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Abstract
In this work, we study the problem of learning the volatility under market microstruc-
ture noise. Specifically, we consider noisy discrete time observations from a stochastic
differential equation and develop a novel computational method to learn the diffusion
coefficient of the equation. We take a nonparametric Bayesian approach, where we a
priori model the volatility function as piecewise constant. Its prior is specified via the
inverse GammaMarkov chain. Sampling from the posterior is accomplished by incor-
porating the Forward Filtering Backward Simulation algorithm in the Gibbs sampler.
Good performance of the method is demonstrated on two representative synthetic data
examples. We also apply the method on a EUR/USD exchange rate dataset. Finally
we present a limit result on the prior distribution.
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1 Introduction

Let the one-dimensional stochastic differential equation (SDE)

dXt = b(t, Xt ) dt + s(t) dWt , X0 = x0, t ∈ [0, T ], (1)

be given. Here W is a standard Wiener process and b and s are referred to as the drift
function and volatility function, respectively. We assume (not necessarily uniformly
spaced) observation times {ti : 1 ≤ i ≤ n} and observations Yn = {Y1, . . . ,Yn},
where

Yi = Xti + Vi , 0 < t1 < · · · < tn = T , (2)

and {Vi } is a sequence of independent and identically distributed random variables,
independent of W . Our aim is to learn the volatility s using the noisy observations
Yn . Knowledge of the volatility is of paramount importance in financial applications,
specifically in pricing financial derivatives, see, e.g., Musiela and Rutkowski (2005),
and in risk management.

The quantity Δti = ti − ti−1 is referred to as the observation density, especially if
the time instants are equidistant, and then 1/Δti will be the frequency of the observa-
tions. Small values of Δti correspond to high frequency, dense-in-time data. Intraday
financial data are commonly thought to be high frequency data. In this high frequency
financial data setting, which is the one we are interested in the present work, the mea-
surement errors {Vi } are referred to as microstructure noise. Their inclusion in the
model aims to reflect such features of observed financial time series as their discrete-
ness or approximations due to market friction. Whereas for low-frequency financial
data these can typically be neglected without much ensuing harm, empirical evidence
shows that this is not the case for high frequency data; cf. Mykland and Zhang (2012).

There exists a large body of statistics and econometrics literature on nonparametric
volatility estimation under microstructure noise. See, e.g., Hoffmann et al. (2012),
Jacod et al. (2009), Mykland and Zhang (2009), Reiß (2011), Sabel et al. (2015); a
recent overview is Mykland and Zhang (2012). The literature predominantly deals
with estimation of the integrated volatility

∫ t
0 s

2(u)du, although inference on s has
also been studied in several of these references. Various methods proposed in the
above-mentionedworks share the property of being frequentist in nature. An important
paper (Mancini et al., 2015) is a mix of theoretical and practical results, with a clear
predominance of the former. Its main purpose (see page 262) is proposing a unifying
frequentist approach to spot volatility estimation, fromwhichmany previously existing
approaches would be derived as special cases. This allows comparison between them.
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As our approach is Bayesian, our results do not fall under the general umbrella of
Mancini et al. (2015).

In this paper, our main and novel contribution is the development of a practical
nonparametric Bayesian approach to volatility learning under microstructure noise.
We specify an inverse Gamma Markov chain prior (Cf. Cemgil & Dikmen 2007) on
the volatility function s and reduce our model to the Gaussian linear state space model.
Posterior inference in the latter is performed using Gibbs sampling including a For-
ward Filtering Backward Simulation (FFBS) step. We demonstrate good performance
of our method on two representative simulation examples. The first example uses a
benchmark function, popular in nonparametric regression, see Fan and Gijbels (1995),
as the volatility function. In the second example we consider a well known and widely
used stochastic volatility model, the Heston model, see Heston (1993), or (Filipovic
2009, Section 10.3.3) and (Brigo &Mercurio 2006, Chapter 19, Appendix A). In both
examples our approach shows accurate results.We also apply our method to a real data
set of EUR/USD exchange rates and we deduce a clear and understandable variation
in the volatility over time.

In general, a nonparametric approach reduces the risk of model misspecification;
the latter may lead to distorted inferential conclusions. The presented nonparametric
method is not only useful for an exploratory analysis of the problem at hand (cf.
Silverman 1986), but also allows honest representation of inferential uncertainties (cf.
Müller &Mitra 2013). Attractive features of the Bayesian approach include its internal
coherence, automatic uncertainty quantification in parameter estimates via Bayesian
credible sets, and the fact that it is a fundamentally likelihood-based method. For a
modern monographic treatment of nonparametric Bayesian statistics see Ghosal and
van der Vaart (2017); an applied perspective is found in Müller et al. (2015).

The paper is organised as follows: in Sect. 2 we introduce in detail our approach,
followed by Sect. 3 where the limiting behaviour of the prior on the squared volatility
is derived under mesh refinement. In Sect. 4 we test its practical performance on
synthetic data examples. Section 5 applies ourmethod on a real data example. Section 6
summarises our findings. Finally, Appendix A gives further implementational details.

Notation

We denote the inverse Gamma distribution with shape parameter α > 0 and scale
parameter β > 0 by IG(α, β). Its density is

x �→ βα

Γ (α)
x−α−1e−β/x , x > 0.

By N (μ, σ 2) we denote a normal distribution with mean μ ∈ R and variance σ 2 > 0.
The uniform distribution on an interval [a, b] is denoted by Uniform(a, b). For a
randomvariate X , the notation X ∼ p stands for the fact that X is distributed according
to a density p, or is drawn according to a density p. Conditioning of a random variate
X on a random variate Y is denoted by X | Y . By �x� we denote the integer part of
a real number x . The notation p ∝ q for a density p denotes the fact that a positive
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function q is an unnormalised density corresponding to p: p can be recovered from q
as q/

∫
q. Finally, we use the shorthand notation ak:� = (ak, . . . , a�).

2 Methodology

In this section we introduce our methodology for inferring the volatility.We first recast
the model into a simpler form that is amenable to computational analysis, next specify
a nonparametric prior on the volatility, and finally describe an MCMC method for
sampling from the posterior.

2.1 Linear state spacemodel

Let t0 = 0. By Eq. (1), we have

Xti = Xti−1 +
∫ ti

ti−1

b(t, Xt )dt +
∫ ti

ti−1

s(t)dWt . (3)

We derive our method under the assumption that the “true”, data-generating volatility
s is a deterministic function of time t . Next, if the “true” s is in fact a stochastic process,
we apply our procedure without further changes, as if s were deterministic. As shown
in the example of Sect. 4.2, this works in practice. That this is the case is easiest to
understand in the situation where one can discern a two-stage procedure. First the
stochastic volatility is generated, and given a realization of it, the observations are
generated by an independent Brownian motion W . In Kanaya and Kristensen (2016)
such an approach is used for simulation.

Over short time intervals [ti−1, ti ], the term
∫ ti
ti−1

s(t)dWt in (3), roughly speaking,

will dominate the term
∫ ti
ti−1

b(t, Xt )dt , as the latter scales as Δti , whereas the former

as
√

Δti (due to the properties of the Wiener process paths). As our emphasis is
on learning s rather than b, following (Gugushvili et al., 2020, 2019b) we act as if
the process X had a zero drift, b ≡ 0. The justification of this procedure is explained
(Gugushvili et al., 2020).A similar idea is often used in frequentist volatility estimation
procedures in the high frequencyfinancial data setting; seeMykland andZhang (2012),
Sect. 2.1.5 for an intuitive exposition. Formal results why thisworks in specific settings
rely on Girsanov’s theorem, see, e.g., Gugushvili et al. (2020), Hoffmann et al. (2012),
Mykland and Zhang (2009). Further reasons why one would like to set b = 0 are that
b is a nuisance parameter, in specific applications its appropriate parametric form
might be unknown, and finally, a single observed time series is not sufficient to learn
b consistently (see Ignatieva & Platen 2012).

We thus assume Xti = Xti−1 +Ui , where Ui = ∫ ti
ti−1

s(t)dWt . Note that then

Ui ∼ N (0, wi ) with wi =
∫ ti

ti−1

s2(t)dt, (4)

123



Japanese Journal of Statistics and Data Science

and also that {Ui } is a sequence of independent random variables. To simplify our
notation, write xi = Xti , yi = Yi , ui = Ui , vi = Vi . The preceding arguments and (2)
allow us to reduce our model to the linear state space model

xi = xi−1 + ui ,

yi = xi + vi ,
(5)

where i = 1, . . . , n. The first equation in (5) is the state equation, while the second
equation is the observation equation.We assume that {vi } is a sequence of independent
N (0, ηv) distributed random variables, independent of the Wiener process W in (1),
so that {vi } is independent of {ui }. For justification of such assumptions on the noise
sequence {vi } from a practical point of view, see Sabel et al. (2015), page 229. We
endow the initial state x0 with the N (μ0,C0) prior distribution. Then (5) is aGaussian
linear state spacemodel. This is very convenient computationally. Hadwe not followed
this route, we would have had to deal with an intractable likelihood, which constitutes
the main computational bottleneck for Bayesian inference in SDE models; see, e.g,
Papaspiliopoulos et al. (2013) and van der Meulen and Schauer (2017) for discussion.

2.2 Prior

For the measurement error variance ηv , we assume a priori ηv ∼ IG(αv, βv). The
construction of the prior for s is more complex and follows (Gugushvili et al., 2019b),
that in turn relies on Cemgil and Dikmen (2007). Fix an integer m < n. Then we
have a unique decomposition n = mN + r with 0 ≤ r < m, where N = �n/m�.
Now define bins Bk = [tm(k−1), tmk), k = 1, . . . , N − 1, and BN = [tm(N−1), T ]. We
model s as

s =
N∑

k=1

ξk1Bk , (6)

where N (the number of bins) is a hyperparameter. Then s2 = ∑N
k=1 θk1Bk , where

θk = ξ2k . We complete the prior specification for s by assigning a prior distribution
to the coefficients θ1:N . For this purpose, we introduce auxiliary variables ζ2:N , and
suppose the sequence θ1, ζ2, θ2, . . . , ζk, θk, . . . , ζN , θN forms a Markov chain (in this
order of variables). The transition distributions of the chain are defined by

θ1 ∼ IG(α1, β1), ζk+1|θk ∼ IG(α, αθ−1
k ), θk+1|ζk+1 ∼ IG(α, αζ−1

k+1), (7)

where α1, β1, α are hyperparameters. We refer to this chain as an inverse Gamma
Markov chain, see Cemgil and Dikmen (2007). The corresponding prior on θ1:N will
be called the inverse GammaMarkov chain (IGMC) prior. The definition in (7) ensures
that θ1, . . . , θN are positively correlated, which imposes smoothing across different
bins Bk . Simultaneously, it ensures partial conjugacy in the Gibbs sampler that we
derive below, leading to simple and tractable MCMC inference. In our experience, an
uninformative choice α1, β1 → 0 performs well in practice. We also endow α with a
prior distribution and assume logα ∼ N (a, b), with hyperparameters a ∈ R, b > 0
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chosen so as to render the hyperprior on α diffuse. As explained in Gugushvili et al.
(2020), Gugushvili et al. (2019b), the hyperparameter N (or equivalently m) can be
considered both as a smoothing parameter and the resolution at which one wants to
learn the volatility function.Obviously, given the limited amount of data, this resolution
cannot bemade arbitrarilyfine.On the other hand, as shown inGugushvili et al. (2019b)
(see also Gugushvili et al. 2019a), inference with the IGMC prior is quite robust with
respect to a wide range of values of N , as the corresponding Bayesian procedure
has an additional regularisation parameter α that is learned from the data. Statistical
optimality results in Munk and Schmidt-Hieber (2010) suggest that in our setting N
should be chosen considerably smaller than in the case of an SDE observed without
noise (that was studied via the IGMC prior in Gugushvili et al. (2019b)).

2.3 Likelihood

Although an expression for the posterior of s can be written down in closed form,
it is not amenable to computations. This problem is alleviated by following a data
augmentation approach, in which x0:n are treated asmissing data, whereas the y1:n are
the observed data; cf. Tanner and Wong (1987). An expression for the joint density of
all random quantities involved is easily derived from the prior specification and (5).
We have

p(y1:n, x0:n, θ1:N , ζ2:N , α, ηv)

=
(

n∏

k=1

p(yk | xk, ηv)

)

p(x0:n | θ1:N )

× p(θ1)
N−1∏

k=1

[
p(ζk+1 | θk, α)p(θk+1 | ζk+1, α)

]
p(α)p(ηv).

Except for p(x0:n | θ1:N ), all the densities have been specified directly in the previous
subsections. To obtain an expression for the latter, define (with Δi ≡ Δti )

Zk =
km∑

i=(k−1)m+1

(xi − xi−1)
2

Δi
, k = 1, . . . , N − 1,

ZN =
n∑

i=(N−1)m+1

(xi − xi−1)
2

Δi
,

and set mk = m for k = 1, . . . , N − 1, and mN = m + r . Then

p(x0:N | θ1:N ) ∝ e(x0−μ0)
2/(2C0)

N∏

k=1

θ
−mk/2
k exp

(

− Zk

2θk

)

.
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2.4 Gibbs sampler

We use the Gibbs sampler to sample from the joint conditional distribution of
(x0:n, θ1:N , ζ2:N , ηv, α) given y1:n . The full conditionals of θ1:N , ζ2:N , ηv are easily
derived from Sect. 2.3 and recognised to be of the inverse Gamma type, see Sect. A.2.
The parameter α can be updated via a Metropolis-Hastings step. For updating x0:N ,
conditional on all other parameters, we use the standard Forward Filtering Backward
Simulation (FFBS) algorithm for Gaussian state space models (cf. Section 4.4.3 in
Petris et al. 2009). The resulting Gibbs sampler is summarised in Algorithm 1. For
details, see Appendix A.

Algorithm 1: Gibbs sampler for volatility learning
Data: Observations y1:n
Hyperparameters α1, β1, αv , βv , a, b, N ;

Result: Posterior samples θ i1:N : i = 1, . . . , M

Initialization θ01:N , ζ 01:N , η0v , α0;
while i ≤ M do

sample xi0:n via FFBS;

sample θ i1:N from the inverse Gamma full conditionals;

sample ζ i2:N from the inverse Gamma full conditionals;

sample ηiv from the inverse Gamma full conditional;

sample αi via a Metropolis-Hastings step;
set i = i + 1.

end

3 Asymptotics for the prior on the squared volatility

We first provide in Proposition 1 results on the prior conditional mean and variance
of the θk as in Sect. 2.2. These results will be exploited to find an asymptotic regime
for the θk when the number of bins tends to infinity. In this section we depart from the
original setting with α as a random hyperparameter (having a lognormal distribution),
but instead we take it as a deterministic one that we let grow to infinity to obtain our
asymptotic results.

Proposition 1 If α > 2 is a fixed parameter then the IGMC prior of Sect. 2.2 satisfies

Ek[θk+1 − θk] = 1

α − 1
θk, (8)

Vk(θk+1 − θk) = α(2α − 1)

(α − 1)2(α − 2)
θ2k , (9)

where Ek and Vk respectively denote expectation and variance, conditional on θk .

Consequently, the conditional mean squared error Ek(θk+1 − θk)
2 equals

2(α+1)θ2k
(α−1)(α−2) .
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Proof We will use that for Z ∼ IG(a, b) it holds that

EZ−1 = a

b
,

EZ−2 = a(a + 1)

b2
. (10)

First we consider the conditional mean. Since θk+1 | ζk+1 ∼ IG(α, αζ−1
k+1) we have

E[θk+1 | ζk+1] = αζ−1
k+1

α − 1
(11)

provided α > 1. Exploiting that the sequence θ1, ζ2, θ2, . . . , ζk, θk, . . . , ζN , θN forms
a Markov chain (in this order of variables), one has

Ekθk+1 = EkE[θk+1 | θk, ζk+1] = EkE[θk+1 | ζk+1] = α

α − 1
Ekζ

−1
k+1,

where we used (11) at the last equality sign. Using (10) and ζk+1 | θk ∼ IG(α, αθ−1
k )

one obtains

Ekθk+1 = α

α − 1

α

αθ−1
k

= α

α − 1
θk,

which is equivalent to (8).
Next we calculate the conditional variance. We have

V[θk+1 | ζk+1] = α2ζ−2
k+1

(α − 1)2(α − 2)
(12)

provided α > 2. We need the following variation on the law of total variance. If
X ∈ L2(Ω,F ,P), and G ,H are subsigma-algebras ofF withH ⊂ G . Then, with
XG = E[X | G ], it holds that

Var(X | H ) = E[Var(X | G ) | H ] + Var(XG | H ).

We use this result with X = θk+1, G = σ(θk, ζk+1), H = σ(θk), obtaining

Var(θk+1 | θk) = E[Var(θk+1 | θk, ζk+1) | θk] + Var(E[θk+1 | θk, ζk+1] | θk)

= E[Var(θk+1 | ζk+1) | θk] + Var(E[θk+1 | ζk+1] | θk),

as now XG = E[θk+1 | θk, ζk+1] = E[θk+1 | ζk+1] and Var(θk+1 | θk, ζk+1) =
Var(θk+1 | ζk+1) in view of the Markov property. Hence, in our abbreviated notation,

Vkθk+1 = EkV(θk+1 | ζk+1) + VkE[θk+1 | ζk+1].
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Hence, using (11) and (12)

Vkθk+1 = α2

(α − 1)2(α − 2)
Ekζ

−2
k+1 + Vk

αζ−1
k+1

α − 1

=
(

α2

(α − 1)2(α − 2)
+ α2

(α − 1)2

)

Ekζ
−2
k+1 − α2

(α − 1)2

(
Ekζ

−1
k+1

)2

= α2

(α − 1)(α − 2)
Ekζ

−2
k+1 − α2

(α − 1)2

(
Ekζ

−1
k+1

)2

= α2

(α − 1)(α − 2)

α(α + 1)

α2θ−2
k

− α2

(α − 1)2

(
α

αθ−1
k

)2

= α(2α − 1)

(α − 1)2(α − 2)
θ2k ,

which establishes (9). The expression for the mean squared error follows from (8) and
(9). �

The expression for the conditional mean squared error in Proposition 1 shows that it
decreases in α, which illustrates the regularising property of this parameter. Therefore
we are interested in the behaviour of the prior distribution on the θk for large values
of α. We will scale α with the number of bins N to obtain a limit result by applying
Donsker’s theorem (Cf. Corollary VII.3.11 in Jacod & Shiryaev 2013), upon letting
N → ∞. We give some heuristics to derive the limit behaviour.

Take α = γ N , where in the latter expression γ is a positive scaling factor. As the
law of the θk depends on γ N , we are thus interested in the law of θk for N → ∞.
This entails simultaneously increasing the number of bins as also the dependence of
the values on the bins. Below we argue that under the IGMC-prior, with θ1 fixed, the
process t �→ s2(t), with s2(t) = ∑N

k=1 θk1Bk (t), converges weakly to the continuous
time process t �→ θ1Zt where

log Zt =
√

2

γ
Wt − 1

γ
t . (13)

The expressions for conditional mean and variance of Proposition 1 are for large N
(in particular then α = γ N > 2) approximately equal to

Ekθk+1 = θk, (14)

Vk(θk+1) = 2θ2k
γ N

. (15)

These properties are shared with θk generated by the recursion

θk+1 = θk

(

1 +
√

2

γ N
zk

)

,
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where, for all k, zk is independent of θ1, . . . , θk , Ezk = 0, Var zk = 1. The zk can be
seen as martingale differences, or even as IID random variables. Solving the recursion
starting from θ1 after taking logarithms leads to

log θk+1 − log θ1 =
k∑

j=1

log

(

1 +
√

2

γ N
z j

)

≈
k∑

j=1

√
2

γ N
z j −

k∑

j=1

1

γ N
z2j

=
√

2

γ

√
1

N

k∑

j=1

z j − 1

γ

1

N

k∑

j=1

z2j ,

where the approximation is based on a second order Taylor expansion of the logarithm
andmakes sense for largevalues of N . Introduce theprocessesWN = {WN

t , t ∈ [0, 1]}
and AN = {AN

t , t ∈ [0, 1]} by

WN
t =

√
1

N

∑

j≤Nt

z j ,

AN
t = 1

N

∑

j≤Nt

z2j .

By Donsker’s theorem, one has weak convergence of Wn to W , a standard Brownian
motion. Furthermore, AN converges uniformly in probability to A, At = t . It follows

that
√

2
γ
WN − 1

γ
AN weakly converges to

√
2
γ
W − 1

γ
A. Note that A is the quadratic

variation process 〈W 〉. Hence
√

2
γ
WN − 1

γ
AN convergesweakly to

√
2
γ
W− 1

2 〈
√

2
γ
W 〉.

Consequently, assuming t N is an integer, for k = t N one finds that the distribution

of log θk − log θ0 is approximately (for large N ) that of
√

2
γ
Wt − 1

γ
t , which is normal

N (− t
γ
, 2t

γ
) = N (− k

γ N , 2k
γ N ). The θk can also approximately be generated by the

recursion, yielding log-normal random variables,

θk+1 = θk exp(ξk),

where the ξk are IID randomvariableswith common N (− 1
γ N , 2

γ N )distribution. Indeed

for this recursion one finds Ekθk+1 = θk and Vk(θk+1) = θ2k (exp( 2
γ N ) − 1) ≈ 2θ2k

γ N ,
which coincide with the earlier found expressions (14) and (15) for conditional mean
and variance.

Moreover the continuous time approximation Z of the θk/θ1, with Z as in (13),

is the Doléans exponential E
(√

2
γ
W

)
and thus satisfies the stochastic differential

equation
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dZt =
√

2

γ
Zt dWt . (16)

In Sect. 4.2 we will provide results for the Heston model with the product of θ1 and
this limit process as the squared volatility process.

4 Synthetic data examples

In this sectionwe test the practical performance of ourmethod on challenging synthetic
data examples. The goal is to illustrate the ability of ourmethod to recover the volatility
in a controlled settingwhere the ground truth is knownand thus the quality of inferential
results can be assessed directly. We also show good practical performance of the
method in a situation which formally does not fall under the derivations made in
Sect. 2; see Sect. 4.2 below.

The simulation setup is as follows: we take the time horizon T = 1 and generate
n = 4 000 observations as follows. First, using a fine grid of 10n + 1 time points
which are sampled from the Uniform(0, 1) distribution, conditional on including 0
and 1, a realisation of the process X is obtained via Euler’s scheme, see Glasserman
(2004) or Kloeden and Platen (1992). The n time points {ti } are then taken as a random
subsample of those times, conditional on including 1. The settings used for the Gibbs
sampler are given in Appendix A.4. In each example below, we plot the posterior mean
and 95% marginal credible band (obtained from the central posterior intervals for the
coefficients ξk = √

θk in (6)). The former gives an estimate of the volatility, while the
latter provides a means for uncertainty quantification.

All the computations are performed in the programming language Julia, see
Bezanson et al. (2017), and we provide the code used in our examples. The hard-
ware and software specifications for the MacBook used to perform simulations are:
CPU: Intel(R) Core(TM) M-5Y31 CPU @ 0.90GHz; OS: macOS (x86_64-apple-
darwin14.5.0).

4.1 Fan and Gijbels function

Suppose the volatility function is given by

s(t) = 3/2 + sin(2(4t − 2)) + 2 exp(−16(4t − 2)2), t ∈ [0, 1]. (17)

This is a popular benchmark in nonparametric regression, which we call the Fan &
Gijbels function (see Fan & Gijbels 1995). This function was already used in the
volatility estimation context in Gugushvili et al. (2020). We generated data using the
drift coefficient b(x) = −x . For the noise level we took ηv = 0.01, which is substan-
tial. Given the general difficulty of learning the volatility from noisy observations, one
cannot expect to infer it on a very fine resolution (cf. the remarks in Sect. 2.2), and
thus we opted for N = 40 bins. Experimentation showed that the results were rather
robust w.r.t. the number of bins.
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Fig. 1 Posterior and pointwise 95% credible band for the example of Sect. 4.1. The true volatility function
is plotted in red, the black step function gives the posterior mean, and the credible band is shaded in blue
(color figure online)

Fig. 2 Trace plots for the Fan andGijbels function of Sect. 4.1. Left: first 10,000 samples. Right: subsequent
20,000 samples. Top: α, middle: ηv , bottom: θ20

Inference results are reported in Fig. 1. It can be seen from the plot that we succeed
in learning the volatility function. Note that the credible band does not cover the entire
volatility function, but this had to be expected given that this is a marginal band. Quick
mixing of the Markov chains can be visually assessed via the trace plots in Fig. 2. The
algorithm took about 11 min to complete.

4.2 Hestonmodel

The Heston model (see Heston 1993, or (Filipovic 2009, Section 10.3.3) and (Brigo
& Mercurio 2006, Chapter 19, Appendix A)) is a widely used stochastic volatility
model. It stipulates that the price process of a certain asset, denoted by S, evolves over
time according to the SDE
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dSt = μStdt + √
Zt StdWt ,

where the process Z follows the CIR or square root process (see Cox et al. 1985),

dZt = κ(θ − Zt )dt + σ
√
ZtdBt . (18)

Here W and B are correlated Wiener processes with correlation ρ. Following a usual
approach in quantitative finance, we work not with S directly, but with its logarithm
Xt = log St . According to Itô’s formula it obeys a diffusion equation with volatility
s(t) = √

Zt ,

dXt =
(

μ − 1

2
Zt

)

dt + √
ZtdWt .

We assume high-frequency observations on the log-price process X with additive
noise Vi ∼ N (0, ηv). In this setup the volatility s is a random function. We assume
no further knowledge of the data generation mechanism. This setting is extremely
challenging and puts our method to a serious test. To generate data, we used the
parameter values μ = 0.05, κ = 7, θ = 0.04, σ = 0.6, ρ = −0.6, that mimick
the ones obtained via fitting the Heston model to real data (see Table 5.2 in van der
Ploeg 2006). Furthermore, the noise variance was taken equal to ηv = 10−6. The latter
choice ensures a sufficiently large signal-to-noise ratio in the model (5), that can be
quantified via the ratio wi/ηv of the intrinsic noise level wi to the external noise level
ηv . Finally, the parameter choiceμ = 0.04 corresponds to a 4% log-return rate, which
is a reasonable value.

We report inference results with N = 80 bins in Fig. 3. These are surprisingly
accurate, given a general difficulty of the problem and the amount of assumptions that
went into the learning procedure. Note that the number of bins to get accurate results
is higher than in the previous example. This is due to the fact that the volatility here
is much rougher, Hölder continuous of order less than 1

2 . The Markov chains mix
rapidly, as evidenced by the trace plots in Fig. 4. The simulation run took about 12
min to complete. Finally, we note that the Heston model does not formally fall into
the framework under which our Bayesian method was derived (deterministic volatility
function s). We expect that a theoretical validation why our approach also works in
this case requires the use of intricate technical arguments, which lie beyond the scope
of the present, practically-oriented paper.

We have also run some experiments for a variation of the above Heston model with
the original CIR squared volatility according to (18) replaced with a squared volatility
equal to the limit process θ1Z , where Z is as in (13), equivalently as in (16), with√

2
γ

= 0.6. The experiments showed the influence of the number of bins N and the

starting values, illustrated by Figs. 5 and 6. One sees that the results with the lower
number of bins N = 40 combined with a low initial value are less satisfactory than
with the higher N = 80 and higher starting value.
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Fig. 3 Posterior mean and pointwise 95% credible band for the example of Sect. 4.2. The true volatility
function is plotted in red, the black step function gives the posterior mean, and the credible band is shaded
in blue (color figure online)

Fig. 4 Trace plots for the Heston model of Sect. 4.2. Left: first 10,000 samples. Right: subsequent 20,000
samples. Top: α, middle: ηv , bottom: θ40

Fig. 5 Posterior results for theHestonmodelwhere theCIRvolatility is replacedby the root of the continuous
time limit of the prior, N = 40, starting value of the volatility is 0.1. The colors have the same meaning as
in Fig. 3 (color figure online)
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Fig. 6 Posterior results for theHestonmodelwhere theCIRvolatility is replacedby the root of the continuous
time limit of the prior, N = 80, starting value of the volatility is 2.0

5 Exchange rate data

Unlike daily stock quotes or exchange rate series that can easily be obtained via several
online resources (e.g., Yahoo Finance), high frequency financial data are rarely acces-
sible for free for academia. In this section, we apply ourmethodology to infer volatility
of the high frequency foreign exchange rate data made available by Pepperstone Lim-
ited, the London based forex broker.1 As we shall see below, the inferred volatility
looks plausible, and while there is substantial uncertainty surrounding the inferential
results left (as quantified by the marginal credible band), nontrivial conclusions can
nevertheless be drawn.

Specifically, we use the EUR/USD tick data (bid prices) for 2 March 2015. As
the independent additive measurement error model (2) becomes harder to justify for
highly densely spaced data, we work with the subsampled data, retaining every 10th
observation. Applying various amounts of subsampling is a common strategy in this
context; see, e.g., Section 5 in Mancini et al. (2015) for a practical example. In our
case subsampling results in a total of n = 13 025 observations over one day, about 9
per minute. See (Mykland & Zhang 2012, Section 2.5) for further motivation and
explanation of subsampling and (Zhang et al. 2005, Section 1.2) where it is shown
that subsampling (and averaging) is motivated by a substantial decrease in the bias of
their estimator. As in Sect. 4.2, we apply the log-transformation on the observed time
series, and assume the additive measurement error model (2). The data are displayed
in Fig. 7, top panel.

Financial time series often contain jumps, accurate detection of which is a delicate
task. As this section serves illustrative purposes only, for simplicity we ignore jumps
in our analysis. For high frequency data, volatility estimates are expected to recover
quickly after infrequent jumps in the underlying process. This should in particular be
the case for our learning procedure, given that we model the volatility as a piecewise
constant function, which can be viewed as an estimate of the “histogramised” true
volatility. Indeed, effects of infrequent jumps in the underlying process are likely to

1 As of 2020, data are not available from the Pepperstone website any more, but can be obtained directly
from the present authors. The data are stored as csv files, that contain the dates and times of transactions
and bid and ask prices. The data over 2019 are available for download (after a free registration) at https://
www.truefx.com/truefx-historical-downloads.
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Fig. 7 Top: Natural logarithm of the EUR/USD exchange rate data for 2 March 2015 analysed in Sect. 5.
Bottom: Posterior mean (black curve) and pointwise 95% credible band (blue band) for the volatility
function. The time axis is rescaled to [0, 1] (color figure online)

get smoothed out by averaging (we make no claim of robustness of our procedure
with respect to possible presence of large jumps in the process X , or densely clustered
small jumps). An alternative here would have been to use a heuristic jump removal
technique, such as the ones discussed in Sabel et al. (2015); next one could have
applied our Bayesian procedure on the resulting “cleaned” data.

We report inference results in the bottom panel of Fig. 7, where time is rescaled
to the interval [0, 1], so that t = 0 corresponds to the midnight and t = 0.5 to noon.
We used N = 96 bins. As seen from the plot, there is considerable uncertainty in
volatility estimates. Understandably, the volatility is lower during the night hours. It
also displays two peaks corresponding to the early morning and late afternoon parts
of the day. Finally, we give several trace plots of the generated Markov chains in
Fig. 9. The algorithm took about 33 min to complete. In Figure 8 we give inference
results obtained via further subsampling of the data, retaining 50% of the observations.
The posterior mean is quite similar to that in Fig. 7, whereas the wider credible band
reflects greater inferential uncertainty due to a smaller sample size. The figure provides
a partial validation of the model we use.

6 Discussion

In this paper we studied a practical nonparametric Bayesian approach to volatility
learning undermicrostructure noise. From the statistical theory point of view, the prob-
lem is muchmore difficult than volatility learning from noiseless observations. Hence,
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Fig. 8 Posterior mean (black curve) and pointwise 95% credible band (blue band) for the volatility of the
further subsampled EUR/USD exchange rate data analysed in Sect. 5. The time axis is rescaled to [0, 1]
(color figure online)

Fig. 9 Log trace plots for the exchange rate data example of Sect. 5. Top: α, middle: ηv , bottom: θ20

accurate inference on volatility under microstructure noise requires large amounts of
data. Fortunately, these are available in financial applications. On the other hand,
design of a learning method that scales well with data becomes important. Our speci-
fication of the prior and a deliberate, but asymptotically harmless misspecification of
the drift by taking b ≡ 0 are clever choices that enable us to combine our earlier work
in Gugushvili et al. (2019b) with the FFBS algorithm for Gaussian linear state space
models. This gives a conceptually simple and fast algorithm (Gibbs sampler) to obtain
samples from the posterior, from which inferences can be drawn in a straightforward
way. A very interesting topic for future research within our approach is to explicitly
account for the possible presence of jumps in financial time series.
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A Details on update steps in the Gibbs sampler

A.1 Drawing x0:n

We first describe how to draw the state vector x0:n conditional on all other parameters
in themodel and the data y1:n . Note that for ui in (5)we have by (4) that ui ∼ N (0, wi ),
where

wi = θkΔi , i ∈ [(k − 1)m + 1, km], k = 1, . . . , N − 1,

wi = θNΔi , i ∈ [(N − 1)m + 1, n]. (19)

By Eq. (4.21) in Petris et al. (2009) (we omit dependence on θ1:N , ηv in our notation,
as they stay fixed in this step),

p(x0:n|y1:n) =
n∏

i=0

p(xi |xi+1:n, y1:n),

where the factor with i = n in the product on the righthand side is the filtering density
p(xn|y1:n). This distribution is in fact N (μn,Cn), with the mean μn and variance Cn

obtained from Kalman recursions

μi = μi−1 + Kiei , Ci = Kiηv, i = 1, . . . , n.

Here

Ki = Ci−1 + wi

Ci−1 + wi + ηv

, i = 1, . . . , n,

is theKalman gain. Furthermore, ei = yi−μi−1 is the one-step ahead prediction error,
also referred to as innovation. See Petris et al. (2009), Section 2.7.2. This constitutes
the forward pass of the FFBS.

Next, in the backward pass, one draws backwards in time x̃n ∼ N (μn,Cn) and
x̃n−1, . . . x̃0 from the densities p(xi |̃xi+1, y1:n) for i = n−1, n−2, . . . , 0. It holds that
p(xi |̃xi+1:n, y1:n) = p(xi |̃xi+1, y1:n), and the latter distribution is N (hi , Hi ), with

hi = μi + Ci

Ci + wi+1
(̃xi+1 − μi ), Hi = Ciwi+1

Ci + wi+1
.

123



Japanese Journal of Statistics and Data Science

For every i , these expressions depend on a previously generated x̃i+1 and other known
quantities only. The sequence x̃0, x̃1, . . . , x̃n is a sample from p(x0:n|y1:n). See Section
4.4.1 in Petris et al. (2009) for details on FFBS.

A.2 Drawing�v,�1:N and �2:N

Using the likelihood expression from Sect. 2.3 and the fact that ηv ∼ IG(αv, βv), one
sees that the full conditional distribution of ηv is given by

ηv|x1:n, y1:n ∼ IG

(

αv + n

2
, βv + 1

2

n∑

i=1

(yi − xi )
2

)

.

Similarly, using the likelihood expression from Sect. 2.3 and the conditional distribu-
tions in (7), one sees that the full conditional distributions for θ1:N are

θ1|ζ2, x1:n ∼ IG

(

α1 + α + m1

2
, β1 + α

ζ2
+ Z1

2

)

,

θk |ζk, ζk+1, x1:n ∼ IG

(

2α + mk

2
,

α

ζk
+ α

ζk+1
+ Zk

2

)

, k = 2, . . . , N − 1,

θN |ζN , x1:n ∼ IG

(

α + mN

2
,

α

ζN
+ ZN

2

)

.

The full conditional distributions for ζ2:N are

ζk |θk, θk−1 ∼ IG

(

2α,
α

θk−1
+ α

θk

)

, k = 2, . . . , N .

A.3 Drawing˛

The unnormalised full conditional density of α is

q(α) = π(α)

(
αα

Γ (α)

)2(N−1)

exp

(

−α

N∑

k=2

1

ζk

(
1

θk−1
+ 1

θk

))
N∏

k=2

(
θk−1θkζ

2
k

)−α

.

The corresponding normalised density is nonstandard, and the Metropolis-within-
Gibbs step (see, e.g., Tierney 1994) is used to update α. The specific details are
exactly the same as in Gugushvili et al. (2019b).

A.4 Gibbs sampler

Settings for the Gibbs sampler in Sect. 4 are as follows: we used a vague specifica-
tion α1, β1 → 0, and also assumed that logα ∼ N (1, 0.25) and ηv ∼ IG(0.3, 0.3)
in Sect. 4.1. For the Heston model in Sect. 4.2 we used the specification ηv ∼
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IG(0.001, 0.001). Furthermore, we set x0 ∼ N (0, 25). The Metropolis-within-Gibbs
step to update the hyperparameter α was performed via an independent Gaussian ran-
domwalk proposal (with a correction as inWilkinson (2012))with scaling to ensure the
acceptance rate of about 30− 50%. The Gibbs sampler was run for 30 000 iterations,
with the first third of the samples dropped as burn-in.
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