC. Given a pdf 
p( . ) ,  and an integer d ,  find an HMC Y, of dimension d,  
at minimal divergence distance from p( . ) .  

Notice that, in general, p ( . )  is not required to be an HMC. 
The following result motivates our approach to  the con- 
struction of approximate realizations 

Lemma. Let P" and Py" be the complete c.s.m.'s cor- 
responding to n observations from p ( . )  and py(.), then 

1 J ~ P ( . ) I J P Y ( . ) )  = n-m lim -D(P"IIP?) n 

The c.s.m. Py of an HMC factorizes as P y  = GH for 
some nonnegative matrices G and H .  This observation 
and the previous lemma suggest a natural approximation 
scheme. From p( . )  construct the c.s.m. P of size n x n 
and then find matrices G and H of sizes n x d and d x n 
respectively to 

minimize D(P1IGH) 

From these G and H construct a pair (A,  B )  representing 
the optimal approximate HMC. 

Construction of (A,B) - Preliminaries 

Definition. 
u l r . .  . ,U,, U , ,  . . . ,U,, the pinned c.s.m. is 

Given a pd f  p ( . ) ,  a value s E Y ,  and words 

P ( s )  = P ( U 1 , .  . . ,U,, 5,211,. . . ,U") 

Fact: If Y is an HMC, with c.s.m. Py = G H  the panned 
c.s.m. P y ( s )  is expressed as 

P y ( s )  = GAB,H 

The rough idea is to solve, for each of the pinned c.5.m. 
P ( s ) ,  s E y ,  corresponding to p ( , ) ,  the minimization in 

minimize D(P(s) l IGAB,H) 

Properly gluing the solutions will produce the optimal 
( A , B )  pair. 

Notation. If Y is an HMC of the form Y = f ( X ) ,  then 
we have the rank factorization 

( A ,  B a )  

T B, = e&, I 

with e, a matrix with elements in {0,1}. Then 

P y ( s )  = G K ,  = GA,H,,  

where A ,  = Ae,, H ,  = e:H. Postmultiplication by es SD 

lects the columns of A corresponding to the states i for 
which f(i) = s. 

Three  step algorithm to produce A 

Suppose that we seek an approximate realization of di- 
mension d such that Y = f ( X ) ,  for a fixed function f .  

1. Minimize D(P1IGH) over G and H subject to the 
constraint He  = e. Decompose the minimizing H' 
into 'row blocks' H: = eTH,  (s = 1,. . . , k). 

2. Take the minimizing G' from the previous step and 
minimize D(P(s) l IGK)  over K for each s E y ,  call 
the minimizer K,*. 

3. Minimize D(K,'IIA.H,') over A,  for each s 
under the constraint that Ae = e, where 
A := ( A I , .  . . , A r ) .  

The resulting minimizer A' is taken as the transition ma- 
trix of the underlying Markov chain. 

Final remarks 

1. There is an EM-type alternating algorithm for the 
first step that displays monotone convergence to a 
local optimum. For the other two steps one can a p  
ply results form Csiszar and Tusnady to have con- 
vergence to a global optimum. 
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2. If the process Y is approximated by a Markov chain, 
the resulting matrix A* has elements AZj = P(Y1 = 
jlyu = i). 

3: Alternative algorithms may also bc considered, in 
particular one that ‘reverses’ the order of the first 
two steps of the given algorithm. 

REFERENCES 
[I] B.D.O. Anderson (1999), The Realization Problem for Hidden 

Markov Models, Mathematics of Contml, Signals, and Systems 

[Z] Baum L.E. and Petrie T. (1966), Statistical inference for p r o b  
abilistic functions of finite Markov chains, Ann. of Mothem. 
StotGt., 37, pp. 15541563 

131 Blackwell and Koouman (1957). On the identifiabilitv orohlem 

12, 8@m. 

for functions of finite Markov chains, Ann. oJ Mathem. .Statist., 
28, 1011-1015. 

[4] Carlyle J.W. (1969), Stochastic finite-state system theory, in 
Systems Theory, L. Zadeh and L. Polak eds., McGraw-Hill, New 
York, Chapter IO. 

[5] I. Csisz6r and G. TusnAdy (1984), Information geometry and al- 
ternating minimization procedures, Statistics d Decisons, sup- 
plement issue 1, 205-237 

[6] Heller A. (1965), On stochastic processes derived from Markov 
chains, Ann. Mathem. Stat., 36, pp. 1286-1291 

171 D.D. Lee and H.S. Sebastian Seung (1999), Learning the parts 
of objects hy non-negative matrix factorization, Nature 401, pp 
788791. 

[8] G. Picci, J.M. van den Hof, and J.H. van Schuppen (1998), 
Primes in ~everal classes of the positive matrices, Linear Algebra 
and its Applications, 277, 149-185. 

191 P.J.C. Spreij (ZOOl), On the Markov pmperty of a finite hidden 
Morkov chain, Statistics and Probability Letters, Vol 5213, pp 
27S288. 

[IO] J.A. O’Sullivan (1998), Alternating minimization algorithms: 
From Blahut-Arimoto to Expectation-Maximization, in A. 
Vardy, ed., Codes, Curues and Signals, Common Threads in 
Communications, Kluwer Academic, Boston, pp 173-192. 

[ l l ]  J.A. O’Sullivan (ZOOO), Properties of the information value de- 
composition, Pmceedings ISIT 2000, Somnto ,  Italy, pp 491. 

93 


