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Preface

These lecture notes have been written for and during the course Hedging en Derivaten
at the Universiteit van Amsterdam in Fall 2001. Students that took the course were
assumed to have finished a course on Finance in Discrete Time and therefore to be
familiar with the standard notions of Mathematical Finance. For those who missed
that course I included a short summary of some essentials in Discrete Time Finance.

Students were not supposed to have experience in measure theory, but it turned
out that they had some knowledge of it and followed a course in Measure Theory
parallel to the course Hedging en Derivaten. Therefore, the later sections use more
measure theoretic concepts than the first ones. The Appendix contains some notions
from Probability theory that are essential for the course.

The course basically starts with showing the first steps towards continuous time
models by invoking the central limit theorem for a sequence of discrete time models.
This motivates the use of (log)normal models. Since Brownian motion is so promi-
nently around in continuous time models it is extensively introduced. Other basic
topics include the study of the heat equation and equations that can be derived from
it, since these are instrumental in pricing financial derivatives. The use of Itô calculus
has been postponed until it was unavoidable, the general definition of self financing
strategies. Nevertheless, we also introduce a definition for self financing Markovian
portfolios, that is based on a limit argument and discrete time analogues. A rigorous
treatment of Itô integrals and the Itô rule was beyond the scope of the course, but we
have provided the reader with some of the basic notions and results and gave here and
there some heuristic arguments or a partial proof, when full proofs would have been
technically too demanding.

Finally, these lectures notes will be updated and adapted for a next course. I
already found some errors and omissions, many of them thanks to Ge Hong and Ramon
van den Akker who carefully went through the first version of the manuscript. In
2016 a substantial revision has taken place, after I have taught the course Financiële
Wiskunde at the Radboud University Nijmegen. Since then, there have been quite a
few updates, a major one being the inclusion of a section on interest rate models in
2020. Suggestions for improvement are always welcome.

Amsterdam, May 2020 Peter Spreij

iii



iv



Contents

1 From discrete to continuous time 1
1.1 A summary of discrete time results . . . . . . . . . . . . . . . . . . . . 1
1.2 Limits in the CRR model . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Brownian motion 16
2.1 Interpolation of continuous functions . . . . . . . . . . . . . . . . . . . 16
2.2 Existence of Brownian motion . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Properties of Brownian motion . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 The heat equation 25
3.1 Some theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Girsanov’s theorem in a simple case 30
4.1 Measure transformations and Girsanov’s theorem . . . . . . . . . . . . 30
4.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Black Scholes market 36
5.1 Models with equivalent measures . . . . . . . . . . . . . . . . . . . . . 36
5.2 Arbitrage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 Hedging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Elementary Itô calculus 43
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1 From discrete to continuous time

In this section we briefly recall a number of fundamental issues and problems
in the theory of pricing of derivatives in a finite security market where time is
discrete. Because the emphasis is on concepts we consider a market that consists
of only one risky asset (the stock) and one riskless asset (the bond). Later on
we will study approximations when the number of trading times becomes large.

1.1 A summary of discrete time results

The basic setting is as follows. We consider a financial market where two kinds
of products are traded, risky and non-risky assets. Trading takes place at time
instants t ∈ {0, . . . , N}. Traded are a bond (a non-risky asset) with correspond-
ing prices at time t equal to Bt and a stock (a risky asset) with prices at time
t equal to St. The typical example of a bond is that of a bank account. For
the stock we could think of shares of a company at the stock exchange or of the
exchange rate of the Euro against the US dollar. We adopt the normalization
that B0 = 1. Furthermore the bond price is assumed to grow exponentially
with rate r, a deterministic real number, meaning that we have for all t that
Bt = (1 + r)t.

The price of the stock is assumed to be a random process–recall that the
stock is the risky asset–, implying that each time instant t one is uncertain
about the behavior of the stock price at future instants. Given that one knows
the price at a time t, at time t+ 1 and future times more than one price of the
stock is possible, but we don’t know exactly which one. In this section we will
later on mainly treat the Cox-Ross-Rubinstein (CRR) model, which says that
from a given price at a certain time, only two values of the price at the next
time instant are possible, and with some predescribed values only.

In the sequel we will often work with discounted prices and values. These
are denoted by a bar on the variable under consideration. More precisely, if Yt
denotes the value or price of some financial product (not necessarily the bond
or the stock) at time t, then by Ȳt we denote its discounted value or price and
it is defined by

Ȳt =
Yt
Bt
.

Note that we divide Yt by the bond price at the same time t. In the jargon of
Mathematical Finance we say that we choose the bond price B as a numéraire.
For example, we will often encounter the discounted price process S̄ of the risky
asset. Observe that B̄t = 1 for all t.

Next we consider portfolios. Formally, a portfolio (in our context) is a sequence
of (random) real pairs (xt, yt) with the interpretation that xt is the amount of
stock that an investor holds at time t and yt the number of bonds. The value
at t of such a portfolio is denoted Vt and is given by

Vt = xtSt + ytBt.

Note that the discounted value process of the portfolio is V̄t = xtS̄t + yt and
observe that we allow xt and yt to be any real number. A negative value of yt
then corresponds to borrowing money from the bank and a negative value of xt
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to short selling of the stock. Furthermore, we will not allow to have xt and yt
to depend on future values Su (u ≥ t), the investor is not clairvoyant. So for all
t the values of xt and yt only depend on the stock through S0 to St−1.

An important concept is that of a self-financing portfolio. Intuitively speaking,
a portfolio is called self financing if and only if an initial investment is made
and any reallocation of the portfolio is made without infusion or withdrawal
of money, so it is done in a budget neutral way. To be precise, we adopt the
following definition.

Definition 1.1 A portfolio is called self-financing if for all t ≥ 0 we have

xtSt + ytBt = xt+1St + yt+1Bt. (1.1)

We can give this definition an equivalent expression after having introduced
the difference operator ∆. For any process Y the process ∆Y is defined by
∆Yt = Yt−Yt−1 for t ≥ 1 and ∆Y0 = Y0. Now we have the following statement.
A portfolio is self-financing iff

∆Vt = xt∆St + yt∆Bt for all t ≥ 0. (1.2)

In terms of discounted prices and values Equation (1.2) takes the following
simpler form.

∆V̄t = xt∆S̄t for all t ≥ 0. (1.3)

The proof of Equations (1.2) and (1.3) both being equivalent to (1.1) is left as
Exercise 1.3.

A desirable property of a financial market is that it is free of arbitrage, meaning
–in a sense to be specified below– that it is impossible to make money out of
nothing. Formally, we call a portfolio an arbitrage opportunity (over the discrete
time interval {0, . . . , N}) if it is self-financing, its value V0 at time zero is equal
to zero and its value at N is always nonnegative, whereas VN strictly positive is
possible. So, with an arbitrage portfolio it is impossible to loose money, whereas
making a profit is a possibility. Often probabilities are attributed to the stock
price movements. If these are modeled by a probability measure P, then we
have the following formal definition in probabilistic terms.

Definition 1.2 We say that a portfolio with value process V = {Vt : t =
0, . . . , N} is an arbitrage opportunity if P(V0 = 0) = 1, P(VN ≥ 0) = 1 and
P(VN > 0) > 0. A market is arbitrage free if no arbitrage possibilities exist.

One of the main issues in Mathematical Finance is the pricing (or valuation) of
contingent claims, also called derivatives. Contingent claims are financial prod-
ucts that are defined in terms of underlying products. It is therefore reasonable
to think that the price of a contingent claim should in some way depend on the
price of these underlying products. Indeed, under the no arbitrage condition,
we will see that this is the case for the CRR model. However, in general absence
of arbitrage is not sufficient to determine one single price of the claim that is
consistent with this condition.

From now on we will work with the Cox-Ross-Rubinstein (CRR) market. To
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make precise what this means, we introduce the process Z which is defined for
t ≥ 1 by

Zt =
St
St−1

. (1.4)

In the CRR model it is assumed that for all t the ratio Zt takes on one of only
two values u and d, where u > d. We assume also that S0 is a fixed positive
number s. Since St = S0

∏t
k=1 Zk, we get that St takes its values in the set

{sdt, sudt−1, . . . , sut}. Along with the process Z we introduce the (cumulative)
return process R = (R1, . . . , RN ). It is defined by the equations

∆Rt =
∆St
St−1

, for t ∈ {1, . . . , N}. (1.5)

Trivially, we get from (1.5) the following equivalent relations ∆St = St−1∆Rt
and Sn = S0

∏n
t=1(1+∆Rt). All these relations are summarized in the notation

S = S0 E(R), (1.6)

with E(R)n =
∏n
t=1(1 + ∆Rt).

Many of the ideas that have been introduced above can already be illustrated
within a single-period CRR market, that is a market with N = 1. We have the
following result.

Proposition 1.3 The CRR market with N = 1 is free of arbitrage iff d <
1 + r < u.

Proof Exercise 1.1. �

Let us now consider how to price contingent claims in a single-period CRR
market. A contingent claim X is now by definition a financial product of the
form X = f(S1), defined in terms of some function f . The prime example of
such a claim is the European call option with exercise price K for which we
have f(x) = (x −K)+ and hence X = (S1 −K)+ [for any real number u, one
abbreviates max{u, 0} as u+]. This is explained below.

In general, the holder of an option has the right, but not the obligation to
exercise it. In the case of the call option, the holder has the right to purchase
the stock at time t = 1 for the price K. She is willing to do this at time t = 1 if
the true market price S1 is then greater than K, after which she sells the stock
agains the market price, incurring a profit S1 −K. If it happens that S1 ≤ K,
she does nothing. Combining the two cases the profit she makes can be written
as (S1 −K)+.

The principal question is here: how much is one willing to pay for such a
claim at t = 0. Note that the future (at t = 1) value of the claim is uncertain,
due to the different values that S1 may assume. The solution to this question is
obtained by comparing the claim to a portfolio that gives at time t = 1 exactly
the same payoff as the claim, no matter how the market will evolve. And since
these values are the same at t = 1, the fair price of the claim at t = 0 should
be, consistent with the no arbitrage condition, the same as the value of the
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portfolio at t = 0. The portfolio that has this property is called hedging against
the contingent claim. Since we keep the portfolio constant over time in this
case, the problem boils down to the finding of real numbers x and y such that

xS1 + yB1 = f(S1),

whatever the value of S1. Since only the two values su and sd are possible, we
are faced with the following system of equations

xsu+ y(1 + r) = f(su)

xsd+ y(1 + r) = f(sd),

whose solution is

x =
f(su)− f(sd)

s(u− d)

y =
uf(sd)− df(su)

(1 + r)(u− d)
.

With the thus found values we compute the value of the portfolio at t = 0 to
get

V̄0 = V0 =
1

1 + r

(
1 + r − d
u− d

f(su) +
u− (1 + r)

u− d
f(sd)

)
.

Hence, by investing an initial capital V0 needed to purchase the portfolio with
the just found quantities x and y we find its value at time t = 1 always coinciding
with the claim f(S1). By the law of one price principle and excluding arbitrage,
the value of the claim at time t = 0 has to be equal to V0.

Under the no arbitrage condition of Proposition 1.3 the numbers

qu :=
1 + r − d
u− d

and qd := u−(1+r)
u−d (1.7)

are in (0, 1) and sum to 1, so we can interpret them as probabilities. Let us
introduce a probability measure Q on the outcome space of the return Z1 by
putting Q(Z1 = u) = qu and Q(Z1 = d) = qd. Then we can write

V0 = EQ
1

1 + r
f(sZ1) = EQ

1

1 + r
f(S1),

or, in discounted terms, V0 = EQ f̄(S1). We conclude that in this example the
fair price of a contingent is the mathematical expectation of the discounted
value of the claim under a suitably chosen probability measure. This measure,
Q, is called the risk neutral measure. It has another interesting property.

EQS1 = qusu+ qdsd = s(1 + r),

or, again in discounted terms, EQS̄1 = s. We see that under the risk neutral
measure the expectation of the discounted stock price is the same as its initial
price. In more sophisticated terms we say that the discounted price process is
a martingale under Q. If one wishes, one can associate with the price process
S (with t = 0, 1) any other probability measure P. The fact that S1 allows two
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possible outcomes is then reflected by imposing P(S1 = su) > 0 and P(S1 =
sd) > 0. Since also the corresponding probabilities under Q are positive, this
means that the two probability measures Q and P are equivalent in the measure
theoretic sense, notation P ∼ Q. Therefore Q is also called the equivalent
martingale measure. Note that we have in fact also shown that Q is the unique
measure that makes S̄ a martingale.

Since it is now understood how to price contingent claims in a simple one-period
market, we proceed by outlining the approach in a multi-period CRR market,
so with a time horizon N > 1.

We first consider the case N = 2 and a simple contingent claim X, i.e. we
have X = f(S2), for some real valued function f , defined on the state space
S2 = {su2, sud, sd2}. Like in the one-period model we try to find a hedging
strategy, that is a portfolio that replicates the value of the claim X, no matter
how the market evolves. This is in general impossible if one follows a buy and
hold strategy, like in the single-period model. Recalling the procedure that we
followed there, this would in the present case amount to solving a system of
three (linear) equations with two unknowns, and this is in general impossible.
However, we now allow self-financing strategies! So we are allowed to rebalance
our portfolio as long as we respect the budget neutral condition (1.1). We thus
have more freedom, namely x2, x1 = x0 and y2, y1 = y0. Together with the
budget constraint this results in as many equations as variables and so there is
some hope for a unique solution. This argument can be made precise and holds
for an arbitrary horizon, not only N = 2.

Let’s see how it works. We consider a general (composite) claim of the
type X = F (s, Z1, . . . , ZN ). By relabeling, X is also a function of S0 = s and
S1, . . . , SN . It is our purpose to find a dynamic portfolio that is such that at
t = N its value equals the pay off of the claim. So at time N we should have
identically

xNSN + yNBN = X.

Let us suppose that we know all Zi for i = 1, . . . , N − 1, and thus in particular
SN−1. Then SN can assume only the two values SN−1u and SN−1d, depending
on the value of ZN . Whichever of these two values SN assumes, xN and yN
must be the same, hence we have the two equations

xNSN−1u+ yNBN = F (s, Z1, . . . , ZN−1, u)

xNSN−1d+ yNBN = F (s, Z1, . . . , ZN−1, d).

These equations are like the ones we met before in the one-period case. The
solution is

xN =
F (s, Z1, . . . , ZN−1, u)− F (s, Z1, . . . , ZN−1, d)

SN−1(u− d)

yN =
1

BN

uF (s, Z1, . . . , ZN−1, d)− dF (s, Z1, . . . , ZN−1, u)

u− d
.

To get the value of the hedge portfolio at time N − 1 we use the self-financing
property to write VN−1 = xN−1SN−1 + yN−1BN−1 as xNSN−1 + yNBN−1.
Inserting the expressions for xN and yN results by direct calculation in

VN−1 =
BN−1

BN
(F (s, Z1, . . . , ZN−1, u)qu + F (s, Z1, . . . , ZN−1, d)qd) , (1.8)
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with qu = 1+r−d
u−d and qd = u−(1+r)

u−d . Hence the value of the portfolio at time
N − 1 is known (given the past price movements), whereas the value at time
N always coincides with X. We conclude, from the law of one price, that the
value of the claim X at time N − 1 has to coincide with VN−1.

If we fix the values of Z1, . . . , ZN−1 at z1, . . . , zN−1, then we can write the
right hand side of (1.8) as

VN−1 =: vN−1(z1, . . . , zN−1) =
1

1 + r
EQF (s, z1, . . . , zN−1, ZN ),

where as before we have Q(ZN = u) = qu.
Now we are going to find the values of xN−1 and yN−1 such that the value

of the portfolio at time N1 coincides with VN−1, given the price movements
up to time N − 2, the Zi with i ≤ N2, no matter which value ZN−1 assumes.
One could say that we treat VN−1 as a claim at time N − 1, since we observe
from Equation (1.8) that VN−1 depends on the Z1, . . . , ZN−1. Mimicking the
previous step, we consider the two cases for the stock price movement ZN−1

separately. We get from Equation (1.8) the two relations

xN−1SN−2u+ yN−1BN−1 =

BN−1

BN
(F (s, Z1, . . . , ZN−2, u, u)qu + F (s, Z1, . . . , ZN−2, u, d)qd)

xN−1SN−2d+ yN−1BN−1 =

BN−1

BN
(F (s, Z1, . . . , ZN−2, d, u)qu + F (s, Z1, . . . , ZN−1, d, d)qd) ,

which can analogously be solved as before. We skip the explicit expression and
move straight on to the value of the portfolio at time N − 2. It becomes (you
do the computation yourself as Exercise 1.4)

VN−2 =
1

(1 + r)2

(
F (s, Z1, . . . , ZN−2, u, u)q2

u

+ F (s, Z1, . . . , ZN−2, u, d)quqd

+ F (s, Z1, . . . , ZN−2, d, u)quqd

+ F (s, Z1, . . . , ZN−2, d, d)q2
d

)
. (1.9)

Let us fix the values of Z1, . . . , ZN−2 at z1, . . . , zN−2. Then we can write

VN−2 =: vN−2(z1, . . . , zN−2)

=
1

(1 + r)2
EQF (s, z1, . . . , zN−2, ZN−1, ZN ), (1.10)

where Q has the property that ZN and ZN−1 are independent and identically
distributed. An explicit formula for the pricing formula is rather involved for
general claims, but from (1.10) it becomes clear how the compact form should
look like. At any time n, given that the values of Z1, . . . , Zn are z1, . . . , zn, we
have

Vn =: vn(z1, . . . , zn)

=
1

(1 + r)N−n
EQF (s, z1, . . . , zn, Zn+1, . . . , ZN ). (1.11)
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In this construction Vn, the value of the portfolio at time n has to equal the
value of the claim X at time n, since at time N the values of the claim and of
the portfolio coincide.

In Equation (1.11) EQ denotes expectation taken under the probability mea-
sure Q that is such that Q(Zn = u) = qu, Q(Zn = d) = qd for n = 1, . . . , N
and, moreover, it makes the Zk independent random variables with identical
distributions. We note the following important property of Q: It is the unique
probability measure that makes S̄ martingale. The martingale property here
means that for all n ≥ 1 we have

EQ[S̄n|Z1, . . . , Zn−1] = S̄n−1.

Equivalently we have

EQ[Zn|Z1, . . . , Zn−1] = 1 + r.

Let us show the asserted uniqueness of Q. Computing the last conditional
expectation as uQ(Zn = u|Z1, . . . , Zn−1) + dQ(Zn = d|Z1, . . . , Zn−1) = 1 + r,
we see that the conditional distribution of Zn given Z1, . . . , Zn−1 is determined
by Q(Zn = u|Z1, . . . , Zn−1) = 1+r−d

u−d , and that this conditional probability
doesn’t depend on the conditioning random variables, and is therefore equal to
the unconditional probability. Hence it follows that the distribution under Q of
the vector (Z1, . . . , Zn) is the product of its marginals. So, under Q, the Zi are
independent random variables.

Knowing this and using properties of conditional expectation (see the Ap-
pendix, Propositions A.9 or A.11), we can write (1.11) in the following equivalent
form (with X = F (s, Z1, . . . , ZN )).

Vn =
1

(1 + r)N−n
EQ[F (s, Z1, . . . , ZN )|Z1, . . . , Zn] (1.12)

=
1

(1 + r)N−n
EQ[X|S1, . . . , Sn], (1.13)

where we used in the last equation that conditioning on Z1, . . . , Zn is equivalent
to conditioning on S1, . . . , Sn. Switching to the discounted value process V̄ we
get from expression (1.13) that

V̄n = EQ[X̄|S1, . . . , Sn]. (1.14)

It is not hard to see (a rather straightforward computation yields the result)
that

V̄n = EQ[V̄n+1|S1, . . . , Sn], for n = 0, . . . , N − 1. (1.15)

Both equations (1.14) and (1.15) express the fact that also the discounted value
process V̄ is a martingale under the measure Q.

Computing explicit expressions for the xn and yn is even more cumbersome
than finding the values Vn. Important is however that these exist (under the
proviso that u > d) for any contingent claim X, that is X is of the form
F (s, Z1, . . . , ZN ). One says that every contingent claim in the CRR market can
be hedged. The sequence (xn, yn), n = 1, . . . , N is called a hedging portfolio or
a hedging strategy. A market in which every claim can be hedged is said to be
complete. This result is important enough to state as a proposition.
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Proposition 1.4 The multi-period CRR market (with u > 1 + r > d) is com-
plete.

Remark 1.5 In order to compute hedging strategies in the CRR market as
above, it is sufficient to have u 6= d (and then w.l.o.g. u > d). But in absence
of the condition u > 1 + r > d the expressions for the Vn loose their meaning
as conditional expectations, since qu or qd may then become negative and can
therefore not be interpreted as probabilities anymore. For this reason it is
common to impose u > 1 + r > d.

Not only is the CRR market complete, we also have

Proposition 1.6 The multi-period Cox-Ross-Rubinstein market is free of arbi-
trage under any probability measure P that is equivalent to Q iff d < 1 + r < u.

Proof We first work under Q. Assume that d < 1 + r < u, then we have
that Q is a probability measure. Suppose that an arbitrage strategy exists
with corresponding value process V . Then we have V0 = V̄0 = 0, VN ≥ 0
and Q(VN > 0) > 0. Consequently, we also have EQVN > 0 and EQV̄N > 0.
But since V̄ is a martingale under Q, we then get V̄0 = EQV̄0 = EQV̄N > 0, a
contradiction. [See also Exercise A.1.]

If P is a probability measure that is equivalent to Q, then we have P(V0 =
0) = 1 iff Q(V0 = 0) = 1, P(VN ≥ 0) = 1 iff Q(VN ≥ 0) = 1, and P(VN > 0) > 0
iff Q(VN > 0) > 0. The result now follows from the previous case.

The proof of the necessity of d < 1 + r < u follows as in the one period case
(this is Exercise 1.1). �

The above construction of a hedging strategy shows an interesting aspect. Sup-
pose that two persons have different views on the stock price movement in a
CRR market with r = 0 and some d < 1 < u. One (the optimist) thinks that
all events {Zn = u} have probability 0.99, the other (the pessimist) that these
events have probability .01. Suppose that both want to buy a European call
option with some maturity date and strike price. Although at first glance it
seems reasonable to think that the optimist is willing to pay more for the op-
tion than the pessimist, we have seen above that their respective perceptions of
the market movements are immaterial: if they both handle rationally, they will
nevertheless agree on the same price for this option!

For simple claims the expression for their values in (1.11) takes a simpler form.

In this case the function F is specified by F (s, Z1, . . . , ZN ) = f(s
∏N
i=1 Zi) =

f(SN ), for some other given function f . The pricing formula is now given by

Vn =: vn(Sn) = (1 + r)−N+n
N−n∑
i=0

f(Snu
idN−n−i)

(
N − n
i

)
qiuq

N−n−i
d .

If we fix the price Sn at a known number s, then we can rewrite this equation
as vn(s) = (1 + r)−N+nEQf(sSNSn ). The discounted version of this expression is

v̄n(s) = EQf̄(s
SN
Sn

). (1.16)
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Since under the probability measure Q the ratio SN/Sn and Sn are independent
(why?), property (iv) of Proposition A.11 says that v̄n(s) = EQ[f̄(SN )|Sn = s]
and hence (1.16) is equivalent to

V̄n = EQ[f̄(SN )|Sn].

For the special case of a European call option we have f(x) = (x−K)+ so that
in this case the pricing formula becomes

Vn = (1 + r)−N+n
∑

i∈E(n)

(Snu
idN−n−i −K)

(
N − n
i

)
qiuq

N−n−i
d ,

where E(n) is the set of indices i for which Snu
idN−n−i > K. Note that E(n)

is an interval in {0, . . . , N − n}, possibly empty in which case the above sum is
zero. Assuming that E(n) 6= ∅, we get with an = minE(n),

Vn = (1 + r)−N+n
N−n∑
i=an

(Snu
idN−n−i −K)

(
N − n
i

)
qiuq

N−n−i
d

= Sn

N−n∑
i=an

(
N − n
i

)(
uqu

1 + r

)i(
dqd

1 + r

)N−n−i

−K(1 + r)n−N
N−n∑
i=an

(
N − n
i

)
qiuq

N−n−i
d . (1.17)

Observe that both sums above can be expressed in terms of binomial probabili-
ties. With π(k, p, a) the probability that a Bin(k, p) distributed random variable
is larger than or equal to a and p = uqu

1+r we can rewrite (1.17) as

Snπ(N − n, p, an)−K(1 + r)−N+nπ(N − n, qu, an). (1.18)

In concrete cases, one can compute (1.18) using tables for the Binomial dis-
tribution, and for big values of N − n approximate it using the Central Limit
Theorem. The latter we will do in Section 1.2.

We close this section with the so called Put-Call parity, which relates the fair
price of a European call option to a European put option. The latter cor-
responds to the claim p(SN ) = (K − SN )+, whereas the former has payoff
c(SN ) = (SN −K)+. Note that c(SN ) − p(SN ) = SN −K. Denote the value
of the call option at time n by Cn and that of the put option by Pn. Then one
easily obtains (Exercise 1.6) the Put-Call parity formula

Cn − Pn = Sn − (1 + r)n−NK. (1.19)

1.2 Limits in the CRR model

In this section we consider limit properties of the Cox-Ross-Rubinstein model
by invoking the Central limit theorem (see Section A.5). In order to do so
and to get sensible results we have to make judicious choices of the parameters
involved. We consider a trading period which is the real interval [0, T ]. Trading
takes place at the time instants tNn = n∆N with ∆N = T/N . We consider now
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a sequence of discrete time CRR models indexed by N and in these models we
let the parameters depend on N as follows. For a given r, σ > 0 we put

rN = exp(r∆N )− 1 (1.20)

uN = exp(σ
√

∆N ) (1.21)

dN = exp(−σ
√

∆N ). (1.22)

We are interested in asymptotics for N → ∞, in which case we have ∆N → 0.
It follows from Proposition 1.6 that for all small enough ∆N the CRR market
is arbitrage free for any P ∼ Q.

The consequences of the above choices for the parameters are straightforward
for the bond price. Let us fix the parameter N for a while and consider the
N -th CRR model with bond prices at fictitious times k given by BNk . The
fictitious time instants k corresponds to the real time instants tNk with bond
prices BN (tNk ). The two bond prices are linked by the relation BN (tNk ) = BNk .
For t in the interval [tNk , t

N
k+1) we define BN (t) = BN (tNk ). Then at t = k∆N

we have, using (1.20), BN (t) = BNk = (1 + rN )k = exp(rt).
For arbitrary t we have a similar relation. Let t ∈ [0, T ] be fixed. Then

t ∈ [tNk , t
N
k+1) with k = k(N) = [N t

T ]. Since tNk → t as N → ∞, we get

BN (t)→ exp(rt).

For the stock price movements things are more complicated. Let us first set the
notation. By SNk we denote the stock prices at the discrete times k in the N -th
CRR model. Like what we did for the bond price, we fix a time instant t and
we define the stock price SN (t) as SN (t) = SNk with k such that t ∈ [tNk , t

N
k+1).

Let us focus on the risk neutral probabilities, now indexed by N , qu(N) (and
qd(N)) in the N -th CRR model. We obtain from Equations (1.7), (1.21) and
(1.22),

qu(N) =
er∆N − exp(−σ

√
∆N )

exp(σ
√

∆N )− exp(−σ
√

∆N )
. (1.23)

We will consider what happens if N → ∞. Using the Taylor expansion of the
exponential function we get for N →∞

qu(N) =
1

2
+ (r − 1

2
σ2)

√
∆N

2σ
+O(∆N ), (1.24)

and consequently qu(N)→ 1
2 . Of course also qd(N)→ 1

2 .

Like before we specialize to the pricing of a European call option. So we consider
the claim with payoff (SN (T )−K)+. The fair price at any time t ∈ [tNn , t

N
n+1)

is given by formula (1.18) with the appropriate substitutions. So we define

pN = uNqu(N)
1+rN

and aN (t) = min{i : SN (t)uiNd
N−n−i
N > K}. Note that this set

will eventually be non-empty for N →∞, which will be assumed from now on.
We then have the inequalities

log K
SN (t)dN−nN

log uN
dN

< aN (t) ≤
log K

SN (t)dN−nN

log uN
dN

+ 1. (1.25)

We compute the limits of the probabilities π(N − n, pN , aN (t)) and π(N −
n, qu(N), aN (t)) for N → ∞ and n

N ∼
t
T so that tNn → t. Let us introduce the
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auxiliary random variable YN which has a Bin(N − n, pN ) distribution. Note
that (N − n)∆N → T − t. With the aid of YN we have π(N − n, pN , aN (t)) =
P(YN > aN (t)). To apply the Central limit theorem, we have to compute

P(YN > aN (t)) = P(
YN − EYN√

VarYN
> αN (t)),

with αN (t) = (VarYN )−1/2(aN (t) − EYN )). Therefore we need expectation
and variance of YN . It is easy to show that VarYN = 1

4 (N − n)(1 + O(∆N )).
Furthermore we have

pN =
uNqu(N)

1 + rN
=

1

2
+ (r +

1

2
σ2)

√
∆N

2σ
+O(∆N ). (1.26)

Hence we get (using (1.25))

aN (t)− EYN = aN (t)− (N − n)pN

=
1

2σ
√

∆N

(
log

K

SN (t)
− (T − t)(r +

1

2
σ2 +O(

√
∆N ))

)
and therefore

αN (t) =
log K

SN (t)
− (T − t)(r + 1

2σ
2 +O(

√
∆N ))

σ
√
T − t

.

But then, with SN (t) = s we get (using Exercise A.10)

π(N − n, pN , aN (t))→ Φ(
log(s/K) + (r + 1

2σ
2)(T − t)

σ
√
T − t

).

The convergence of the probabilities π(N −n, qu(N), aN (t)) can be treated sim-
ilarly (this is Exercise 1.8). The computations above are now summarized in

Theorem 1.7 Under the assumptions of this section at time t when the stock
price has the value SN (t) = x, the fair price of a European call option with
payoff (SN (T )−K)+ has the limiting expression

C(t, x) = xΦ(d1(t, x))−Ke−r(T−t)Φ(d2(t, x)), (1.27)

with d1(t, x) =
log(x/K)+(r+ 1

2σ
2)(T−t)

σ
√
T−t and d2(t, x) = d1(t, x)− σ

√
T − t.

Remark 1.8 Equation (1.27) is the famous Black-Scholes formula, to which
we will return in Sections 3 and 5. For now, we only note that the function C
satisfies for t ∈ (0, T ) and x > 0 the Black-Scholes partial differential equation

Ct(t, x) +
1

2
σ2x2Cxx(t, x) + rxCx(t, x)− rC(t, x) = 0, (1.28)

with boundary condition C(T, x) = (x−K)+.
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Not only can we use the Central limit theorem to get a normal approximation
for the price of a European call option, but also for the distribution of the stock
price itself under the measure Q. This comes as no surprise after the preceding
calculations, since for all N also the probability distributions of the SN (t) are
essentially determined by a binomial distribution. In order to make this state-
ment precise we introduce some notation. Let ZNk = SNk /S

N
k−1 for k = 1, . . . , N .

Define for each t ∈ [0, T ] the random variable WN (t) =
∑
k≤ t

T N
logZNk .

Proposition 1.9 Let for each N the distribution of the SN0 , . . . , S
N
N be deter-

mined under the probability measure QN that is such that QN (ZNk = uN ) =
qu(N) for all k = 0, . . . , N and that makes the ZN1 , . . . , Z

N
N independent. Let

t1, . . . , tn be a finite increasing sequence in [0, T ] and define ∆WN
k = WN (tk)−

WN (tk−1). Then for N →∞ (under the probability measures QN ) the random
variables ∆WN

k converge in distribution to a random variable ∆Wk that has
a N

(
(tk − tk−1)(r − 1

2σ
2), (tk − tk−1)σ2)

)
distribution. Moreover, the distribu-

tion of the random n-vector (∆W1, . . . ,∆Wn) is such that its components are
independent.

Consequently, the n-vector with elements logSN (tk) − logSN (tk−1) (with
k = 1, . . . , n) converges in distribution to an n-vector with elements logS(tk)−
logS(tk−1) that has a multivariate normal distribution that is such that all
logS(tk) − logS(tk−1) have a normal N

(
(r − 1

2σ
2)(tk − tk−1), σ2(tk − tk−1)

)
distribution. Moreover, the (limit) distribution of this vector is such that its
components are independent.

Proof First we compute E∆WN
k =

∑
tk−1
T N<j≤ tkT N

E logZNj . Since logZNk

can only assume the two values σ
√

∆N and −σ
√

∆N with probabilities qu(N)
and qd(N), we have E logZNk = σ

√
∆N (qu(N)− qd(N)). Using Equation (1.23)

and the companion expression for qd(N), we get E logZNk = (r − 1
2σ

2)∆N +

O(∆
3/2
N ). Since ∆WN

k is the sum over approximately (tk − tk−1)/∆N terms,

we obtain E∆WN
k = (r − 1

2σ
2)(tk − tk−1) + O(∆

1/2
N ). Similarly one com-

putes Var ∆WN
k = 4qu(N)qd(N)σ2(tk − tk−1) → σ2(tk − tk−1). Introducing

∆W̃N
k = ∆WN

k −E∆WN
k , we apply Theorem A.8 to have that the ∆W̃N

k have
a N(0, σ2(tk−tk−1)) limit distribution. The assertion for the ∆WN

k then follows
from Exercise A.10. �

In Proposition 1.9 we have found the limit distribution for the log price process
of the stock, it was such that the limit random variable logSt follows a normal
distribution; one also says that S(t) follows a log-normal distribution. It is also
possible to describe the limit distribution of the cumulative return process, see
Equation (1.5) for the definition of the return process. Of course here we write
RNn to denote the cumulative returns in the N -th CRR model and parallel to
the notation that we previously used, we write RN (t) = RNn if t ∈ [tNn , t

N
n+1).

Proposition 1.10 Let t1, t2, . . . be an increasing sequence in [0, T ]. Under the
same assumptions as in Proposition 1.9 we have that the n-vector with elements
RN (tk)−RN (tk−1) (k = 1, . . . , n) converges in distribution to an n-vector with
elements R(tk) − R(tk−1) that has a multivariate normal distribution that is
such that all R(tk) − R(tk−1) have a normal N

(
r(tk − tk−1), σ2(tk − tk−1)

)
distribution. Moreover, the (limit) distribution of this vector is such that its
components are independent.
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Proof The proof proceeds along the same lines as that of Proposition 1.9. One
shows that E (RN (tk)−RN (tk−1)) converges to r(tk−tk−1) and that its variance
has σ2(tk − tk−1) as the limit. Invoking Theorem A.8 and Exercise A.10 will
complete the proof. Details are left as Exercise 1.9. �

Compare the limit distributions of Propositions 1.9 and 1.10. We see that
they are both normal, with the same variance, but with different expectations.
The difference of the expectations of R(tk) − R(tk−1) and that of logS(tk) −
logS(tk−1) is equal to 1

2σ
2(tk − tk−1). Let us explain, why this is the case.

With the choice that we made in the present section for uN and dN we
have first that limN uN = limN dN = 1, so that ∆RNk will be close to zero.

A simple computation even yields (∆RNk )2 = σ2∆N (1 + o(∆
1
2

N )), no matter
whether the stock price goes up or goes down. But then logZNk = log(1 +

∆RNk ) ≈ ∆RNk − 1
2 (∆RNk )2 ≈ ∆RNk − 1

2σ
2∆N (1 + o(∆

1
2

N )). Consequently
logSN (tk) − logSN (tk−1) ≈ RN (tk) − RN (tk−1) − 1

2σ
2(tk − tk−1), which ac-

counts for the different distributions that we observed.

The assertion of Proposition 1.10 can be reflected in an appealing notation.
Write ∆RN (tk) for the difference RN (tk) − RN (tk−1) and remember that in
similar notation this can alternatively be written as ∆RN (tk) = (SN (tk) −
SN (tk−1))/SN (tk−1) = ∆SN (tk)/SN (tk−1). Let ∆B(tk) be a random variable
that has a normal N(0,∆tk) distribution with ∆tk = tk − tk−1. It then follows
that we can write (for N →∞)

∆SN (tk) ≈ SN (tk−1)(r∆tk + σ∆B(tk)). (1.29)

We shall encounter later on a continuous time version of this approximate iden-
tity.

With the result of Proposition 1.9 in mind we show the limiting expression of
the price at a time t of a simple claim X = f(SNT ), where f is a bounded contin-
uous function (e.g. a European put option). Suppose that at t the stock price
SN (t) is equal to a number s. Let us write UN for log(SN (T )/SN (t)). Then
we have parallel to Equation (1.16)

v̄Nt (s) = EQN f̄(exp(UN )s).

From Proposition 1.9 we know that the limit distribution of UN is normal
with mean (r − 1

2σ
2)(T − t) and variance σ2(T − t). Hence, we can apply the

portmanteau theorem (see Appendix, Theorem A.5) to conclude that v̄Nt (s)
converges to

v̄t(s) :=

∫
R

1√
2π
f̄(se(r− 1

2σ
2)(T−t)+σ

√
T−t z)e−z

2/2 dz. (1.30)

We conclude this section by saying that we obtained a stochastic model for stock
price movements, involving normal distributions, as a limit of simple discrete
time models. In later sections we will arrive at the same model and some of its
ramifications by a different and more direct approach. Note also that the con-
vergence that we considered was in terms of finite dimensional distributions (we
considered n-vectors in Propositions 1.9 and 1.10). It is possible to go beyond
this and show weak convergence in terms of processes. What one does then is
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to consider the SN (·) as random elements in a space of functions (one where all
functions are right continuous and have left limits). The SN (·) induce probabil-
ity measures on this (infinite dimensional) function space, and one then studies
weak convergence of these probability measures. This is, although possible,
much harder to do and falls beyond the scope of the present course.

1.3 Exercises

1.1 Prove Proposition 1.3.

1.2 Consider in a CRR model the claim with final payoff SN . Derive the fair
price of this claim at time n ≤ N .

1.3 Show that a portfolio is self-financing iff (1.2) holds and iff (1.3) holds.

1.4 Show the validity of (1.9).

1.5 Consider in the same CRR financial market with fixed terminal time N two
European call options with strike prices K1 > K2. Which of the two has the
highest price?

1.6 Consider the CRR model with a call and a put option. Derive the put-call
parity Equation (1.19).

1.7 Show that a portfolio in a discrete time market is self-financing iff its dis-
counted value process V̄ is a martingale under Q.

1.8 Show by using the Central limit theorem that with n ∼ t
TN one gets

limN→∞ π(N − n, qu(N), aN (t)) = Φ(d2(t)) (notation as in Theorem 1.7).

1.9 Prove Proposition 1.10.

1.10 Show that the distribution of the vector (R(t1), . . . , R(tn)) of Proposi-
tion 1.10 is multivariate normal. What are the expectation vector and covari-
ance matrix?

1.11 Suppose a continuous model for the stock price is such that log(S(T )/S(t))
has a normal N((r − 1

2σ
2)(T − t), σ2(T − t)) distribution (under Q). Assume

that at time t the price S(t) is known to be equal to s. Then the price of the
usual European call option at time t is known to be

e−r(T−t)EQ(s
S(T )

S(t)
−K)+.

Show by computation of an integral that the explicit expression of this price is
given by the Black-Scholes formula of Equation (1.27).

1.12 Use Equation (1.30) to compute explicitly the limit price of a European
put option (with payoff (K − S(T ))+).

1.13 Consider the limiting CRR models and let the stock price at time t be
equal to s. Let C(t) be the limit of the price at t of a European call option with
payoff (S(T )−K)+ and P (t) the price at t of the corresponding put option.

(a) Derive the limit put-call parity equation C(t)− P (t) = s− e−r(T−t)K.

14



(b) Use the result of Exercise 1.12 to arrive at the Black-Scholes formula (1.27).

(c) Suppose one doesn’t use the risk-neutral probabilities qu(N) and qd(N) in

Theorem 1.7, but instead pu(N) = 1
2 +(µ− 1

2σ
2)
√

∆
2σ and the corresponding

pd(N) for some µ ∈ R and sufficiently small positive ∆ = T
N . What would

then be the limit laws of logSN (t) and logSN (t)− logSN (s) (for t > s)?

1.14 Consider the function C defined in (1.27).

(a) Show that C satisfies the partial differential equation (1.28) for t < T and
x > 0. Hint: Show and use φ(d2) = x

Kφ(d1) exp(r(T − t)) and ∂d2

∂t =
∂d1

∂t + 1
2σ(T − t)−1/2, where φ denotes the density of the standard normal

distribution.

(b) Show that limt↑T C(t, x) = (x−K)+.
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2 Brownian motion

In this section we prove the existence of Brownian motion, perhaps the most
famous example of a stochastic process. The technique that is used in the exis-
tence proof is based on linear interpolation properties for continuous functions.

2.1 Interpolation of continuous functions

Let a continuous function f : [0, 1] → R be given with f(0) = 0. We will
construct an approximation scheme of f , consisting of continuous piecewise
linear functions. To that end we make use of the dyadic numbers in [0, 1]. Let
for each n ∈ N the set Dn be equal to {k2−n : k = 0, . . . , 2n}. The dyadic
numbers in [0, 1] are then the elements of ∪∞n=1Dn. To simplify the notation we
write tnk for k2−n ∈ Dn.

The interpolation starts with f0(t) ≡ tf(1) and then we define the other fn
recursively. Suppose fn−1 has been constructed by prescribing the values at the
points tn−1

k for k = 0, . . . , 2n−1 and by linear interpolation between these points.
Look now at the points tnk for k = 0, . . . , 2n. For the even integers 2k we take
fn(tn2k) = fn−1(tn−1

k ). Then for the odd integers 2k − 1 we define fn(tn2k−1) =
f(tn2k−1). We complete the construction of fn by linear interpolation between
the points tnk . Note that for m ≥ n we have fm(tnk ) = f(tnk ).

The above interpolation scheme can be represented in a more compact way (to be
used in Section 2.2) by using the so-called Haar functions Hn

k . These are defined
as follows. H0

1 (t) ≡ 1 and for each n we define Hn
k for k ∈ I(n) = {1, . . . , 2n−1}

by

Hn
k (t) =


1

2σn
if tn2k−2 ≤ t < tn2k−1

− 1
2σn

if tn2k−1 ≤ t < tn2k
0 elsewhere

(2.1)

where σn = 2−
1
2 (n+1). Next we put Snk (t) =

∫ t
0
Hn
k (u) du. Note that for n ≥ 1

the support of Snk is the interval [tn2k−2, t
n
2k] and that the graphs of the Snk are

tent shaped with peaks of height σn at tn2k−1. For n = 0, k = 1 one has S0
1(t) = t.

Next we will show how to cast the interpolating scheme in such a way that the
Haar functions, or rather the Schauder functions Snk , are involved. Observe that
not only the Snk are tent shaped, but also the consecutive differences fn − fn−1

on each of the intervals (tn−1
k−1 , t

n−1
k )! Hence they are multiples of each other and

to express the interpolation in terms of the Snk we only have to determine the
multiplication constant. The height of the peak of fn − fn−1 on (tn−1

k−1 , t
n−1
k ) is

the value ηnk at the midpoint tn2k−1. So ηnk = f(tn2k−1) − 1
2 (f(tn−1

k−1) + f(tn−1
k )).

Then we have for t ∈ (tn2k−2, t
n
2k) the simple formula

fn(t)− fn−1(t) =
ηnk
σn
Snk (t),

and hence we get for all t

fn(t) = fn−1(t) +
∑

k∈I(n)

ηnk
σn
Snk (t). (2.2)
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Summing Equation (2.2) over n leads with I(0) = {1} to the following repre-
sentation of fn on the whole interval [0, 1]:

fn(t) =

n∑
m=0

∑
k∈I(m)

ηmk
σm

Smk (t). (2.3)

Theorem 2.1 Let f be a continuous function on [0, 1]. With the fn defined
by (2.3) we have ||f − fn|| → 0, where || · || denotes the sup norm.

Proof Let ε > 0 and choose N such that we have |f(t)− f(s)| ≤ ε as soon as
|t − s| < 2−N . It is easy to see that then |ηnk | ≤ ε if n ≥ N . On the interval
[tn2k−2, t

n
2k] we have that

|f(t)− fn(t)| ≤ |f(t)− f(tn2k−1)|+ |fn(tn2k−1)− fn(t)| ≤ ε+ ηnk ≤ 2ε.

This bound holds on any of the intervals [tn2k−2, t
n
2k]. Hence ||f − fn|| → 0. �

Corollary 2.2 For arbitrary f ∈ C[0, 1] we have

f =

∞∑
m=0

∑
k∈I(m)

ηmk
σm

Smk , (2.4)

where the infinite sum converges in the sup norm.

2.2 Existence of Brownian motion

Suppose that a probability space (Ω,F ,P) is given. A stochastic process X with
time set T is a collection of random variables {X(t), t ∈ T } (so all the X(t)
are measurable functions on Ω). One may alternatively view X as a function
(ω, t) 7→ X(ω, t) on Ω × T , so that X(t) is defined by X(t) : ω → X(ω, t).
For fixed ω we consider the functions t 7→ X(ω, t). These functions called the
sample paths of X.

Definition 2.3 A standard Brownian motion, also called Wiener process, is
a stochastic process W with time index set T = [0,∞) with the following
properties.

(i) W (0) = 0,

(ii) The increments W (t) −W (s) have a normal N(0, t − s) distribution for
all t > s.

(iii) The increments W (t)−W (s) are independent of all W (u) with u ≤ s < t.

(iv) The paths of W are continuous functions.

Remark 2.4 One can show that part (iii) of Definition 2.3 is equivalent to
the following. For all finite sequences 0 ≤ t0 ≤ . . . ≤ tn the random variables
W (tk)−W (tk−1) (k = 1, . . . , n) are independent.

Having posed the definition of Brownian motion, we ask whether it exists in a
precise mathematical sense. Clearly, the underlying outcome space Ω has to be
big enough (on an Ω which contains only finitely many elements it is certainly
not possible to define a Brownian motion). Since in the definition we required
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continuity of the paths, a good candidate for Ω should be the set C[0,∞) of
continuous functions on [0,∞). In the sequel we will see that it is possible
to define Brownian motion on a space Ω that is such all the paths become
continuous, so that we can identify this Ω with C[0,∞). In the construction
below, a different Ω will be used, a countable product of copies of R. This
suffices, since a continuous function is fixed as soon as we know its values on a
countable dense subset of R.

The method we use is a kind of converse of the interpolation scheme of
Section 2.1. We will define what is going to be Brownian motion recursively on
the time interval [0, 1] by attributing values at the dyadic numbers in [0, 1]. A
crucial part of the construction is the following fact. Supposing that we have
shown that Brownian motion exists we consider the random variables W (s)
and W (t) with s < t. Draw independent of these random variables a random
variable ξ with a standard normal distribution and define Z = 1

2 (W (s)+W (t))+
1
2

√
t− sξ. Then Z also has a normal distribution, whose expectation is zero and

whose variance can be shown to be 1
2 (t+s) (this is Exercise 2.1). Hence Z has the

same distribution as W ( 1
2 (t+ s))! This fact lies at the heart of the construction

of Brownian motion by a kind of ‘inverse interpolation’ that we will present
below.

Let, as in Section 2.1, I(0) = {1} and I(n) be the set {1, . . . , 2n−1} for n ≥ 1.
Take a sequence of independent standard normally distributed random variables
ξnk that are all defined on some probability space Ω with k ∈ I(n) and n ∈ N∪{0}
(it is a result in probability theory that one can take for Ω a countable product
of copies of R, endowed with a product σ-algebra and a product measure).
With the aid of these random variables we are going to construct a sequence of
continuous processes Wn as follows. Let, also as in Section 2.1, σn = 2−

1
2 (n+1).

Put

W 0(t) = tξ0
1 .

For n ≥ 1 we get the following recursive scheme

Wn(tn2k) = Wn−1(tn−1
k ) (2.5)

Wn(tn2k−1) =
1

2

(
Wn−1(tn−1

k−1) +Wn−1(tn−1
k )

)
+ σnξ

n
k . (2.6)

For other values of t we define Wn(t) by linear interpolation between the values
of Wn at the points tnk . As in Section 2.1 we can use the Schauder functions for
a compact expression of the random functions Wn. We have

Wn(t) =

n∑
m=0

∑
k∈I(m)

ξmk S
m
k (t). (2.7)

Note the similarity of this equation with (2.3). The main result of this section
is

Theorem 2.5 For almost all ω the functions t 7→Wn(ω, t) converge uniformly
to a continuous function t 7→ W (ω, t) and the process W : (ω, t) → W (ω, t) is
Brownian motion on [0, 1].
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Proof We start with the following result. If Z has a standard normal distribu-
tion and x > 0, then (Exercise 2.2)

P(|Z| > x) ≤
√

2

π

1

x
exp(−1

2
x2). (2.8)

Let βn = maxk∈I(n) |ξnk |. Then bn := P(βn > n) ≤ 2n−1
√

2
π

1
n exp(− 1

2n
2).

Observe that
∑
n bn is convergent and that hence by virtue of the Borel-Cantelli

lemma (Exercise 2.3) P(lim sup{βn > n}) = 0, and then P(lim inf{βn ≤ n}) = 0.
Hence Ω̃ := lim inf{βn ≤ n} is a subset of Ω with P(Ω̃) = 1, and such

that for all ω ∈ Ω̃ there exists a natural number n(ω) with the property that
all |ξnk (ω)| ≤ n if n ≥ n(ω) and k ∈ I(n). Consequently, for ω ∈ Ω̃ and for
p > n ≥ n(ω) we have

sup
t
|Wn(ω, t)−W p(ω, t)| ≤

∞∑
m=n+1

mσm <∞. (2.9)

This shows that the sequence Wn(ω, ·) with ω ∈ Ω̃ is Cauchy in C[0, 1], so that
it converges to a continuous limit, which we call W (ω, ·). For ω’s not in Ω̃ we
define W (ω, ·) = 0. So we now have continuous functions W (ω, ·) for all ω with
the property W (ω, 0) = 0.

As soon as we have verified properties (ii) and (iii) of Definition 2.3 we
know that W is a Brownian motion. We will verify these two properties at
the same time by showing that all increments ∆j := W (tj) − W (tj−1) with
tj > tj−1 are independent N(0, tj−tj−1) distributed random variables. Thereto
(cf. Section A.3) we will prove that the characteristic function E exp(i

∑
j λj∆j)

is equal to exp(− 1
2

∑
j λ

2
j (tj − tj−1)).

We use an important property of the Haar functions: they form a Complete
Orthonormal System of L2[0, 1] (see Exercise 2.5). So every function f ∈ L2[0, 1]
has the representation f =

∑
n,k〈f,Hn

k 〉Hn
k =

∑∞
n=0

∑
k∈I(n)〈f,Hn

k 〉Hn
k , where

〈·.·〉 denotes the inner product of L2[0, 1] and where the infinite sum is convergent
in L2[0, 1]. As a result we have for any two functions f and g in L2[0, 1] the
Parseval identity 〈f, g〉 =

∑
n,k〈f,Hn

k 〉〈g,Hn
k 〉. Taking the specific choice f =

1[0,t] and g = 1[0,s] results in 〈1[0,t], H
n
k 〉 = Snk (t) and t ∧ s = 〈1[0,t],1[0,s]〉 =∑

n,k S
n
k (t)Snk (s).

Since for all fixed t we have Wn(t)→W (t) a.s., we have E exp(i
∑
j λj∆j) =

limn→∞ E exp(i
∑
j λj∆

n
j ) with ∆n

j = Wn(tj)−Wn(tj−1). We compute

E exp(i
∑
j

λj∆
n
j ) = E exp(i

∑
m≤n

∑
k

∑
j

λjξ
m
k (Smk (tj)− Smk (tj−1)))

=
∏
m≤n

∏
k

E exp(i
∑
j

λjξ
m
k (Smk (tj)− Smk (tj−1)))

=
∏
m≤n

∏
k

exp(−1

2
(
∑
j

λj(S
m
k (tj)− Smk (tj−1))2)

Working out the double product, we get in the exponential the sum over the
four variables i, j,m, k (over the appropriate range) of − 1

2λiλj times

Smk (tj)S
m
k (ti)− Smk (tj−1)Smk (ti)− Smk (tj)S

m
k (ti−1) + Smk (tj−1)Smk (ti−1)
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and this quantity converges to tj − tj−1 as n → ∞. Hence the expectation in
the previous display converges to exp(− 1

2

∑
j λ

2
j (tj − tj−1)) as n → ∞. This

completes the proof. �

Having constructed Brownian motion on [0, 1], we proceed to show that it also
exists on [0,∞). Take for each n ∈ N a probability space (Ωn,Fn,Pn) that sup-
ports a Brownian motion Wn on [0, 1]. Consider then Ω =

∏
n Ωn, F =

∏
n Fn,

P =
∏
n Pn and the product probability space (Ω,F ,P). Take for granted that

the infinite products make sense and that (Ω,F ,P) is indeed a probability space.
On this product space the Brownian motions Wn are independent by construc-
tion, since P is a product measure. Let ω = (ω1, ω2, . . .) and define then

W (ω, t) =
∑
n≥0

1[n,n+1)(t)

(
n∑
k=1

Wk(ωk, 1) +Wn+1(ωn+1, t− n)

)
. (2.10)

This obviously defines a process with continuous paths and for all t the random
variable W (t) is the sum of independent normal random variables. It is not
hard to establish that the process W defined by (2.10) has independent incre-
ments; this is Exercise 2.8. It is (almost) immediate that EW (t) = 0 and that
VarW (t) = t.

Apart from standard Brownian motion that we just defined, we will also con-
sider simple transformations of it. Here is a list of processes that we will often
encounter. We always use W to denote standard Brownian motion.

Brownian motion with variance parameter σ2 is the process σW . Brownian
motion with linear drift is a process X with X(t) = bt + σW (t), where b and
σ are real constants. Note that also X has independent increments and that
EX(t) = bt and VarX(t) = σ2t.

Very important in this course is geometric Brownian motion. This is a
process S with S(t) = exp(X(t)), where X is a Brownian motion with drift, as
we just defined it. Different from Brownian motion, here the ratios S(t)/S(u)
(t > u) are independent from the past of the process before time u. Moreover
we have (this is Exercise 2.9)

ES(t) = exp(bt+
1

2
σ2t) (2.11)

VarS(t) = exp(2bt+ σ2t)(exp(σ2t)− 1). (2.12)

2.3 Properties of Brownian motion

Although we have defined Brownian motion as a process with continuous paths,
the paths are very irregular. For instance, they are (almost surely) of unbounded
variation over nonempty intervals. It is possible to prove this directly, but it is
also a rather simple consequence, Corollary 2.8, of Proposition 2.6. The content
of the proposition is that Brownian motion is of bounded quadratic variation on
compact intervals. Let us introduce some notation. Consider an interval [0, t]
and let Πn = {tn0 , . . . , tnkn} be a partition of it with 0 = tn0 < · · · < tnkn = t
and denote by µn its mesh: µn = max{tnj − tnj−1 : j = 1, . . . , kn}. Let V 2

n =∑kn
j=1(W (tnj )−W (tnj−1))2.

Proposition 2.6 If µn → 0, then E(V 2
n − t)2 → 0. If moreover

∑∞
n=1 µn <∞,

then also V 2
n → t a.s.
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Proof V 2
n is the sum of squares of independent random variables that are

N(0, tnj − tnj−1) distributed. Hence E(W (tnj ) −W (tnj−1))2 = tnj − tnj−1, so that

EV 2
n = t. Moreover VarV 2

n =
∑kn
j=1 Var (W (tnj ) − W (tnj−1)2 = 2

∑kn
j=1(tnj −

tnj−1)2 and this is less than or equal to 2µn
∑kn
j=1(tnj − tnj−1) = 2µnt. This proves

the first assertion of the theorem. Note that by Chebychev’s inequality we also
have V 2

n → t in probability. Indeed P(|V 2
n − t| > ε) ≤ 1

ε2VarV 2
n → 0.

To prove almost sure convergence we use the Borel-Cantelli lemma (again).
With En = {|V 2

n−t| > ε} we have under the stipulated condition
∑∞
n=1 P(En) <

∞ and hence P(lim supEn) = 0, equivalently P(lim inf Ecn) = 1. Since for every
ω ∈ lim inf En we can find N(ω, ε) such that for all n > N(ω, ε) we have
|V 2
n (ω)− t| ≤ ε, which completes the proof. �

Remark 2.7 The proposition has the interpretation that the paths of Brownian
motion over an interval [0, t] have quadratic variation t, denoted 〈W 〉t = t. Note
that the quadratic variation is the same for all paths, since it doesn’t depend
on ω, unlike the ‘prelimiting’ random variables V 2

n .

Corollary 2.8 With V 1
n =

∑kn
j=1 |W (tnj ) −W (tnj−1)| we have V 1

n → ∞ a.s., if
µn → 0.

Proof This follows from Exercise 2.10. �

We can also say something more precise about the continuity of the sample
paths of Brownian motion.

Proposition 2.9 The paths of Brownian motion are a.s. Hölder continuous of
any order γ with γ < 1

2 , i.e. for almost every ω and for every γ ∈ (0, 1
2 ) there

exists a C > 0 such that |W (ω, t)−W (ω, s)| ≤ C|t− s|γ for all t and s.

Proof Exercise 2.12. �

Having established a result on the continuity of the paths of Brownian motion,
we now turn to the question of differentiability of these paths. Proposition 2.10
says that they are nowhere differentiable. To get some feeling for this non-
differentiability, consider (W (t + h) − W (t))/h. It has a normal distribution
with variance 1

h . Hence for any positive real number N we have that P(|(W (t+

h) −W (t))/h| ≥ N) = 2(1 − Φ(N
√
h)) → 1 as h → 0. We cannot expect the

difference quotient to have a limit in any reasonable sense.

Proposition 2.10 Put D = {ω : t 7→ W (ω, t) is differentiable at some s ∈
(0, 1)}. Then D is contained in a set of zero probability.

Proof For positive integers j and k, let Ajk(s) be the set

{ω : |W (ω, s+ h)−W (ω, s)| ≤ j|h|, for all h with |h| ≤ 1/k}

and Ajk =
⋃
s∈(0,1)Ajk(s). Then we have the inclusion D ⊂

⋃
jk Ajk. Fix j,

k and s for a while, pick n ≥ 4k, choose ω ∈ Ajk(s) and choose i such that
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s ∈ ( i−1
n , in ]. Note first for l = 1, 2, 3 the trivial inequalities i+l

n − s ≤
l+1
n ≤

1
k .

The triangle inequality and ω ∈ Ajk(s) gives for l = 1, 2, 3

|W (ω,
i+ l

n
)−W (ω,

i+ l − 1

n
)|

≤ |W (ω,
i+ l

n
)−W (ω, s)|+ |W (ω, s)−W (ω,

i+ l − 1

n
)|

≤ l + 1

n
j +

l

n
j =

2l + 1

n
j.

It then follows that

Ajk ⊂ Bjk :=
⋂
n≥4k

Cnj ,

where

Cnj =

n⋃
i=1

⋂
l=1,2,3

{ω : |W (ω,
i+ l

n
)−W (ω,

i+ l − 1

n
)| ≤ 2l + 1

n
j}. (2.13)

We proceed by showing that the right hand side of this inclusion has probability
zero. We use the following auxiliary result: if X has a N(0, σ2) distribution,
then P(|X| ≤ x) < x/σ (Exercise 2.13). By the independence of the increments
of Brownian motion the probability of the intersection in (2.13) is the product of
the probabilities of each of the terms and this product is less then 105j3n−3/2.
Hence P(Cnj) ≤ 105j3n−1/2, which tends to zero for n→∞, so P(Bjk) = 0 and
then also P(

⋃
j,k Bjk) = 0. The conclusion now follows from D ⊂

⋃
j,k Ajk ⊂⋃

j,k Bjk. �

All the above results are on properties of the paths of Brownian motion. We close
this section by mentioning that Brownian motion has the important property
of being a Markov process.

Proposition 2.11 Let t, h > 0 and suppose that we know W (s) for all s ≤ t.
The conditional distribution of W (t + h) given all W (s), s ≤ t is the same as
the conditional distribution of W (t + h) given W (t) only and it is determined
by

P(W (t+ h) ≤ x|W (s), s ≤ t) = Φ(
x−W (t)√

h
).

Proof This fact is a straightforward consequence of the independent increments
property of W . Write W (t+h) as the sum of the independent random variables
W (t+h)−W (t) and W (t) and recall that W (t+h)−W (t) is also independent
of all W (s) with s ≤ t. Since W (t + h) −W (t) has the same distribution as√
hZ with Z a standard normal random variable (with distribution function

Φ) we can compute, exploiting the mentioned independence and using Proposi-
tion A.11 (iv),

P(W (t+ h) ≤ x|W (s), s ≤ t) =

P(W (t+ h)−W (t) ≤ x−W (t)|W (s), s ≤ t) = Φ(
x−W (t)√

h
).

In the same way we have P(W (t + h) ≤ x|W (t)) = Φ(x−W (t)√
h

). The assertion

follows. �
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Proposition 2.11 has as a consequence that conditional expectations of functions
of W (t + h) given W (s), s ≤ t reduce to conditional expectations given W (t).
E.g. suppose that f is measurable and bounded, then for given 0 ≤ t ≤ t+h = T
one has E [f(W (T ))|W (s), s ≤ t] = E [f(W (T ))|W (t)]. The latter is a function
of W (t) (and t), v(t,W (t)) say.

2.4 Exercises

2.1 Show that the random variable Z on page 18 has a normal distribution with
mean zero and variance equal to 1

2 (s+ t).

2.2 Prove inequality (2.8).

2.3 Prove the following part of the Borel-Cantelli lemma:
If (Ak) is a sequence of events with

∑∞
k=1 P(Ak) <∞, then P(lim supAk) = 0.

Here lim supAk =
⋂∞
n≥1

⋃∞
k≥nAk. Hint: With Vm =

⋃
k≥mAk the sequence

(Vm) is decreasing and for all N it holds that P(lim supAk) ≤ P(
⋂N
m=1 Vm).

2.4 Show that C[0, 1] is a complete normed space under the sup norm. (Use
completeness of R.)

2.5 The Haar functions form a Complete Orthonormal System in L2[0, 1]. Show
first that the Haar functions are orthonormal. To prove that the system is
complete, you argue as follows. Let f be orthogonal to all Hk,n and set F =∫ ·

0
f(u)du. Show that F is zero in all t = k2−n, and therefore zero on the whole

interval. Conclude that f = 0 a.e. (The set {f 6= 0} has Lebesgue measure
zero.)

2.6 Let (Xn) be a sequence of random k-vectors that in the L2-sense converge
to a random vector X, i.e. E ||Xn−X||2 → 0, where || · || denotes the Euclidean
norm.

(a) Show that EXn → EX and Cov (Xn)→ Cov (X).

(b) Assume then that all Xn are (multivariate) normal. Show that also X is
(multivariate) normal.

2.7 Consider the processes Wn of Section 2.2. Let t1, . . . , tk ∈ [0, 1]. Show that
the sequence of random vectors (Wn(t1), . . . ,Wn(tk)) in the L2-sense converges

to (W (t1), . . . ,W (tk)), i.e.
∑k
i=1 E (Wn(ti)−W (ti))

2 → 0. (Hint: this sequence
is Cauchy in L2. Identify the limit.)

2.8 Show that the increments of the process W defined by Equation (2.10) are
independent.

2.9 Show the validity of equations (2.11) and (2.12).

2.10 The p-th order variation of a function f : [0, 1] → R over a partition
Π = {t0, . . . , tn} of [0, 1] with 0 = t0 < t1 < . . . < tn = 1 is defined as
V p(f ; Π) =

∑n
i=1 |f(ti)− f(ti−1)|p. Put V p(f) = limV p(f ; Π), where the limit

is taken over partitions with mesh tending to zero.

(a) Let p = 1 and f ∈ C1[0, 1], so with bounded (left/right in the endpoints)

derivative. Argue (use Riemann sums) that V 1(f) =
∫ 1

0
|f ′(t)|dt.
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(b) Prove: if f ∈ C[0, 1] and V p(f) is positive and finite for some p > 0, then
for every p′ < p the variation V p

′
(f) = ∞, whereas V p

′
(f) = 0 for every

p′ > p.

2.11 Give a simple example of a function f such that 0 < V p(f) < ∞ for all
p > 0. [Hint: You should not be in the situation of Exercise 2.10.]

2.12 Prove Proposition 2.9. Hint: Use that |Smk (t) − Smk (s)| ≤ 2
1
2 (m−1)|t − s|

and an inequality similar to (2.9).

2.13 Show that for a random variable X with a N(0, σ2) distribution it holds
that P(|X| ≤ x) < x/σ, for x, σ > 0.

2.14 Let X be a Brownian motion with linear drift, X(t) = bt + σW (t), with
b ∈ R. The quadratic variation of a process X over an interval [0, T ] will be

denoted by 〈X〉T , defined as the limit in probability of the V 2
n =

∑kn
j=1(X(tnj )−

X(tnj−1))2, just as at the beginning of Section 2.3. Show that the quadratic

variation 〈X〉T of X over [0, T ] is equal to σ2T = σ2〈W 〉T . [Note that the
linear deterministic term bt in X(t) plays no role in the expression for 〈X〉T .]

2.15 Show that for Wn defined by (2.7) it holds that

Cov (Wn(t),Wn(s)) =

n∑
m=0

∑
k∈I(m)

Smk (t)Smk (s)),

and that this converges to t ∧ s = Cov (W (t),W (s)) for n→∞.
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3 The heat equation

The heat equation, the subject of this section, is intimately related to Brownian
motion. We show some connections, that prove to be useful in later sections. We
do not give proofs of all results, this would carry us to far away from the subject
of this course. For this we refer to a course on Partial Differential Equations,
although there are also proofs that use advanced probabilistic techniques instead
of ordinary analysis.

3.1 Some theory

Knowing that W (t) has a N(0, t) distribution for t > 0 if W is a Brownian
motion, we can write down the density p(t, ·) of W (t). It is given by

p(t, x) =
1√
2πt

exp(−x
2

2t
).

Computing the partial derivatives of p we can verify that p satisfies for all x ∈ R
and t > 0 a partial differential equation, the heat equation,

∂u

∂t
(t, x) =

1

2

∂u

∂x2
(t, x). (3.1)

We will encounter many partial differential equations below that are based on
the heat equation, so it is important to study properties of solutions to this
equation.

Let f be a sufficiently well behaving function (below we make this precise)
and define u(t, x) = Ef(W (t) + x). Then we readily see that u(0, x) = f(x).
Moreover, we have for t > 0 the explicit formula

u(t, x) =

∫ ∞
−∞

f(z)p(t, x− z) dz. (3.2)

Now suppose that it is allowed to interchange integration and (partial) dif-
ferentiation in (3.2). Then we obtain ∂u

∂t (t, x) =
∫∞
−∞ f(z)∂p∂t (t, x − z) dz and

∂u
∂x2 (t, x) =

∫∞
−∞ f(z) ∂p∂x2 (t, x − z) dz. From these expressions for the partial

derivatives of u we see that also u satisfies the heat equation. Clearly, a rig-
orous mathematical treatment involves a precise condition on f . Here it is.

Condition 3.1 The function f is a Borel-measurable function and for some
a > 0 the integral

∫∞
−∞ exp(−ax2)|f(x)|dx is finite.

Proposition 3.2 Let f satisfy Condition 3.1 and let u : [0, 1
2a ) × R → R be

defined by u(t, x) = Ef(x+W (t)). Then u has partial derivatives of all orders
on (0, 1

2a ) × R, that can be obtained by differentiation under the integral sign
and u satisfies the heat equation. If moreover f is continuous at x, then u is
continuous at (0, x).

Proof Since we are mainly interested in showing that u satisfies the heat equa-
tion, we only consider the corresponding derivatives, for other derivatives the
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proof is similar. Fix β, ε > 0 and let t1 = 1/2(a + ε), 0 < t0 < t1. Let
E = (t0, t1)× (−β, β). First we compute the partial derivatives

∂p

∂t
(t, x) =

1

2
(
x2

t2
− 1

t
)p(t, x)

∂p

∂x
(t, x) = −x

t
p(t, x)

∂p

∂x2
(t, x) = (

x2

t2
− 1

t
)p(t, x).

Note that there exists a constant C = C(a, ε, t0), such that all these derivatives
are bounded in absolute value by C(x2 + 1)p(t, x) for all t ≥ t0. Let q(t, x)
denote any of these partial derivatives and consider

|f(y)q(t, x− y)| ≤ C|f(y)|((x− y)2 + 1)p(t, x− y)

= C|f(y)| exp(−ay2)×
((x− y)2 + 1) exp(ay2)p(t, x− y). (3.3)

Let’s concentrate on the last factor in (3.3), which is

((x− y)2 + 1)
1√
2πt

exp(ay2 − (x− y)2

2t
).

We will show that it is bounded for all y ∈ R and (t, x) ∈ E. First we have for
the exponent

ay2 − (x− y)2

2t
≤ ay2 − (a+ ε)(x− y)2

= −εy2 − (a+ ε)x2 + 2(a+ ε)xy

≤ 2(a+ ε)β|y| − εy2,

and hence its exponential quickly tends to zero if |y| → ∞. Note that (x−y)2 ≤
2(β2 + y2) if |x| < β. From this we obtain that ((x− y)2 + 1) exp(ay2)p(t, x− y)
is bounded by a constant, D say, if (t, x) ∈ E and y ∈ R. Hence

|f(y)q(t, x− y)| ≤ CD exp(−ay2)|f(y)|,

which is integrable by virtue of Condition 3.1. We then obtain that (t, x) 7→∫
f(y)q(t, x − y) dy is continuous in (t, x) on E by the dominated convergence

theorem, and then also on (0, 1/2a)× R by letting β →∞ and ε, t0 → 0.
Let us now focus on the partial derivative of u w.r.t. x. By the mean value

theorem we have with q = ∂p
∂x ,

1

h
(u(t, x+ h)− u(t, x)) =

∫ ∞
−∞

f(y)
1

h
(p(t, x+ h− y)− p(t, x− y)) dy

=

∫ ∞
−∞

f(y)q(t, θh(t, x, y)) dy, (3.4)

with θh(t, x, y) between x − y and x + h − y. Letting h → 0 and invoking the
just proved continuity result of the integral in (3.4), we obtain

∂u

∂x
(t, x) =

∫ ∞
−∞

f(y)q(t, x− y) dy,
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which is what we had to show. The analogous results for the other derivatives
can be derived similarly, from which it follows that u satisfies (3.1) for (t, x) ∈
(0, 1

2a )× R.
We now show the continuity of u in (0, x0), where x0 is a continuity point

of f . Assume without loss of generality (why?) that f(x0) = 0. Fix ε > 0, then
there is δ > 0 such that |f(y)| ≤ ε for |y − x0| < δ. We will show that |u(t, x)|
is small for 0 < t < 1/2a, t→ 0, and x ∈ (x0− 1

2δ, x0 + 1
2δ). Obviously we have

|u(t, x)| ≤ ε+

∫ x0−δ

−∞
|f(y)|p(t, x− y) dy +

∫ ∞
x0+δ

|f(y)|p(t, x− y) dy. (3.5)

We treat the latter integral in detail, the other one can be dealt with similarly.

Write it as 1√
2πt

∫∞
x0+δ

|f(y)| exp(−ay2)×exp(ay2− (x−y)2

2t ) dy and look at h(y) =

ay2− (x−y)2

2t for y ∈ R. For t < 1/2a the function h is maximal at y0 = x
1−2at →

x, when t→ 0. For small enough t we have y0 < x0 + 1
2δ, which lies outside the

integration interval (x0 +δ,∞). Hence it follows that, for small t, h is decreasing
on (x0 + δ,∞), and so h is maximal at the boundary point x0 + δ with value

a(x0 + δ)2 − (x0+δ−x)2

2t , which is less than a(x0 + δ)2 − δ2

8t . Hence,∫ ∞
x0+δ

|f(y)|p(t, x− y) dy ≤
∫
|f(y)| exp(−ay2) dy× exp(a(x0 + δ)2)p(t,

1

2
δ),

which tends to 0 for t→ 0, as p(t, 1
2δ) then tends to zero. �

The consequence of Proposition 3.2 is that every continuous f that satisfies
Condition 3.1 gives through Equation (3.2) a solution u of the heat equation
with u(0, ·) = f . Two questions arise: are these the only possible solutions of
the heat equation and are solutions unique? The answer is no in general, but
by imposing some regularity conditions on the solution we get what we want.
We state a theorem that gives affirmative answers to these questions.

Theorem 3.3 (i) Let u1 and u2 be two functions in C1,2((0, T )×R) that solve
the heat equation and such that are such that sup{exp(−ax2)|ui(t, x)| : (t, x) ∈
(0, T ) × R} < ∞ for some a > 0 (i = 1, 2) and such that limt↓0,y→x u1(t, y) =
limt↓0,y→x u2(t, y) for all x. Then u1 and u2 coincide.
(ii) Let u be a nonnegative function in C1,2((0, T ) × R) with 0 ≤ T ≤ ∞
that solves the heat equation and assume that for all x ∈ R the limit f(x) :=
limt↓0,y→x u(t, y) exists. Then u has for t > 0 the integral representation
u(t, x) =

∫∞
−∞ f(y)p(t, x− y) dy.

The first assertion of Theorem 3.3 is proved in the Appendix, Section A.8.
Under the conditions of this theorem and Proposition 3.2, the function u in
Equation (3.2) is the unique solution to the heat equation with boundary con-
dition u(0, ·) = f . The second assertion of the theorem is also of importance
for us, since we will mainly deal with nonnegative solutions of the heat (and
related) equations. It says that (under the given conditions) every positive so-
lution to the heat equations is of the form u(t, x) = Ef(x + W (t)) with W a
Brownian motion. As a side remark we mention that a similar statement holds
for bounded solutions.
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Next to the heat equation (3.1) we also consider the backward heat equation

∂v

∂t
(t, x) +

1

2

∂v

∂x2
(t, x) = 0. (3.6)

We then have the following corollary to Theorem 3.3.

Corollary 3.4 Let v be a nonnegative function in C1,2((0, T ) × R) with 0 ≤
T <∞ that solves the backward heat equation and assume that for all x ∈ R the
limit limt↑T,y→x v(t, y) =: f(x) exists. Then v has the integral representation
v(t, x) =

∫∞
−∞ f(x+ y)p(T − t, y) dy.

Proof Simply define u(t, x) = v(T − t, x) (T is finite here!) and apply Theo-
rem 3.3. �

The probabilistic interpretation of solutions v of the backward heat equation is
v(t, x) = E f(x+W (T − t)). We give this a different appearance.

Proposition 3.5 Under the conditions of Corollary 3.4 one has

v(t,W (t)) = E [f(W (T ))|W (t)], (3.7)

v(t, x) = E [f(W (T ))|W (t) = x]. (3.8)

Proof Because W (T − t) has the same distribution as W (T ) −W (t) we can
also write v(t, x) = E f(x+W (T )−W (t)). But then, using part (v) of Propo-
sition A.11, we immediately arrive at (3.7) and (3.8). �

We will come back to this interpretation of v later on, but recall in the mean
time the last paragraph of Section 2.3,

v(t,W (t)) = E [f(W (T ))|W (s), s ≤ t],

where v is the solution to the backward heat equation with terminal condition
v(T, x) = f(x).

Remark 3.6 The backward heat equation (3.6) is not immediately of prime
interest from a financial point of view, as opposed to the Black-Scholes equa-
tion (1.28). In Exercises 3.5 and 3.6 you will study how these two equations are
related.

3.2 Exercises

3.1 Let f be a bounded continuous function. Let u be as in Equation (3.2).
Show (not referring to Proposition 3.2) that limt↓0 u(t, x) = f(x) by application
of the bounded convergence theorem.

3.2 Let u be given by (3.2). Show that under the conditions of Proposition 3.2
we have ut(t, x) =

∫∞
−∞ f(y)pt(t, x− y) dy.

3.3 The Hermite polynomials in two variables Hn(t, x) (n ≥ 0) are defined by
Hn(t, x) = ∂n

∂αn exp(αx− 1
2α

2t)|α=0.

(a) Explain that the Hn(t, x) are polynomial in t and x and compute Hn(t, x)
for n = 0, 1, 2, 3.
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(b) Show that ∂
∂xHn(t, x) = nHn−1(t, x) for n ≥ 1 and that the Hn satisfy the

backward heat equation.

3.4 Let f(x) = exp(γx2). Compute u defined by Equation (3.2) explicitly.

(a) For which points (t, x) is u(t, x) well defined? Check that your answer is
in agreement with Proposition 3.2.

(b) Is u a solution to the heat equation?

3.5 Let v ∈ C1,2(R+ × R2) and define u by u(t, x) = v(t, ex−
1
2σ

2t).

(a) Suppose that v is a solution of

vt(t, x) +
1

2
σ2x2vxx(t, x) = 0. (3.9)

Show that u satisfies

ut(t, x) +
1

2
σ2uxx(t, x) = 0. (3.10)

(b) Conversely, let u be a solution of (3.10). For x > 0 we put v(t, x) =
u(t, log x+ 1

2σ
2t). Show that v satisfies (3.9).

3.6 Suppose that the function v satisfies for t, x > 0 the equation

vt(t, x) +
1

2
σ2x2vxx(t, x) = 0 (3.11)

(a) Define w(t, x) = v(t, xe−rt)ert. Show that w satisfies

wt(t, x) +
1

2
σ2x2wxx(t, x) + rxwx(t, x)− rw(t, x) = 0. (3.12)

(b) Conversely, if w is a solution of (3.12) and v(t, x) = w(t, xert)e−rt, then
v is a solution to (3.11). Remark: Equation (3.12) is the Black-Scholes
partial differential equation already encountered as (1.28), to which we will
return in later sections.

3.7 Let W be a standard Brownian motion on a probability space (Ω,F ,P),
a ∈ R and let the process X be defined by Xt = at + Wt. Assume that f ,
a measurable function on R, satisfies Condition 3.1. Define v by v(t, x) :=
Ef(x + Xt). Show that v has all the properties of the function u mentioned
in Proposition 3.2, except that v satisfies the partial differential equation vt =
avx + 1

2vxx.

3.8 Let p(t, x) = 1√
2πt

exp(−x2/2t). Show that all partial derivatives of p satisfy

the heat equation. Is this in agreement with Theorem 3.3? Explain why (not).
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4 Girsanov’s theorem in a simple case

Having defined Brownian motion with drift at the end of Section 2.2, we study
in this section in some detail how distributional properties of this process change
under an absolutely continuous change of probability measures.

4.1 Measure transformations and Girsanov’s theorem

Assume that on a probability space (Ω,F ,P) a standard Brownian motion W
is defined and we consider the process X given by

X(t) = x0 + at+ σW (t), (4.1)

where x0 is a given real number (the initial value of the process X) and a and
σ other real constants. It follows from the properties of Brownian motion, that
for t > s the increments X(t) − X(s) have a normal distribution with mean
a(t− s) and variance σ2(t− s). Moreover, the increments over disjoint intervals
are independent.

Since the paths of X are, like those of W , continuous functions, the process
X induces a probability measure, also called the law of the process, on the space
C[0, T ] of continuous functions on [0, T ], where T is some fixed terminal time.
Of course we also need a σ-algebra on this space, we take the Borel σ-algebra
that is induced by the sup norm. Clearly, the law depends on a and σ2. What
can we say of the relation between these laws, if we let the parameters a and σ
vary? We will see that for fixed σ2 the laws for varying a are equivalent, and
for varying σ they are mutually singular. Let us define this terminology.

Let L0
+ be the set of all nonnegative random variables on a measurable space

(Ω,F). If (Ω,F) has two probabilities P and Q defined on it, we say that Q
is absolutely continuous w.r.t. P, which is denoted by Q � P, if there exists a
random variable Z such that P(Z ≥ 0) = 1 and such that

EQX = EPZX, for all X ∈ L0
+, (4.2)

where EQ denotes expectation under the probability measure Q and EP denotes
expectation under the probability measure P. For Z we also use the notation
dQ
dP . Note that necessarily we have EPZ = 1 (take X = 1). Every nonnegative
random variable Z with EPZ = 1 can be used to define a new probability
measure Q through Equation (4.2), by taking X equal to the indicator of an
event, i.e. for F ∈ F one defines

Q(F ) := EPZ1F . (4.3)

Countable additivity of a such defined Q follows from the monotone convergence
theorem.

Let us also observe that Q(Z > 0) = 1, because Q(Z = 0) = EP1{Z=0}Z =
EP0 = 0 follows from (4.3). Is P(Z > 0) = 1? In general not, see Exercise 4.3.
But if P(Z = 0) = 0, then we also have P � Q and dP/dQ = 1/Z. Indeed,
since P(Z 1

Z = 1) = 1 we have EPX = EPZ( 1
ZX) = EQ

1
ZX. Two measures P

and Q on (Ω,F) are called equivalent if both P� Q and Q� P, in which case
one writes P ∼ Q.
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Note that if Q � P, then Q(F ) = 0 if P(F ) = 0 as follows from (4.3)
by taking X = 1F . It is a main result (Radon-Nikodym theorem) in measure
theory that also the converse is true. For this theorem we refer to a course in
measure theory, although it is simple to prove it for discrete probability spaces,
see Exercise 4.5. The random variables dQ

dP and dP
dQ are called Radon-Nikodym

derivatives.

We will attack the following problem. Let X as above, X(t) = at + W (t) (we
take x0 = 0 and σ = 1), defined on a probability space (Ω,F ,P). Can we find a
probability measure Q such that Q� P and such that X becomes a Brownian
motion under the probability Q? The answer is yes, and we will show how to
do this under the limitation that we restrict the time set to a bounded interval
[0, T ]. A non-dynamic version of this phenomenon is the content of Exercise 4.1,
a forerunner of Proposition 4.2 below.

We will use in the remainder of this section the filtration F = FW = {Ft, t ∈
[0, T ]}, where Ft = σ(W (s), s ≤ t) is the smallest σ-algebra that makes all
W (s), for s ≤ t, random variables. In particular we will use the σ-algebra FT .
Define the random variable

Z(T ) = exp(−aW (T )− 1

2
a2T ). (4.4)

Clearly we have Z(T ) ≥ 0 and moreover EPZ(T ) = 1 (see Exercise A.5). Hence
we can use Z(T ) to define a new probability measure Q on FT by

Q(F ) = EP1FZ(T ) for all F ∈ FT . (4.5)

Let us investigate some more properties of Z(T ). Let t ∈ [0, T ] be arbitrary and
write

Z(T ) = Z(t) exp

(
−a(W (T )−W (t))− 1

2
a2(T − t)

)
,

with Z(t) = exp(−aW (t) − 1
2a

2t). Note that Z(t) is Ft-measurable. From
properties of the normal distribution (Exercise A.5 again) we obtain

EP exp(−a(W (T )−W (t))− 1

2
a2(T − t)) = 1.

Note also that exp(−a(W (T ) − W (t)) − 1
2a

2(T − t) is independent of Ft by
the property that Brownian motion has independent increments. Hence, using
properties of conditional expectation (Proposition A.11), we get

EP[Z(T )|Ft] = Z(t)EP[exp(−a(W (T )−W (t))− 1

2
a2(T − t)|Ft]

= Z(t). (4.6)

Equation (4.6) tells us that the process {Z(t) : t ∈ [0, T ]} is a martingale (w.r.t.
F under the probability measure P).

Suppose that we want to play the same game, finding a new probability measure,
but now on Ft instead of FT . We can do this by copying the above approach and
work with Z(t) as a Radon-Nikodym derivative. Let us say that this gives us a
probability Qt. Instead, we could also simply restrict Q to the smaller σ-algebra
Ft, call the restriction Q|t. The two approaches turn out to be equivalent:
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Proposition 4.1 The two probabilities Qt and Q|t on Ft are the same.

Proof Exercise 4.8. �

We know that EPW (T ) = 0, but what is EQW (T )? We have

EQW (T ) = EP[W (T )Z(T )]

= EP (W (T ) exp(−aW (T ))) exp(−1

2
a2T )

= −aT,

because

EP (W (T ) exp(−aW (T ))) = −aT exp(
1

2
a2T ),

which follows from Exercise 4.6. Using the same arguments that led us to the
result of (4.6), we can also compute EQW (t) = −at (Exercise 4.7). We conclude
that under the measure Q the process W is not a Brownian motion, since we
get nonzero expectation. To remedy this problem we could consider the process
WQ defined by

WQ(t) = W (t) + at, (4.7)

at least it has expectation zero. As a matter of fact we have the following simple
version of what is known as Girsanov’s theorem.

Proposition 4.2 The process WQ defined by (4.7) is a Brownian motion on
the time domain [0, T ] under the probability Q defined by (4.5).

Proof We only have to show that the increments of WQ are independent (see
Remark 2.4) and that WQ(t)−WQ(s) has a normal distribution with variance
t − s under the (new) probability Q. We can do both things at the same
time by computing the joint characteristic function of any finite vector with
elements WQ(tk) −WQ(tk−1), k = 1, . . . , n, where t0 = 0 ≤ t1, . . . ,≤ tn ≤ T .
We compute, using Proposition 4.1 with t = tn, upon noting that Z(tn) =∏n
k=1 exp

(
− a(W (tk)−W (tk−1))− 1

2a
2(tk − tk−1)

)
,

EQ exp(i
∑
k

λk(WQ(tk)−WQ(tk−1))) =

EP[exp(i
∑
k

λk(WQ(tk)−WQ(tk−1))×

exp(−a
∑
k

(W (tk)−W (tk−1)− 1

2
a2
∑
k

(tk − tk−1))].

Use now the definition of WQ and a bit of rearranging the terms in the expo-
nential to see that the last expectation becomes

EP exp(
∑
k

(iλk − a)(W (tk)−W (tk−1))) exp(
∑
k

(aiλk −
1

2
a2)(tk − tk−1)).

But under P the increments of W are independent and the computation of
the expectation of the product reduces to the computation of the product of
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the expectations. Using that for a complex number z and N(0, σ2) distributed

random variable X one has EezX = e
1
2 z

2σ2

we get

EP exp(
∑
k

(iλk − a)(W (tk)−W (tk−1))) = exp(
1

2

∑
k

(iλk − a)2(tk − tk−1)).

We finally conclude that

EQ exp(i
∑

λk(WQ(tk)−WQ(tk−1))) = exp(−1

2

∑
k

λ2
k(tk − tk−1)). (4.8)

From Equation (4.8) we deduce the independence under Q of the increments of
WQ and normality with the right parameters (see also Section A.3). �

Proposition 4.2 has the following

Corollary 4.3 Let X be the process, defined on a probability space (Ω,F ,P),
given by X(t) = at+σW (t), where W is Brownian motion (w.r.t. P) and σ > 0.
Define the probability Q on (Ω,FT ) by dQ

dP = Z(T ) = exp(−γW (T ) − 1
2γ

2T ),

with γ = a−b
σ . Then X(t) = bt + σWQ(t), where WQ is a Brownian motion

under Q on [0, T ].

Proof Exercise 4.9. �

Remark 4.4 It is possible to show that the probability measure Q of Corol-
lary 4.3 is the unique probability measure on FT such that X can be written
as X(t) = bt + σWQ(t), where WQ is a Brownian motion under Q. Hence,
also the Z(T ) of this corollary is the unique random variable that gives a new
probability measure Q such that X has this representation.

What we have seen here is that the absolutely continuous measure transforma-
tions change the drift parameter of the process X, but not the parameter σ.
Can we also make a measure transformation, such that σ changes into another
parameter, τ say, so that if X(t) = at + σW P(t) with W P Brownian motion
under P and so that X(t) = bt+ τWQ with WQ Brownian motion under Q?

Suppose that the two above representations of X hold with σ > 0 and
τ > 0. We have seen in Exercise 2.14 that for X(t) = at+σW P(t) the quadratic
variation of X over an interval [0, T ] is almost surely equal to σ2T , so P(〈X〉T =
σ2T ) = 1. Similarly, we have Q(〈X〉T = τ2T ) = 1. Hence, assuming that
σ2 6= τ2, there is set E ∈ FT (namely E = {〈X〉T = σ2T}), such that P(E) = 1
and Q(E) = 0. If such a set can be found (as it is the case here), the measures
P and Q are called mutually singular, the extreme opposite of being absolutely
continuous w.r.t. to each other. One can say that P is concentrated on the event
E (because P(Ec) = 0), whereas for Q the opposite holds true.

Equation (4.2) tells us how to express expectations under a new probability
measure Q in terms of expectation under P. Do we have a similar device for
conditional expectations? Here is the answer.

Proposition 4.5 Let Q be defined by (4.5) on FT . Let X be a FT -measurable
random variable such that EP|X|Z(T )| <∞. Then

EQ[X|Ft] =
EP[XZ(T )|Ft]

Z(t)
, Q-a.s. (4.9)
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Proof We will repeatedly use properties of the conditional expectation, see
Section A.6 of the Appendix. Let F ∈ Ft. We compute

EP (1FEP[XZ(T )|Ft]) = EP (1FXZ(T ))

= EQ (1FX)

= EQ (1FEQ[X|Ft])
= EP (1FZ(t)EQ[X|Ft]) ,

where we used Proposition 4.1 in the last equality. Comparing the extreme
sides of this chain of equations, which holds for any F ∈ Ft, we conclude that
EP[XZ(T )|Ft] = Z(t)EQ[X|Ft]. Since Q(Z(t) > 0) = 1, we can divide by Z(t)
to arrive at (4.9). �

4.2 Exercises

4.1 Consider a probability space (Ω,F ,P) and that X is random variable having
the N(0, 1) distribution. Let φ denote the density of the N(0, 1) distribution

and let φa denote the density of the N(a, 1) distribution. Let z(x) = φa(x)
φ(x) .

Define Q(F ) = E (1FZ) for F ∈ F , where Z = z(X).

(a) Compute EZ = 1 (use an integral).

(b) Show that Q(X ≤ x) = Φ(x − a), where Φ is the distribution function of
N(0, 1).

(c) Conclude that XQ := X − a has the standard normal distribution under
Q.

(d) Show that z(x) = exp(ax− 1
2a

2) and that Z has the same distribution as
exp(aW (1)− 1

2a
2), where W is a Brownian motion. Note the resemblance

with (4.4). How to choose a in the current setup such that Z has exactly
the same distribution as Z(T )?

We see that the change of measure from P to Q is ‘neutralized’ by replacing X
by X − a in the sense that X − a has, under Q, the same distribution as X
under P.

4.2 Show that Brownian motion is a martingale w.r.t. its own filtration.

4.3 Take Ω = {1, 2, 3} and P the uniform probability measure on this set and
let Q be such that Q({1}) = Q({2}) = 1

2 . Show that Q� P and determine the
Radon-Nikodym derivative of Q w.r.t. P. Show that P(Z > 0) < 1.

4.4 Let Q and P be two probabilities on a measurable space (Ω,F) and assume
that Q� P. Show that EPZ = 1 (Z as we used in Equation (4.2)).

4.5 Let Ω = {ω1, ω2, . . .}, F the power set of Ω and P and Q be two probabilities
on (Ω,F). Let Ω̃ = {ω ∈ Ω : P({ω}) > 0}. Assume that Q(F ) = 0 as soon
as P(F ) = 0. Then in particular Q({ω}) = 0 if ω ∈ Ω̃c. Define Z(ω) =
Q({ω})/P({ω}) for ω ∈ Ω̃ and zero otherwise. Show by direct computation that
EQX = EPXZ for all nonnegative random variables X.

4.6 Let Z be N(0, τ2) distributed. Show that for all α ∈ R the equality
E(Z exp(αZ)) = ατ2 exp( 1

2α
2τ2) holds.
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4.7 Let W be a standard Brownian motion on a probability space (Ω,F ,P) and
let for every t ∈ R Ft be the σ-algebra generated by W (s) with s ≤ t. Put
Z = exp(−aW (T ) − 1

2a
2T ) for a certain T > 0. Let Q be the probability on

FT defined by dQ/dP = Z. Show that EQW (t) = −at for t ≤ T and that
EQ[W (T )|Ft] = W (t)− a(T − t) by using Proposition 4.5.

4.8 Prove Proposition 4.1 by writing Z(T ) = Z(t) exp(−a(WT −Wt)− 1
2a

2(T −
t)) and exploiting the independence (under P) of the increments of W .

4.9 Prove Corollary 4.3 (it is easy).

4.10 Let W be a Brownian motion under P and define Q by (4.5) with Z(T ) as
in (4.4). Show, use (4.9), that

EQ[X|Ft] = EP[Xe−a(W (T )−W (t))|Ft]e−
1
2a

2(T−t).

4.11 Let ε1, . . . , εn be random variables that under a probability measure P are
independent and standard normally distributed. Let µ1, . . . , µn and σ1, . . . , σn
be real numbers and Yi = µi + σiεi, i = 1, . . . , n. Assume that under a prob-
ability measure Q (on σ(Y1, . . . , Yn)) the Yi become independent with each a
N(0, σ2

i ) distribution. Show that the likelihood ratio (Radon-Nikodym deriva-

tive) dQ
dP = exp

(
−
∑n
i=1

µi
σi
εi − 1

2

∑n
i=1(µiσi )

2
)

.

4.12 Let 0 = t0 < t1 < · · · < tn = T and a(t) =
∑n
i=1 ai1(ti−1,ti](t), where the

ai are real numbers. Let W be a standard Brownian motion on a probability
space (Ω,F ,P) and X be a Brownian motion with piecewise constant drift

defined by X(t) =
∫ t

0
a(s) ds+ σW (t).

Let ∆Wi = W (ti) − W (ti−1) and Z = exp
(
−
∑n
i=1

ai
σ ∆Wi − 1

2

∫ T
0

a2(s)
σ2 ds

)
.

Define Q by dQ
dP = Z. Argue that under Q the process X becomes a Brownian

motion on [0, T ] with variance parameter σ2. Hint: Copy the proof of Proposi-

tion 4.2 and use that Z(T ) =
∏n
i=1 exp

(
−
∑n
i=1

ai
σ ∆Wi −

∑n
i=1

a2
i

2σ2 (ti − ti−1)
)

.

You may even assume w.l.o.g. (think why!) that for the increments over inter-
vals (tk−1, tk], the tk are the ti in the definition of a(t).
Remark: A more sophisticated argument, involving conditional characteristic
functions, shows that X is even a Brownian motion, if the ai are bounded
Fti−1

-measurable random variables.

4.13 Consider a probability space (Ω,F ,P) and a random variable Z with the
properties P(Z ≥ 0) = 1 and EZ = 1. Define Q on F by Q(F ) = E [1FZ].

(a) Show that Q is a probability measure on F . [For countable additivity you
need the Monotone convergence theorem.]

(b) Show that Q(F ) = 0 if P(F ) = 0.

(c) Show that P� Q if and only if P(Z > 0) = 1.
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5 Black Scholes market

We have established in Proposition 1.9 the (finite dimensional) limit distribu-
tions of the Cox-Ross-Rubinstein model. Let us recall what we found. The limit
stochastic variables S(tk) were such that the increments of the log-price pro-
cess logS(t) became independent and moreover the distribution of logS(tk) −
logS(tk−1) was normal with mean (r− 1

2σ
2)(tk−tk−1) and variance σ2(tk−tk−1).

Having in mind the distribution of a process X, a Brownian motion with drift,
that is given by X(t) = x0 + at+ σW (t) (see the end of Section 2.2), we postu-
late the following model for the log-price process under the equivalent martingale
measure Q.

logS(t) = log s+ (r − 1

2
σ2)t+ σWQ(t), (5.1)

where WQ is a Brownian motion under the probability measure Q. Note that
for this model increments logS(tk)− logS(tk−1) are independent and that they
have the normal distributions as specified above.

5.1 Models with equivalent measures

Let us first explain (in this context) the term equivalent martingale measure as
we used it above. With the exposition of Section 1 in mind, it should be the
case that the discounted price process S̄ is a martingale. Since the discount
factor at each time t is the bond price B(t) = ert, we get from Equation (5.1)
that

S̄(t) = s exp

(
σWQ(t)− 1

2
σ2t

)
. (5.2)

We have seen in the discussion of Girsanov’s theorem, that this indeed gives a
martingale and therefore talking about an equivalent martingale measure thus
makes sense. What about equivalent?

Recall from Section 1 that in the CRR set up, the probability measure
Q was an artefact, useful to compute prices of financial derivatives, but the
‘physical’ measure, P say, that attributes the ‘real’ probabilities to up and down
movements of the stock price may be very different. Nevertheless we assumed
equivalence of these probability measures in the sense that price paths that
had positive probability under one measure had positive probability under the
other as well. In the present context we therefore look for any other probability
measure P that is equivalent to Q and we wonder how such a measure equation
will change (5.1).

The solution of this problem can be obtained by application of Girsanov’s
theorem, as we discussed it in Section 4. So we conclude from the results of
that section that any other ‘physical’ probability measure P that gives logS
a constant drift parameter (different from r − 1

2σ
2) is equivalent to Q, when

restricted to FT , with the T the terminal time. Here we take FT to be the
smallest σ-algebra that makes the WQ(s) (s ≤ T ) measurable functions on Ω.
For t ≤ T we have a similar definition of Ft. Note that FT is also the smallest
σ-algebra that makes all S(t) (t ≤ T ) measurable functions (why?).

Let us note that any other probability measure that gives logS a constant
drift can arise as the limit of discrete time processes in the way we treated this
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subject in Section 1. Indeed, replacing the qu(N) that we used there with a

probability pu(N) = e(α+ 1
2
σ2)∆N−dN
uN−dN eventually leads to a limit process S that

can be represented as logS(t) = log s+ αt+ σW P(t).
There are however many more probabilities that are equivalent to Q. It

follows from Exercise 4.12 that also a probability measure P under which logS
has a piecewise constant drift is equivalent to Q. It is a theorem that the
piecewise constant functions are dense in L2[0, T ] and this enables one to prove
that any probability measure P that is such that

logS(t) = logS(0) +

∫ t

0

a(s) ds+ σW P(t), (5.3)

with a ∈ L2[0, T ] and W P, a Brownian motion under P, is equivalent to Q
when restricted to FT . We don’t discuss the details of this result at the present
stage. One of the reasons is that with the tools that we have developed so far, it
is unclear how the Radon-Nikodym derivatives dP/dQ and dQ/dP would look
like. We come back to this point later. For now it is sufficient to work with
probabilities P under which we have Equation (5.3) and to know that these
probabilities are equivalent to Q when we work with a fixed time horizon T .
Together with the bond price process B given by B(t) = exp(rt) we are in the
framework of the Black-Scholes model. The two equations for S and B are then
said to describe the Black-Scholes market.

As a final remark to this section we mention that there are still many other
probability measures P, equivalent to Q. Under these other measures Equa-
tion (5.3) will change in the sense that also certain random functions a are
allowed.

5.2 Arbitrage

As in Section 1 we will consider portfolios that consist of a certain real number
of stocks and a certain real number of bonds. The portfolios will be dynamic
and therefore the numbers of stocks and bonds depend on time. For each fixed
time t they are allowed to depend on the behavior and values of the stock price
prior to t, but not on the future stock prices after t. Denoting (at time t) these
numbers by xt and yt we thus have that they are in fact random variables and
the portfolio process (x, y) is thus a bivariate stochastic process. The value of
the portfolio at time t is denoted by V (t) and obviously

V (t) = xtS(t) + ytB(t). (5.4)

We will also work with the discounted values of stochastic processes. Like in
Section 1, we write Ȳ for the discounted version of a process Y and it is defined
by Ȳ (t) = Y (t)/B(t) = Y (t)e−rt. In particular we use the discounted value
V̄ (t) of the portfolio, which is of course

V̄ (t) = xtS̄(t) + yt. (5.5)

Let us for a while agree on the following definition (in the spirit of Exercise 1.7)
of what we will call a martingale portfolio. It is such that the discounted value
process V̄ is a martingale under the measure Q. In the discrete time setting a
martingale portfolio was a self-financing portfolio and vice versa (Exercise 1.7).
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This is (under appropriate conditions) harder to establish in the continuous
time case. But it is relatively easy to give an expression for the value pro-
cess V of such a portfolio. By definition we have V̄ (t) = EQ[V̄ (T )|Ft] and
thus V (t) = e−r(T−t)EQ[V (T )|Ft]. Conditional expectations of this type have
been analyzed in Section 3, where we used partial differential equations with a
boundary condition at time T , which could be cast as V (T ) = f(W (T )). So we
can apply the results of that section as soon as we can formulate a boundary
condition as a function of W (T ). This will be done in Section 5.3.

We aim at a definition of self-financing portfolios and we let us inspire by re-
sults of Section 1, more precisely by the considerations that led to equations (1.8)
and (1.9). Whereas in Section 1 we emphasized the value process, here we turn
our attention to the structure of the self-financing portfolio process. Impor-
tant: we set r = 0 in the motivation below of the definition of a self-financing
portfolio.

We make a digression and consider first an arbitrary portfolio in discrete
time with value process V . Let us introduce the notation Vn(u) as the value of
Vn if Sn = Sn−1u, Vn(d) likewise and, similarly, we write Sn(u) = Sn−1u and
Sn(d) = Sn−1d. Since xn and yn don’t depend on the value of Sn we have the
two identities

Vn(u) = xnSn(u) + yn

Vn(d) = xnSn(d) + yn.

We introduce the difference operator D, that applied to Vn by definition results
into DVn = Vn(u) − Vn(d) and applied to Sn results in DSn = Sn(u) − Sn(d).
Now we can write

xn =
DVn
DSn

. (5.6)

Recall that for r = 0 a portfolio in discrete time is self-financing iff its value pro-
cess V is a martingale under the equivalent martingale measure Q (Exercise 1.7).
Suppose that we have a self-financing portfolio such that its terminal value VN is
a function of SN , VN = f(SN ), say. Then we have Vn = EQ[f(SN )|S0, . . . , Sn],
which reduces, by the Markov property of S under the probability Q, to a func-
tion of Sn only, Vn = vn(Sn) say. We can then write Vn(u) = vn(Sn−1u) and
Vn(d) = vn(Sn−1d). In this case Equation (5.6) becomes

xn =
vn(Sn−1u)− vn(Sn−1d)

Sn−1u− Sn−1d
. (5.7)

We consider what happens if u ↓ 1, d ↑ 1 so that u − d → 0. Assume that we
can extend the domain of the function vn to R and that the derivative v′n of vn
exists. Then a Taylor expansion in (5.7) yields the expression

xn ≈ v′n(Sn−1).

This result will be the basis of our definition of a self-financing portfolio in
continuous time, in particular for a portfolio that hedges a simple claim.

We now turn to the limiting procedure of Section 1.2. So we take a large
number N and compare the market in continuous time with time horizon [0, T ]
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with the fictitious, or approximating, CRR market with time set {0, . . . , N},
where N and T are related by N∆N = T . Fix a time t ∈ [0, T ] and let n be the
corresponding time instant in the fictitious market, so n = [ tTN ] and we have
tNn ≤ t < tNn+1, with tNn = n

N T .
By QN we denote the equivalent martingale measure in the N -th approxi-

mating CRR market and, in general, we endow any quantity related to these
market with an upper or lower index N . Let us now focus on the values

V Nn = vNn (SNn ). Recall that we can write these as EQN f(
SNN
SNn
s) if SNn has the

value s. Assume for a moment that f is a bounded continuous function. Then
we have from the convergence results of Section 1.2, that vNn (s) converges to

v(t, s) := EQf(S(T )
S(t) s), where Q is now the probability such that Equation (5.1)

holds. Next we replace s with suN or with sdN . If v is differentiable in the sec-
ond variable with derivative vx we find, parallel to what we did just after (5.7),
the approximation vNn (suN ) ≈ v(t, s) + s(uN − 1)vx(t, s) and a similar approxi-
mation for vNn (sdN ). If xNn is the amount of stocks at time n in the N -th CRR
market, we thus obtain from (5.7) the approximation

xNn =
DV Nn (s)

DSNn
≈ vx(t, s).

The arguments that we used to obtain the last approximation can be made
rigorous under suitable assumptions on f , for instance if f is such that a con-
dition equivalent to Condition 3.1 holds for all a > 0, but this is not our aim.
However, it suggests the following definition of a self-financing portfolio under
special circumstances. The temporary assumption r = 0 will shortly be seen to
be superfluous. The general case will be treated in Section 7.

Definition 5.1 A martingale portfolio in the Black-Scholes market that is such
that the value process V can be written as V (t) = v(t, S(t)), with v having
appropriate differentiability properties, is called self-financing if the amount xt
invested in the stock at any time t satisfies the relation xt = vx(t, S(t)).

This definition was suggested by a limit procedure under the condition that
the interest was zero. But it is possible to reduce the case of non-zero interest
rate to this case and we will show how to do this. So, we consider a portfolio
with value process V that is given as V (t) = v(t, S(t)). The discounted value
process is then V̄ (t) = v̄(t, S̄(t)) where the functions v and v̄ are related by
v̄(t, x) = e−rtv(t, ertx). Observe that in the discounted Black-Scholes market
the interest rate is equal to zero. Suppose that we have a portfolio that is
self-financing in the sense of Definition 5.1 in the discounted market. Then we
know that xt = v̄x(t, S̄(t)). It is now easy to deduce that also xt = vx(t, S(t))
(Exercise 5.1). What this result says can also be stated as ‘a portfolio is self-
financing in the Black-Scholes market iff it is self-financing in the discounted
Black-Scholes market’. Moreover Definition 5.1 now also makes sense in a mar-
ket with nonzero interest rate. One might wonder whether the partial derivative
w.r.t. the second variable of the function v in Definition 5.1 exists. This is guar-
anteed by the results of Section 3. For more details we refer to Section 5.3.

Knowing what a self-financing portfolio is, we can now define arbitrage port-
folios. A portfolio is an arbitrage portfolio over the interval [0, T ] if it is self-
financing and such that V (0) = 0 with P-probability equal to 1, V (T ) ≥ 0 with
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P-probability equal to 1 and V (T ) is strictly positive with positive P-probability.
Note that this (verbal) definition is essentially the same as Definition 1.2 for a
discrete time market.

Proposition 5.2 The Black-Scholes market is free of arbitrage.

Proof Clearly, the definition of an arbitrage portfolio could alternatively be
stated in terms of the discounted value process instead of the value process.
Since P and Q are equivalent, we also have Q(V (0) = 0) = 1 , Q(V̄ (T ) ≥ 0) = 1
and Q(V̄ (T ) > 0) > 0. Suppose that we have a self-financing portfolio. Since
its discounted value V̄ is a martingale under Q, we have in particular V (0) =
V̄ (0) = EQV̄ (T ). If Q(V̄ (T ) ≥ 0) = 1 and Q(V̄ (T ) > 0) > 0 we necessarily
have EQV̄ (T ) > 0 so that V (0) > 0. This portfolio is thus not an arbitrage
possibility. �

Having established that the Black-Scholes market is free of arbitrage, we can
adopt the following pricing principle. If we have two financial products that at a
time T give exactly the same payoff, then their fair prices at any time t before T
are the same. We have encountered this already as the law of one price. We will
use this principle in Section 5.3, when we discuss products that can be hedged.
We thus defined what is called no arbitrage pricing.

5.3 Hedging

Consider a contingent claim (simple or not) whose payoff at the maturity time T
is equal to X. By definition, X is an FT -measurable random variable. Assume
that the claim has finite expectation w.r.t. Q. For technical reasons, unless
stated otherwise, we will mostly restrict our attention to simple claims X, which
are by definition claims of the form X = F (S(T )), where F is a measurable
function on R. Since below we work with expectations of claims, we also need
to impose sufficient integrability conditions. We will sometimes state these
explicitly, otherwise these are tacitly understood to be satisfied.

We say that this claim can be hedged if there is a self-financing portfolio process
(xt, yt) (t ∈ [0, T ]) such that the terminal value of the portfolio is under Q
almost surely equal to X, so V (T ) = X, Q-a.s. This portfolio is called the
hedging or replicating portfolio. By the no arbitrage pricing principle (and the
law of one price), the fair price of a hedgeable claim at any time t ≤ T is equal
to the value V (t) at that time of the hedging portfolio. But by the definition
of a self-financing portfolio as a special kind of martingale portfolio, we know
that V̄ (t) = EQ[V̄ (T )|Ft]. Hence, with bond prices B(t) = exp(rt), we get that
V (t) = e−r(T−t)EQ[V (T )|Ft], so that the fair price at time t of the hedgeable
claim X becomes e−r(T−t)EQ[X|Ft].

Assume that hedging is possible. The above formula for the fair price is so
far nothing else but a representation. What we aim at is, if possible, an explicit
expression for the fair price. So we need to calculate the conditional expectation
explicitly. As a first step we show that the value process V of a simple claim can
be written as V (t) = v(t, S(t)) for some function v that will be specified later on.
What is needed to show this, is that the process S is Markov under the probabil-
ity Q. This is straightforward. Since S(t) = s exp((r− 1

2σ
2)t+σWQ(t)) and WQ

is Markov, this readily follows (you check!). Because V̄ (t) = EQ[F̄ (S(T ))|Ft],
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we see that this conditional expectation reduces to the conditional expectation
EQ[F̄ (S(T ))|S(t)]. Defining v̄(t, x) = EQ[F̄ (S(T ))|S̄(t) = x], we obtain that
v̄(t, S̄(t)) = V̄ (t) and V (t) = ertv̄(t, S̄(t)), so that v(t, x) = v̄(t, xe−rt)ert.

The next step is to specify the function v or, equivalently, the function v̄.
To that end we introduce the auxiliary function f , defined by

f(x) = e−rTF (seσx+(r− 1
2σ

2)T ). (5.8)

We thus have that F̄ (S(T )) = f(WQ(T )). With another auxiliary function
w, defined by w(t, y) = EQ[f(WQ(T ))|WQ(t) = y], we have that w(t, y) =

v̄(t, seσy−
1
2σ

2t). The function w is known to us from Section 3, it satisfies the
backward heat equation (3.6) under the appropriate conditions on f . But then
we know parallel to Exercise 3.5 also which partial differential equation v̄ satisfies
and from Exercise 3.6 the partial differential equation that v itself satisfies. We
summarize this paragraph as follows.

Proposition 5.3 Any simple claim F (S(T )) with finite expectation that can
be hedged is such that the value V (t) of the claim at time t can be written as
V (t) = v(t, S(t)), where v is the solution of the Black-Scholes partial differential
equation

vt(t, x) +
1

2
σ2x2vxx(t, x) + rxvx(t, x)− rv(t, x) = 0, (5.9)

with boundary condition v(T, x) = F (x).

The natural question to ask is now ‘which simple claims can be hedged?’ The
answer is that we can hedge any simple claim F (S(T )) under certain regularity
conditions on the function F .

Theorem 5.4 The Black-Scholes market is complete in the sense that every
simple claim F (S(T )) can be hedged, if f defined by Equation (5.8) satisfies
Condition 3.1.

Before proving this theorem we make some comments. The theorem clearly
differs from the analogous statement for the CRR market where every claim,
simple or not, could be hedged. We confined ourselves to the restricted case
of simple claims for technical reasons. It is also true that every claim (subject
to certain integrability conditions) in the Black-Scholes market can be hedged.
This result however requires a rather deep theorem in probability theory (the
Martingale Representation Theorem), to which we return in Section 7.3.

Proof of Theorem 5.4 Let F (S(T )) be the claim under consideration. We
have to show that we can find a self-financing portfolio that is such that its
terminal value V (T ) is equal to F (S(T )). From the discussion preceding Propo-
sition 5.3 we know that v(t, x) := e−r(T−t)EQ[F (S(T ))|S(t) = x] is the solution
to Equation (5.9). In particular, vx exists and we can define xt = vx(t, S(t)).
With yt = e−rt(v(t, S(t)) − xtS(t)) we obtain a self-financing portfolio with
value process V (t) = v(t, S(t)) and the property that v(T, S(T )) = F (S(T )).
This portfolio is thus the hedging portfolio of our claim. �
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5.4 Exercises

5.1 Show that a portfolio is self-financing in the Black-Scholes market iff it is
self-financing in the discounted Black-Scholes market.

5.2 Consider the Black-Scholes market with r > 0. Suppose that a portfolio
is such that the value process V is of the form V (t) = v(t, S(t)). Take as an
alternative portfolio the one in which xt ≡ 0 and yt ≡ v̄(t, S(t)). Show that this
portfolio process can only be self-financing if V (t) does not depend on S(t).

5.3 Consider the Black-Scholes model and a self-financing portfolio that repli-
cates a non-negative claim. Show that the value process of the hedge portfolio
is non-negative as well.

5.4 Consider the Black-Scholes model and determine the hedge portfolios as
well as the value functions for each of the following simple claims.

(a) F (S(T )) = S(T )−K.

(b) F (S(T )) = (S(T )−K)2. Hint: Reduce the value function to an expecta-
tion of a random variable that is a function of S(T )/S(t). Compute the
expectation by using Exercise A.5.

(c) F (S(T )) = (logS(T )−K)+.

(d) F (S(T )) = 100 1{S(T )>100}.

(e) F (S(T )) = (S(T ) − K)+. Consider first the case r = 0. For t < T the
price Ct of this claim is then given by

Ct = StΦ(
log St

K + 1
2σ

2(T − t)
σ
√
T − t

)−KΦ(
log St

K −
1
2σ

2(T − t)
σ
√
T − t

),

where Φ is the distribution function of the standard normal distribution.
Find also CT , and xT and yT .

(f) Use the results for r = 0 under (e) to obtain the expression for Ct in the
general case r ≥ 0. What are xt and yt now?
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6 Elementary Itô calculus

The modern theory of option pricing uses the technology and calculus of the
Stochastic integral, also called Itô integral. In the presentation thus far we could
circumvent this theory, although in Section 5 we defined self-financing portfolios
in a special case only and we could not treat hedging of composite claims. It is
impossible to do this without knowledge of Itô integrals. Let us first go back to
the definition of a self-financing portfolio in discrete time. It was such that, in
the notation that has by now become familiar to us, ∆V̄n = xn∆S̄n. With the
limit procedure of Section 1.2 in mind we could replace this by the continuous
time analogue, ‘differences become differentials’, dV̄ (t) = xtdS̄(t). Now we are
immediately faced with the question how to interpret this equation, and what
is meant by a ‘differential’ like dV̄ (t)? If V̄ and S̄ would be a differentiable
function of t, we could rely on ordinary differential calculus to give a meaning
to this equation, d

dt V̄ (t) = xt
d
dt S̄(t). In the present context it turns out to

be the case that functions V̄ and S̄ are not differentiable w.r.t. t. Especially
for the latter, this is relatively easy to see. If it were differentiable, the same
would be the case with log S̄. But we have modeled this as a Brownian motion
with (linear) drift under Q, see Equation (5.1). Brownian motion itself is not
differentiable, as we already observed in Section 2.3. Nevertheless, we will see
that it is possible to derive a stochastic calculus, that is build on stochastic
integrals.

In all what follows we assume that we work with a probability space (Ω,F ,P)
on which a Brownian motion W is defined. By Ft we denote the σ-algebra that
is generated by W (s), s ≤ t.

6.1 The Itô integral, an informal introduction

The purpose of this section is to define an integral of a stochastic process a
w.r.t. a Brownian motion W . The integral over a time interval [0, T ] will be
denoted by∫ T

0

a(s) dW (s) (6.1)

and will be called the stochastic integral of a w.r.t. W . The form of the ex-
pression (6.1) reminds us of a Stieltjes, or perhaps of a Lebesgue integral. In
both cases integrals were defined as limits of sums. And this is, in spite of some
subtle differences, the approach that we also follow here, en passant touching
upon the differences between the conventional set up and the present one.

First we define simple processes. We call a process a simple over a fixed interval
[0, T ] if it is bounded and can be written as

a(t) =

n∑
j=1

aj1(tj−1,tj ](t), (6.2)

where 0 = t0 < t1 < · · · < tn = T and where the aj are Ftj−1 -measurable
bounded random variables. The class of simple processes will be denoted by

S. S will be endowed with a norm || · ||, defined by ||a|| = (E
∫ T

0
a(s)2 ds)1/2.

Strictly speaking, this not a norm, since ||a|| = 0 does not imply that a(s) = 0
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for all s. But by identifying functions whose difference has norm zero (so we
actually look at a quotient space), it becomes one.

For a simple process a there is basically only one proper choice of what the

integral
∫ T

0
a(s) dW (s) should be. We define it as the sum∫ T

0

a(s) dW (s) =

n∑
j=1

aj(W (tj)−W (tj−1)). (6.3)

It is not very difficult to show, Exercise 6.1, that this integral is independent of
the chosen representation of a.

We haven’t used yet any specific property of W as a Brownian motion.
Therefore we take the liberty to temporarily move away from the Brownian
context and give a financial interpretation. Suppose then that W would be the
price process of some asset. Suppose that the tj are trading times at which one
can purchase a number of assets, the number being aj at time tj−1 and that this
number is held constant on the time interval (tj−1, tj ] and that at tj the number
of assets is immediately replaced with aj+1. A negative aj is to be interpreted
as selling assets. When we move in time from tj−1 to tj the price changes from
W (tj−1) to W (tj), and the profit (or loss) of the holder of the assets in that time

period becomes aj(W (tj) −W (tj−1)). As a result
∫ T

0
a(s) dW (s) as in (6.3) is

the total profit (or loss) somebody would incur if aj assets are held during every
time interval (tj−1, tj ].

We also want to define an integral with T replaced with t < T . For that case
we define∫ t

0

a(s) dW (s) :=

∫ T

0

1(0,t](s)a(s) dW (s).

Note that also a1(0,t] is a simple process, if a is such. An alternative formula
(Exercise 6.2) is∫ t

0

a(s) dW (s) =

n∑
j=1

aj(W (tj ∧ t)−W (tj−1 ∧ t)). (6.4)

Let us write I(a) for the process defined on [0, T ] by It(a) =
∫ t

0
a(s) dW (s). We

immediately mention some properties of the thus defined integral process.

Proposition 6.1 For a ∈ S we have

(i) The process I(a) is a continuous martingale with expectation zero.

(ii) E (It(a)− Is(a))2 = E
∫ t
s
a(u)2 du for t > s.

(iii) E [(It(a)− Is(a))2|Fs] = E [
∫ t
s
a(s)2 ds|Fs].

(iv) IT considered as an operator on the space of simple processes is linear and
an isomorphism from S with || · || into L2(Ω,FT ,P).

Proof (i) Without loss of generality we may assume that s and t are among
the ti. The martingale property now follows from Exercise A.17. Continuity is
obvious.

(ii) follows from (iii), which you do as Exercise 6.4 by assuming again that
the s and t are among the ti.

(iv) That IT is linear is obvious. Taking s = 0 and t = T in (ii) gives us

E IT (a)2 = E
∫ T

0
a(s)2 ds. �
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Remark 6.2 Since we know from property (i) of Proposition 6.1 that I(a) is
a martingale, we can formulate property (iii) as a consequence of Exercise A.27

also as E [It(a)2 − Is(a)2|Fs] = E [
∫ t
s
a(s)2 ds|Fs], which implies E [It(a)2 −∫ t

0
a(s)2 ds|Fs] = Is(a)2 −

∫ s
0
a(s)2 ds. This shows that the process {It(a)2 −∫ t

0
a(s)2 ds, t ∈ [0, T ]} is a martingale.

Example 6.3 Let the times ti be fixed and consider the process Wn(t) =∑n
i=1W (ti−1)1(ti−1,ti](t). Application of the definition of the integral results

after some manipulation in∫ T

0

Wn(s) dW (s) =
1

2
W (T )2 − 1

2

n∑
i=1

(W (ti)−W (ti−1))2. (6.5)

Note that, although piecewise constant, the Wn are not simple, since the
W (ti−1) are not bounded. Nevertheless, the resulting expression is just as cor-
rect as (6.3) for simple processes. See also Exercise 6.3.

Here we pause for a while in our treatment to outline why we cannot use Stieltjes
of or Lebesgue integration theory. The main result for Stieltjes integrals is that

the integral
∫ T

0
a(s) dW (s) exists for functions a and W if a is continuous and

W of bounded variation. By a partial integration trick, one can show that the
integral also exists if W is continuous and a of bounded variation. One then
writes∫ T

0

a(s) dW (s) = a(T )W (T )−
∫ T

0

W (s) da(s).

This trick is clearly of no help if we make the special choice W to be a typical
path of Brownian motion and a = W . We have seen in Section 2.3 that the
paths of Brownian motion are not of bounded variation, therefore Stieltjes in-
tegration theory is useless at this point. The same holds for Lebesgue theory.
To attach to a function W a signed measure one again needs this function to
be of bounded variation. So we find ourselves in a dead end street, it seems.
Nevertheless we will be able to find a way out by exploiting the special structure
of simple processes, the ai were required to be Fti−1

-measurable, combined with
the fact that the paths of Brownian motion are of bounded quadratic variation
and the isometry property mentioned in Proposition 6.1.

To define
∫ T

0
a(s) dW (s) for a wider class of processes we will use a limit proce-

dure. We don’t treat the most general class of processes for which it is possible
to define the stochastic integral. Since the integrands that we encounter are
mainly such that they have continuous paths or piecewise continuous paths,
we restrict ourselves, next to simple processes, to piecewise continuous inte-
grands. Recall that a function a : [0, T ]→ R is piecewise continuous if there are
finitely many intervals [si−1, si] with union [0, T ] such that a is continuous on
the (si−1, si) and has finite left and right limits at the si. Note that a piecewise
continuous function is bounded on [0, T ].

A process is said to be piecewise continuous if it has paths that are piecewise
continuous functions, and we take the si the same for each path. These paths
are then bounded functions, but the bounds will depend on the particular ω,
and so the process will in general not be (uniformly) bounded. Think here of
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Brownian motion, the random variables W (t) can assume arbitrary large values.
The following proposition shows that we can approximate piecewise continuous
processes by simple processes.

Proposition 6.4 Let P be the set of piecewise continuous adapted processes
a with ||a|| <∞. Then the set S is dense in P w.r.t. the norm || · ||.

Proof Consider first the case where the process a is continuous on [0, T ] and
bounded. Let 0 = tn0 < . . . < tnn = T be a subdivision of [0, T ]. Consider the
approximating (adapted) simple processes an defined by

an(ω, t) =

n∑
i=1

a(ω, tni−1)1(tni−1,t
n
i ](t). (6.6)

Since a is bounded, by M say, also the an are bounded by M . Furthermore
Since the paths of a are also uniformly continuous (why?), we can find for each
of them and for each ε > 0 a δ > 0 such that for each subdivision whose mesh
is less than δ we have |a(ω, t) − a(ω, tni−1)| < ε, if t ∈ (tni−1, t

n
i ]. Hence for

such subdivisions we have sup{|an(t) − a(t)| : t ∈ [0, T ]} < ε, so that we have
an(t, ω)→ a(t, ω). Boundedness allows us to invoke the dominated convergence
theorem to establish ||an−a|| → 0, which shows the assertion of the proposition
for bounded continuous a.

If a is bounded, say again by M , and only piecewise continuous, we cut
up the interval [0, T ] in a finite union of open intervals (si−1, si) on which a is
continuous, with right and left limits at the endpoints. Treating these limits as
the values of a at the endpoints we can repeat the above argument on the closed
intervals [si−1, si].

If a is not bounded we approximate a first with the bounded process aN =
max{min{N, a},−N} (N > 0), which is piecewise continuous. Indeed, we have

||a− aN ||2 = E
∫ T

0

|a(t)− aN (t)|2 dt

= E
∫ T

0

(a(t)−N)21{a(t)>N} dt

+ E
∫ T

0

(a(t) +N)21{a(t)<−N} dt

≤ E
∫ T

0

a(t)21{|a(t)|>N} dt,

which tends to zero as N tends to infinity by the dominated convergence theo-
rem. The aN we can approximate arbitrarily well by the previous step. �

We are now ready to define the stochastic integral
∫ T

0
a(t) dW (t) for processes

in P. Let a be such a process, and let an be a sequence of simple processes such
that ||an − a|| → 0. The integrals IT (an) are well defined and by linearity we
have E (IT (an)− IT (am))2 = E IT (an−am)2, which is by the isometry property
equal to ||an − am||2. It becomes arbitrarily small for n,m large enough. This
shows that the IT (an) form a Cauchy sequence in L2(Ω,FT ,P), which is a
Hilbert space if we identify random variable as zero if the norm is zero. Hence
the sequence has a limit in this space. We notice that this limit is independent
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of the a approximating sequence. For, if we take another sequence of bn ∈ S
that approximate a, we would also get a limit. By mixing the two sequences
we would get a limit again. But any subsequence of the latter will then have
the same limit, in particular the subsequence consisting of the IT (an) and the
subsequence consisting of the IT (bn) that thus have the same limit. We conclude
the construction of the stochastic integral by

Theorem 6.5 For every a ∈ P there exists a random variable IT (a) with the
property that E IT (a)2 = ||a||2. If we define the process I(a) by It(a) =
IT (a1(0,t]), then assertions (i)-(iv) of Proposition 6.1 are still valid. Further-
more, for any sequence (an) that converges in P to a limit a one also has the
convergence of IT (an) to IT (a) in L2(Ω,FT ,P).

Proof In all what follows the an are processes in S such that ||an−a|| → 0. We
will need the properties that also E (It(a

n)− It(a))2 → 0 and that E It(an)2 →
E It(a)2 for t ≤ T .

First we discuss the continuity property of I(a). Since all I(an) are contin-
uous, we expect the same for I(a). One easily obtains that E (It(a)− Is(a))2 =

E
∫ t
s
a(u)2 du, which implies already some form of continuity. To get that al-

most all sample paths are continuous, one needs results from probability that
we don’t discuss here, that imply uniform convergence of almost all paths of
I(an) to those of I(a).

To show that I(a) is a martingale we prove, analogous to Equation (A.12),
that E1AIt(a) = E1AIs(a) for all A ∈ Fs. We have

E1AIt(a) = E1A(It(a)− It(an)) + E1AIt(a
n)

= E1A(It(a)− It(an)) + E1AIs(a
n)

= E1A(It(a)− It(an)) + E1A(Is(a
n)− Is(a)) + E1AIs(a).

Application of the Cauchy-Schwarz inequality gives (E1A(It(a) − It(an)))2 ≤
E (It(a)−It(an))2, which tends to zero. Similarly, E1A(Is(a

n)−Is(a)) has limit
zero. So the first two terms on the right in the above display vanish.

We have seen above that It(a
n)
L2

→ It(a). But then also Is(a
n)
L2

→ Is(a)

and hence 1A(It(a
n) − Is(an))

L2

→ 1A(It(a) − Is(a)) for any event A, implying
E1A(It(a

n)− Is(an))2 → E1A(It(a)− Is(a))2. Moreover, as ||an − a|| → 0, we
also have ||an|| → ||a||. Therefore we have for any A ∈ Fs

E1A(It(a)− Is(a))2 = limE1A(It(a
n)− Is(an))2

= limE1A

∫ t

s

an(u)2 du

= E1A

∫ t

s

a(u)2 du.

This implies that

E [(It(a)− Is(a))2|Fs] = E [

∫ t

s

a(u)2 du|Fs].

That E IT (a)2 = E
∫ T

0
a(u)2 du now immediately follows. Linearity of the op-

erator IT on P follows similarly. The latter implies the last assertion of the
theorem. �
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Henceforth we denote the stochastic integral IT (a) by
∫ T

0
a(s) dW (s) and It(a)

by
∫ t

0
a(s) dW (s).

Example 6.6 Let us the integral
∫ T

0
W (s) dW (s). Take as approximations the

functions Wn of Example 6.3. Note that we have

||W −Wn||2 =

n∑
i=1

∫ ti

ti−1

E (W (t)−W (ti−1))2 dt

=

n∑
i=1

∫ t1

ti−1

(t− ti−1)dt

=
1

2

n∑
i=1

(ti − ti−1)2 → 0,

if the mesh of the subdivision tends to zero. Hence to get
∫ T

0
W (s) dW (s) we

have to compute the limit of the sum in Equation (6.5). But this we have done
in Section 2.3, when we discussed the quadratic variation of Brownian motion.
With this in mind we conclude∫ T

0

W (s) dW (s) =
1

2
W (T )2 − 1

2
T. (6.7)

By the properties of the Itô integral we know that E
∫ T

0
W (s) dW (s) = 0, which

also follows from the right hand side of (6.7).

We also need the quadratic variation of the process I(a).

Proposition 6.7 Let a ∈ P. The quadratic variation of I(a) over the interval

[0, t] is given by
∫ t

0
a(u)2 du.

Proof Consider first the case where a is piecewise constant. The result then
immediately follows from Proposition 2.6. Let now a ∈ P be arbitrary but
bounded (we omit the proof of the general case). Consider partitions 0 = tn0 <
· · · < tnn = t of [0, t] with mesh tending to zero and an the processes that are
constant on each of the intervals (tnk−1, t

n
k ] and equal to a(tnk−1). It holds that∫ t

0
(an(u))2 du →

∫ t
0
a(u)2 du a.s. and also E

∫ t
0
(an(u) − a(u))2 du → 0, since a

is bounded. Note that the latter implies E
∫ t

0
an(u)2 du→ E

∫ t
0
a(u)2 du.

We show, see (6.9) below, that the difference of Qn(a) =
∑
k(
∫ tnk
tnk−1

a dW )2

and
∫ t

0
an(u)2 du tends to zero in the L2-sense. First we write

Qn(a) =
∑
k

(

∫ tnk

tnk−1

(a− an) dW +
∑
k

∫ tnk

tnk−1

an dW )2.
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Next we write Qn(a) as the sum of the three terms

Qn(a− an) =
∑
k

(

∫ tnk

tnk−1

(a− an) dW )2,

Qn(an) =
∑
k

(

∫ tnk

tnk−1

an dW )2,

Cn = 2
∑
k

(

∫ tnk

tnk−1

(a− an) dW

∫ tnk

tnk−1

an dW.

The expectation EQn(a− an) tends to zero by Theorem 6.5 and Property (ii)
of Proposition 6.1, applied to a−an instead of a and s = 0. Below we will prove

Qn(an)
L2

→
∫ t

0

a(u)2 du, (6.8)

which implies Qn(an)
L1

→
∫ t

0
a(u)2 du and EQn(an)→ E

∫ t
0
a(u)2 du. Under the

assumption that this result holds, the expectation of |Cn| tends to zero by a
version of the Cauchy-Schwarz inequality,

(E |Cn|)2 ≤ EQn(a− an)EQn(an).

Let us therefore now focus on (6.8). It is sufficient to show

E (
∑
k

(

∫ tnk

tnk−1

an dW )2 −
∫ t

0

an(u)2 du)2 → 0, (6.9)

since we already established
∫ t

0
(an(u))2 du

L2

→
∫ t

0
a(u)2 du. The stochastic in-

tegral and the ordinary integral in this expression are actually sums and the
summation in (6.9) can be written as∑

k

an(tnk−1)2((∆Wn
k )2 −∆tnk ),

with ∆Wn
k = W (tnk ) − W (tnk−1) and ∆tnk = tnk − tnk−1. Since a is bounded,

by a constant C say, we have that the expectation in (6.9) is by application of
the Cauchy-Schwarz inequality for sums bounded by C4

∑
k E ((∆Wn

k )2−∆tnk )2

(check!), and we can finish as we did in the proof of Proposition 2.6.
Wrapping up, we have

Qn(a)−
∫ t

0

a(u)2 du = Qn(a− an) +

(
Qn(an)−

∫ t

0

a(u)2 du

)
+ Cn,

where all three summands tend to zero in L1. �

Remark 6.8 The Itô integral IT (a) can be shown to be also well defined for
the wider class of processes a that are adapted and piecewise continuous, and

satisfy
∫ T

0
a(s)2 ds < ∞ a.s. (there is no expectation here). In this case the

assertion of Proposition 6.7 holds too.
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A process X will be called a semimartingale if it can be written as X0 plus the
sum of the two integrals

∫ ·
0
a(s) dW (s) and

∫ ·
0
b(s) ds with a piecewise contin-

uous, E
∫ T

0
a(s)2 ds < ∞ (so a ∈ P) and b such that

∫ T
0
|b(s)|ds < ∞ for all

T > 0. So, a semimartingale can be decomposed as

X = X(0) +

∫ ·
0

b(s) ds+

∫ ·
0

a(s) dW (s). (6.10)

We need the following lemma.

Lemma 6.9 Let f and g be two continuous functions on an interval [0, T ]. As-
sume that f has finite variation over this interval and that g has finite quadratic
variation over this interval. Then the quadratic variation of f + g is equal to
the quadratic variation of g.

Consequently, if X is a semimartingale as in Equation (6.10), its quadratic
variation 〈X〉t over an interval [0, t] is given by

〈X〉t =

∫ t

0

a(s)2 ds.

Proof Exercise 6.7. �

A consequence of this lemma and Proposition 6.7 is that the decomposition of
a continuous semimartingale is unique (Exercise 6.8). Hence we can unambigu-
ously define the stochastic integral of a process h ∈ P w.r.t. the semimartingale
X as ∫ T

0

h(t) dX(t) =

∫ T

0

h(t)b(t) dt+

∫ T

0

h(t)a(t) dW (t), (6.11)

where the latter is the stochastic integral, and it is well-defined under the con-

dition E
∫ T

0
h(t)2a(t)2 dt < ∞. For Equation (6.11) we also use the shorthand

notation in stochastic differentials

h(t)dX(t) = h(t)b(t) dt+ h(t)a(t) dW (t). (6.12)

We close this section by mentioning that it is the preservation of the martingale
property that makes the Itô integral such a powerful tool from a probabilistic
point of view. This preservation is the consequence of the special structure of the
simple processes. There are however alternatives to the Itô integral, the most
prominent one being the Stratonovich integral. Contrary to the Itô integral,
Stratonovich integrals w.r.t. Brownian motion are in general not martingales,
see Exercise 6.12.

6.2 The Itô rule

Knowing how to understand the stochastic integral w.r.t. Brownian motion, we
can now develop the important calculus rules. The first one is the basis of all
the others to follow.

Lemma 6.10 Let f be a twice continuously differentiable function, such that

E
∫ T

0
f ′(W (t))2 dt and E

∫ T
0
f ′′(W (t))2 dt are both finite. Then f(W ) is a semi-

martingale and one has a.s.

f(W (T )) = f(W (0)) +

∫ T

0

f ′(W (t)) dW (t) +
1

2

∫ T

0

f ′′(W (t)) dt. (6.13)
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Proof (sketch) Let Π = {0 = t0 < · · · < tn = T} be a partition of [0, T ],
which we will make as fine as needed. We use a Taylor expansion to write
with ∆i = ti − ti−1, ∆Wi = W (ti) −W (ti−1) and W ∗i an appropriate convex
combination of W (ti) and W (ti−1).

f(W (T ))− f(W (0)) =

n∑
i=1

(f(W (ti)− f(W (ti−1))

=

n∑
i=1

f ′(W (ti−1))∆Wi +
1

2

n∑
i=1

f ′′(W ∗i )∆W 2
i . (6.14)

By properties of the stochastic integral the first term converges in L2(Ω,F ,P)

to
∫ T

0
f ′(W (t)) dW (t) if we make the partition finer and finer. The second term

we split as

1

2

n−1∑
i=0

f ′′(W ∗i )∆i +
1

2

n−1∑
i=0

f ′′(W ∗i )(∆W 2
i −∆i).

Here the first sum converges pathwise to the Riemann integral
∫ T

0
f ′′(W (t)) dt.

To treat the second one, we state that we can replace f ′′(W ∗i ) with fi =
f ′′(W (ti−1)), making an negligeble error only (without making this precise).
Below we shall use an argument like in the proof of Proposition 2.6, specifically
E (∆W 2

i −∆i)
2 = Var (∆W 2

i −∆i) = 2∆2
i . If we also assume that E f2

i <∞, we

have, by Cauchy-Schwarz again, E (
∑n−1
i=0 fi(∆W

2
i −∆i))

2 = 2
∑n
i=1 E f2

i ∆2
i ≤

2µ
∑n
i=1 E f2

i ∆i, where µ is the mesh of Π. Consider now a family of partitions

Π with µ → 0. Since
∑n
i=1 E f2

i ∆i → E
∫ T

0
f ′′(W (t))2 dt, which is finite by

assumption and µ → 0, we have E (
∑n−1
i=0 fi(∆W

2
i − ∆i))

2 → 0. This finishes
the sketch proof. �

Lemma 6.10 can be extended to functions f of two variables.

Lemma 6.11 Let f be a function of two variables t and x and suppose that f is
continuously differentiable w.r.t. t with partial derivative ft, twice continuously
differentiable function w.r.t. x with partial derivatives fx and fxx, such that

E
∫ T

0
fx(t,W (t))2 dt <∞. Then one has a.s.

f(T,W (T )) = f(0,W (0)) +

∫ T

0

ft(t,W (t)) dt

+

∫ T

0

fx(t,W (t)) dW (t) +
1

2

∫ T

0

fxx(t,W (t)) dt. (6.15)

Proof One can use the same techniques as in the proof of Lemma 6.10, again
based on a Taylor expansion but now for a function of two variables. We omit
the details. �

For Equation (6.15) we use, similar to (6.12) the abbreviation

df(t,W (t)) = ft(t,W (t)) dt+ fx(t,W (t)) dW (t) +
1

2
fxx(t,W (t)) dt. (6.16)
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Remark 6.12 The conditions involving finite expectations in lemmas 6.10 and
6.11 are rather annoying. It can be shown that these are actually not needed.
For this we need the notion of stopping times, which is not part of this course.

Now we are in the position to state a version of the stochastic chain rule.

Theorem 6.13 Let X(t) = f(t,W (t)) and Y (t) = g(t,X(t)) where f and g
are supposed to satisfy the appropriate differentiability conditions and that are
such that the (stochastic) integrals below are well-defined. Then X and Y are
semimartingales and it holds that

dY (t) = gt(t,X(t)) dt+ gx(t,X(t)) dX(t) +
1

2
gxx(t,X(t))fx(t,W (t))2 dt,

where the term with dX(t) has to be understood as a shorthand notation for
an expression like (6.12).

Proof Let h be the decomposition h(t, x) = g(t, f(t, x)). Compute the partial
derivatives of h, express them in those of f and g and use Equation (6.12). �

Now we have seen in Theorem 6.13 that functions and compositions of functions
of time and Brownian motion are again semimartingales, we can use Lemma 6.9
to compute the quadratic variation of X and Y as they appear in this theorem.

Proposition 6.14 Let X and Y be as in Theorem 6.13. Then X has quadratic
variation process given by 〈X〉t =

∫ t
0
fx(s,W (s))2 ds and Y has quadratic varia-

tion given by 〈Y 〉t =
∫ t

0
hx(s,W (s))2 ds, where h(t, x) ≡ g(t, f(t, x)). Moreover

these quadratic variations are related by 〈Y 〉t =
∫ t

0
gx(s,X(s))2 d〈X〉s.

Proof The expressions for 〈X〉t and 〈Y 〉t follow from Lemma 6.9. The rela-
tion between the two quadratic variation processes then immediately follows by
hx(s, x) = gx(s, f(x))fx(s, x). �

Corollary 6.15 In the situation of Theorem 6.13 we have

dY (t) = gt(t,X(t)) dt+ gx(t,X(t)) dX(t) +
1

2
gxx(t,X(t))d〈X〉t. (6.17)

Proof Just use the expression for 〈X〉t of Proposition 6.14. �

Corollary 6.15 can be shown to be generalized to the situation, where Y (t) =

g(A(t), X(t)) with A a process given by A(t) =
∫ t

0
a(s) ds, where a is a con-

tinuous process. We state, rather informally, the result and omit the proof.

Proposition 6.16 Let X be a semimartingale, A a process of the form A(t) =∫ t
0
a(s) ds and g a function that is supposed to satisfy the appropriate differentia-

bility conditions. Let Y be defined by Y (t) = g(A(t), X(t)). Assuming that the
(stochastic) integrals below are well-defined, we have that Y is a semimartingale
as well and

dY (t) = gt(A(t), X(t))a(t) dt

+ gx(A(t), X(t)) dX(t) +
1

2
gxx(A(t), X(t))d〈X〉t. (6.18)
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Example 6.17 We can apply Proposition 6.16 to the following interesting case.
Let X(t) be of the form X(t) = f(t,W (t)), A(t) =

∫ t
0
fx(s,W (s))2 ds, g(t, x) =

exp(x− 1
2 t) and Y (t) = g(A(t), X(t)). Then we have (check it yourself!)

Y (t) = Y (0) +

∫ t

0

Y (s) dX(s). (6.19)

If X(0) = 0, then one has

Y (t) = 1 +

∫ t

0

Y (s) dX(s). (6.20)

For processes X and Y that are related by Equation (6.20) we use the notation
Y = E(X). The process Y is said to be the Doléans exponential of X.

The Itô rules that we have given above, in particular (6.18) can be extended to
more dimensional semimartingales X. To give an example, take X = (X1, X2),
where X1 and X2 are semimartingales. Let Y (t) = f(t,X1(t), X2(t)), with f
having the appropriate continuous partial derivatives. The version of the Itô
formula for Y involves the quadratic covariation process 〈X1, X2〉. For T > 0,
and a partition Π = {0 = t0 < · · · < tn = T}, one considers

C(Π) =

n∑
i=1

(X1(ti)−X1(ti−1))(X2(ti)−X2(ti−1))

=:

n∑
i=1

∆X1,i∆X2,i

=
1

2

n∑
i=1

(
(∆X1,i + ∆X2,i)

2 −∆X2
1,i −∆X2

2,i

)
.

If C(Π) has a limit (in probability) for partitions Π with mesh tending to zero,
then this limit is denoted 〈X1, X2〉T , and one should have the relation

〈X1, X2〉T =
1

2
(〈X1 +X2〉T − 〈X1〉T − 〈X2〉T ) . (6.21)

Indeed, for semimartingales X1 and X2 this limit exists, and Equation (6.21) is
valid, the content of the next proposition.

Proposition 6.18 Let X1 and X2 be semimartingales with decompositions as
in (6.10) involving the processes ai and bi (i = 1, 2). Then 〈X1, X2〉T exists, it
satisfies (6.21) for any T > 0, and is explicitly given by

〈X1, X2〉T =

∫ T

0

a1(s)a2(s) ds.

Proof First we observe that, in analogy with Lemma 6.9, we can ignore the
ordinary integral. Following the proof of Proposition 6.7, we then replace the
Qn(a) there with C(Π) and mimic the remainder of the proof. Showing the
validity of (6.21) is straightforward. �
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Turning back to the multivariate setting Y (t) = f(t,X1(t), X2(t)), it holds that
Y is a semimartingale as well and in shorthand notation, where the arguments
t,X1(t) and X2(t) of the partial derivatives have been omitted for clarity of the
displayed formula, we have

dY (t) = ft dt+ fx1
dX1(t) + fx2

dX2(t)

+
1

2

(
fx1x1

d〈X1〉+ 2fx1x2
d〈X1, X2〉+ fx2x2

d〈X2〉
)
. (6.22)

We notice that we have seen already an instance of this formula, namely (6.18).
You check why! One special case deserves our attention.

Consider f(t, x1, x2) = x1x2. Then Equation (6.22) becomes the product
formula for semimartingales, see also Exercise 6.21. Omitting the time index,
we get

d(X1X2) = X1 dX2 +X2 dX1 + d〈X1, X2〉,

which is the shorthand version of

X1(t)X2(t)−X1(0)X2(0) =∫ t

0

X1(s) dX2(s) +

∫ t

0

X2(s) dX1(s) + 〈X1, X2〉t. (6.23)

This equation can be specialized further. Let X1 = X be an arbitrary semi-
martingale and X2 = A a semimartingale of the form A =

∫ ·
0
a(t) dt. It follows

that in this case one has (why?)

d(X(t)A(t)) = X(t)a(t) dt+A(t) dX(t). (6.24)

Check yourself that the result (6.19) also follows from (6.24).

Next we present some formal computations that facilitate the computations
of quadratic variation and quadratic covariation. The following multiplication
rules are useful, where W is a Brownian motion and X,X1, X2 are semimartin-
gales.

(dt)2 = 0

dt× dW (t) = 0

(dW (t))2 = dt

d〈X〉t = (dX(t))2

d〈X1, X2〉t = dX1(t)× dX2(t)

Note that all quantities above have no mathematical meaning, e.g. dt is not a
number, but is only used under the integral sign. Similar comments apply to
the other quantities, but as before they are also conveniently used in differential
notation. The justification of these multiplications can be traced back to the
computations in the proofs of all kinds of quadratic variations and covariations,
where we encountered expressions like sums of (X(ti)−X(ti−1))2, which looks
like (dX(t))2. The limit of such a sum was seen to be 〈X〉t, whose differential
is d〈X〉t.
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The usefulness of these rules is illustrated by consider semimartingales X1

and X2 as in Proposition 6.18. In differential notation, we have

dX1(t) = b1(t) dt+ a1(t) dW (t)

dX2(t) = b2(t) dt+ a2(t) dW (t).

With the above rule we find

d〈X1, X2〉t = dX1(t)× dX2(t)

= (b1(t) dt+ a1(t) dW (t))(b2(t) dt+ a2(t) dW (t))

= a1(t)a2(t) dt,

which we recognize as the result of Proposition 6.18 in differential form.

6.3 Girsanov’s theorem revisited

We have seen in Section 4 an absolutely continuous change of measure that trans-
formed a given Brownian motion in a Brownian motion with linear drift. In Ex-
ercise 4.12 an example was given of a change measure that transformed Brownian
motion in a Brownian motion with piecewise linear drift (and vice versa). In this

exercise we looked at the exponential of −
∑ ai

σ ∆Wi − 1
2

∫ T
0
a(s)2 ds. The sum

we now understand as − 1
σ

∫ T
0
a(s) dW (s). Having a closer look at this exercise,

we suspect that any random variable Z = exp(−
∫ T

0
a(s) dW (s)− 1

2

∫ T
0
a(s)2 ds)

with a ∈ P can be used to define a new probability measure Q with dQ
dP = Z.

However, at this point we have to be careful! Whatever the situation is, we can
always define a measure Q on FT by dQ = Z(T )dP, i.e. by Q(F ) = EP1F (T ).
But to have that Q is a probability measure, we need EPZ(T ) = 1. If a is a
non-random function in L2[0, T ], this follows from Exercise 6.10. But for ran-
dom processes a this is in general not true. In this section we will have a closer
look at Girsanov transformations.

Let us consider a simple process a ∈ S (in particular, a is bounded) and let us

look at Z(t) = exp(−
∫ t

0
a(s) dW (s)− 1

2

∫ t
0
a(s)2 ds). Application of the Itô rule

gives

Z(t) = 1−
∫ t

0

Z(s)a(s) dW (s). (6.25)

Using reconditioning properties of conditional expectation, one can show that
in this case the process Z is a martingale on [0, T ]. Moreover, one may show
that even EPZ(T )2 < ∞ for any bounded process a, Exercise 6.20. Observe
by the way, that we can use the Doléans exponential to write Z = E(Y ), with
Y = −

∫ ·
0
a(s) dW (s).

Next we look at a process a ∈ P and define, as above,

Z(t) = exp(−
∫ t

0

a(s) dW (s)− 1

2

∫ t

0

a(s)2 ds).

Without checking technical conditions, we simply apply the Itô rule again, to get
the same representation (6.25). It is in this case not clear whether Z is a mar-
tingale. For instance, if we have processes an ∈ S that converge to a w.r.t. the
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norm of Section 6.1 we have L2-convergence of the resulting stochastic integrals
IT (an) to IT (a). With Zn = E(Y n), Y n = −

∫ ·
0
an(s) dW (s), it is possible to

show that Zn(T ) converges to Z(T ) in probability, but this type of convergence
is too weak to conclude EPZ(T ) = 1. From Fatou’s lemma we can only deduce
that EPZ(T ) ≤ lim inf EPZ

n(T ) = 1. So we need stronger assumptions. Look
at Equation (6.25). To have that Z is a martingale, it is sufficient to impose

that aZ belongs to P (we then also have EP
∫ T

0
Z(s)2a(s)2 ds < ∞). But this

is equivalent to EPZ(T )2 <∞. So, from now on we assume that a is such that
this condition is satisfied. This condition is a bit unsatisfactory, because it is
not an explicit condition in terms of a only. On the other hand it is satisfied if
a is deterministic and in L2[0, T ], or if a is a simple process.

Theorem 6.19 Let a ∈ P, in particular EP
∫ T

0
a(t)2 dt < ∞ and let Z(t) =

exp
(
−
∫ t

0
a(s) dW (s)− 1

2

∫ t
0
a(s)2 ds

)
. Assume that EP

∫ T
0
a(t)2Z(t)2 dt < ∞.

Define the measure Q on FT by dQ = Z(T ) dP. Then Q is a probability measure

and the process WQ defined by WQ(t) = W (t)+
∫ t

0
a(s) ds is a Brownian motion

under Q for t ∈ [0, T ].

Proof First we show that Q is a probability measure, which follows as soon

as we know that EPZ(T ) = 1. From the assumption EP
∫ T

0
a(t)2Z(t)2 dt < ∞

and (6.25) we see that the process {Z(t), 0 ≤ t ≤ T} is a martingale and hence
EPZ(T ) = EPZ(0) = 1.

We next show that WQ is a Brownian motion under Q. For simplicity
we further assume in this proof that a is a bounded process, |a| ≤ K say.
Consider the sequence of an ∈ S that converges to a as in (6.6) in the proof
of Proposition 6.4. Then the an are also bounded by K, and by the Cauchy-

Schwarz inequality also E
∫ T

0
|an(s) − a(s)|ds → 0, hence

∫ T
0
|an(s) − a(s)|ds

converges to zero in P-probability, and then almost surely along a subsequence
(see Proposition A.2 for all relations between different modes of convergence);
this subsequence will henceforth be indexed by n again.

Put Zn(t) = exp
(
−
∫ t

0
an(s) dW (s)− 1

2

∫ t
0
an(s)2 ds

)
. In the present situa-

tion all EPZ
n(T )2 and EPZ(T )2 are finite. We will show that Zn(T ) converges

to Z(T ) in L2(Ω,FT ,P).
From Equation (6.25) and the analogous expression for Zn we obtain

Zn(T )− Z(T ) = −
∫ T

0

(an(t)Zn(t)− a(t)Z(t)) dW (t)

= −
∫ T

0

(an(t)− a(t))Z(t) dW (t)

−
∫ T

0

(Zn(t)− Z(t))an(t) dW (t).
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Hence we get, by the elementary inequality (a+ b)2 ≤ 2a2 + 2b2,

EP|Zn(T )− Z(T )|2 ≤ 2EP

∫ T

0

|an(t)− a(t)|2Z(t)2 dt

+ 2EP

∫ T

0

|Zn(t)− Z(t)|2an(t)2 dt

≤ 2EP

∫ T

0

|an(t)− a(t)|2Z(t)2 dt

+ 2K2EP

∫ T

0

|Zn(t)− Z(t)|2 dt.

If we write Fn(t) = EP|Zn(t) − Z(t)|2, An(T ) = 2EP
∫ T

0
|an(t) − a(t)|2Z(t)2 dt

and B = 2K2, then we have

Fn(T ) ≤ An(T ) +B

∫ T

0

Fn(t) dt. (6.26)

It follows from Gronwall’s inequality (Exercise 6.14) that we can deduce that
Fn(T ) ≤ An(T ) exp(BT ). So to achieve our aim, E P|Zn(T ) − Z(T )|2 → 0,
it is sufficient to show that An converges to zero, and this follows from the

dominated convergence theorem, because EP
∫ T

0
Z(t)2 dt <∞ (check this!).

Recall from Exercise 4.12 that under Qn we have that Wn defined by
Wn(t) = W (t) +

∫ t
0
an(s) ds is a Brownian motion. This means that any

event of the type En = {Wn(t1) ≤ x1, . . . ,W
n(tm) ≤ xm} has a station-

ary Qn-probability, i.e. Qn(En) is the same for all n. Let E = {WQ(t1) ≤
x1, . . . ,W

Q(tm) ≤ xm}. We will show that Q(E) is equal to Qn(En).
Consider

|Q(E)−Qn(En)| = EP|Z(T )1E − Zn(T )1En |
≤ EP|Z(T )(1E − 1En)|+ EP|Zn(T )− Z(T )|. (6.27)

The second term in (6.27) tends to zero, because of the just shown L2-conver-
gence of Zn(T ) to Z(T ), which implies L1-convergence. Since (along a subse-
quence) the 1En converge to 1E P-a.s. (Exercise 6.18), we can use a version of
the dominated convergence theorem to conclude, or see below, that also the first
term in (6.27) eventually vanishes, and hence Q(E) = Qn(En). The conclusion
is that WQ is a Brownian motion under Q. �

Remark 6.20 Instead of using dominated convergence at the end of the proof,
we can argue as follows. Write Dn = 1E−1En , and note that |Dn| ≤ 2 (actually
even |Dn| ≤ 1). Then, for any δ > 0,

EP|Z(T )(1E − 1En)| = EP|Z(T )Dn|1{|Dn|>δ} + EP|Z(T )Dn|1{|Dn|≤δ}
= 2EPZ(T )1{|Dn|>δ} + δ EPZ(T )

= 2
(
EPZ(T )2P(|Dn| > δ)

)1/2
+ δ.

Hence

lim sup
n→∞

EP|Z(T )(1E − 1En)| ≤ δ,

which yields the result, since δ is arbitrary.
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Remark 6.21 Crucial for the property of Q being a probability measure is the
requirement that EPZ(T ) = 1. A well known sufficient condition for this to

be true, weaker than the one in Theorem 6.19, is EP exp( 1
2

∫ T
0
a(s)2 ds) < ∞,

known as Novikov’s condition. This condition is sharp in the sense that if the
factor 1

2 in the exponent is replaced with α < 1
2 , counterexamples exist. The

condition is obviously satisfied if a is deterministic and
∫ T

0
a(s)2 ds <∞.

6.4 Exercises

6.1 Show that (the value of) the Itô integral of (6.3) doesn’t depend on the spe-
cific representation of the simple process a. Hint: If a(t) =

∑m
i=1 bi1(si−1,si](t)

is another representation, consider a(t) =
∑m
i=1

∑n
j=1 bi1(si−1,si]∩(tj−1,tj ](t).

6.2 Show the validity of Equation (6.4).

6.3 Here are some consequences of Example 6.3.

(a) Show Equality (6.5).

(b) What is the limit of its right hand side when the ti come from a sequence
of partitions of [0, T ] with mesh tending to zero? What is in the same
situation the limit of Wn(t)?

(c) What is the ‘reasonable’ value of
∫ T

0
W (s) dW (s)?

6.4 Prove the third assertion of Proposition 6.1

6.5 This exercise concerns Theorem 6.5.

(a) Show that IT (a) is a linear functional of a ∈ S.

(b) Show that IT (a) is a linear functional of a ∈ P.

(c) Consider the stochastic integrals It(a) with a ∈ P. Denote by 〈I(a)〉 the
quadratic variation process of I(a) (i.e. 〈I(a)〉t is the quadratic variation
of I(a) over the interval [0, t]). Show that I(a)2

t − 〈I(a)〉t, t ∈ [0, T ] is a
martingale.

6.6 Let M(t) =
∫ t

0
W (s) dW (s).

(a) Use Theorem 6.5 to show that M(t) and M(t)2 −
∫ t

0
W (s)2 ds (t ∈ [0, T ])

are martingales. See also Remark 6.2.

(b) Let A(t), t ∈ [0, T ], be an adapted positive process with piecewise contin-

uous paths and EA(t) <∞ for all t. Show/argue that E [
∫ t

0
A(u) du|Fs] =∫ s

0
A(u) du+

∫ t
s
E [A(u)|Fs] du, by using the definition of conditional expec-

tation. (You may use that for positive A(u) it holds that E
∫ T

0
A(u) du =∫ T

0
EA(u) du.)

(c) Show by a direct computation, not involving stochastic integration theory,

that M(t)2−
∫ t

0
W (s)2 ds (t ∈ [0, T ]) is a martingale. (Here it is often useful

to writeW (t) = (W (t)−W (s))+W (s) and thatW (t)−W (s) is independent
of Fs. Recall that EX4 = 3σ4 if X has the N(0, σ2) distribution.)

6.7 Prove Lemma 6.9 for the functions f and g.

6.8 Show that the semimartingale decomposition (6.10) is unique.

6.9 Compute from one of the Itô rules dZt in the following cases.
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(a) Zt = eaWt . Find a differential equation with EZt as solution.

(b) Zt = eaWt−bt. Show that Z is a martingale in the special case b = 1
2a

2.

(c) Zt = X2
t , for Xt = W 2

t − t.

6.10 Let σ be a piecewise continuous function (non-random!) on any interval

[0, t]. Let W be Brownian motion and put X(t) =
∫ t

0
σ(s) dW (s). Let Z(t) =

exp(iuX(t)), for fixed u ∈ R. Use the Itô rule to find

Z(t) = 1 +

∫ t

0

iuσ(s)Z(s) dW (s)− 1

2
u2

∫ t

0

σ(s)2Z(s) ds.

Use this equation to compute the characteristic function φ(u) = E exp(iuX(t)).
Deduce that X(t) is normally distributed and determine its expectation and
variance.

6.11 Let X be given by X(t) = exp(γt + σW (t)), with γ a constant and W
a Brownian motion. Find the semimartingale representation of X by using
the Itô rule and show that the quadratic variation process of X is given by
σ2
∫ t

0
X(u)2 du.

6.12 Consider a Brownian motion W and a partition 0 = tn0 < tn1 < · · · < tnn = t
of that [0, t] . Define for 0 ≤ α ≤ 1 the random variables

Sn(α) =

n∑
i=1

W(1−α)tni−1+αtni
(Wtni

−Wtni−1
).

(a) Show that for partitions whose mesh max{tni −tni−1 : i = 1, . . . n} converges
to 0, it holds that Sn(α) in L2-sense converges to J(α) with

J(α) =
1

2
W 2
t + (α− 1

2
)t.

[Remark: for α = 0 is J(α) the Itô integral
∫ t

0
Ws dWs and for α = 1

2 one
obtains what is known as the Stratonovich integral.]

(b) Put

S′n(α) =

n∑
i=1

(αWtni
+ (1− α)Wtni−1

)(Wtni
−Wtni−1

).

Show that Sn(α)′ in L2-sense converges to J(α).

6.13 Brownian motion W is, as we have seen, a continuous martingale with
quadratic variation process 〈W 〉t ≡ t. It is in fact the only continuous martingale
with this property, which can be shown as follows. Let M be such a martingale
(it is continuous, 〈M〉t ≡ t) and define for every λ ∈ R and s ≤ t the random
variables φ(s, t) = E [eiλ(M(t)−M(s))|Fs]. We have reached our goal as soon as

we can prove φ(s, t) = e−
1
2λ

2(t−s) (why?). Let Y (t) = eiλM(t).

(a) Use the Itô rule to get

Y (t)− Y (s) = iλ

∫ t

s

eiλM(u) dM(u)− 1

2
λ2

∫ t

s

eiλM(u) du.
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(b) Divide both sides of this equation by Y (s) and take conditional expectation

given Fs to arrive at the integral equation φ(s, t) = 1 − 1
2λ

2
∫ t
s
φ(s, u) du.

Solve this equation.

6.14 Let f : [0, T ] → [0,∞) satisfy the inequality f(t) ≤ a(t) + β
∫ t

0
f(s) ds,

with a an integrable function and β ≥ 0. Show Gronwall’s inequality, f(t) ≤
a(t) + β

∫ t
0
a(s)eβ(t−s) ds for all t ≤ T . If the function a is non-decreasing, then

f(t) ≤ a(t)eβt.

6.15 For two functions X and Y , their cross quadratic variation 〈X,Y 〉 over an
interval [0, T ] is defined as the limit of sums

∑
i(X(ti)−X(ti−1)(Y (ti)−Y (ti−1)

for partitions of [0, T ] with mesh tending to zero. Show that 〈X,Y 〉 = 0 if X
and Y are continuous, and Y has bounded (first order) variation over [0, T ].

6.16 Let X(t) = v(t,W (t)), where v ∈ C1,2(R+,R) and W is a Brownian
motion. Find conditions on v (in particular it should be the solution to a well
known PDE) in order that X is a martingale.

6.17 Proposition 6.4 also holds if we replace P by the larger class of processes
a that are continuous on finitely many intervals (si−1, si) with existing left and

right limits at the endpoints that may also be ±∞ and E
∫ T

0
a(s)2 ds < ∞.

Show this.

6.18 Show that 1En
P−a.s.→ 1E along a subsequence in the proof of Theorem 6.19.

6.19 Consider Example 6.17.

(a) Verify that Equation (6.19) is true.

(b) There is another way to arrive at (6.19) for a more general situation. Let
X be a semimartingale and 〈X〉 its quadratic variation process. Consider
the product Y (t) = exp(X(t)) exp(− 1

2 〈X〉t). Use the Itô product formula
to arrive at (6.19).

6.20 Let a be a bounded adapted piecewise continuous process and Z as in
Equation (6.25) for t ≤ T . Show that EZ(T )2 < ∞. Hint: write Z(T )2 =

E(U)T exp(
∫ T

0
a(s)2 ds) for some martingale U and E(U) its Doléans exponen-

tial.

6.21 Here you prove a version of Abel’s summation formula. Let (ak)k≥0 and
(bk)k≥0 be two sequences of real numbers. Then for all positive integers t one
has

atbt − a0b0 =

t∑
k=1

ak−1∆bk +

t∑
k=1

bk−1∆ak + 〈a, b〉t,

where 〈a, b〉t =
∑t
k=1 ∆ak∆bk. [Recognize the similarity with (6.23) (you may

want to think of partitions with vanishing mesh and of the definition of quadratic
covariation), and with (6.14) for f(x) = x2.]
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7 Applications of stochastic integrals in finance

The purpose of this section is to show how we can use the theory of stochastic
integration to say more on the models that we used in Section 5 to describe
the evolution of the stock price. Furthermore we discuss again self-financing
portfolios. We will present here another definition of a self-financing portfolio,
which encompasses the definition in Section 5.2 as a special case. We will also
return to hedging, and show that is possible to hedge certain composite claims,
namely those whose pay-off depends on S(T ) and on the integral of S from the
initial time to the time of maturity T .

7.1 The models

Consider the stock price process S and the representation under the equivalent
martingale measure Q as given by Equation (5.1). Let f(t, x) = s exp(σx+ (r−
1
2σ

2)t). Then S(t) = f(t,WQ(t)). Using Lemma 6.11, we obtain the following
stochastic differential representation of S, of which we have seen a discrete time
analogue in Equation (1.29),

dS(t) = rS(t) dt+ σS(t) dWQ(t). (7.1)

We could do the same for the representation of S under the ‘physical’ probability
measure P (the one that is supposed to model the ‘true’ dynamics of the stock
price) with some a ∈ P (see Equation (5.3) with the process a there replaced
by a− 1

2σ
2) to obtain

dS(t) = a(t)S(t) dt+ σS(t) dW P(t). (7.2)

The (somewhat artificial) measure Q will be used for pricing. If we let S̄(t) be
the discounted price, S̄(t) = e−rtS(t), we obtain from (7.1) by application of
the (Itô) product rule

S̄(t) = S(0) + σ

∫ t

0

S̄(u) dWQ(u). (7.3)

Hence the process S̄ = {S̄(t), t ∈ [0, T ]} is a martingale under Q.
We use Girsanov’s theorem 6.19 to see that we can deduce Equation (7.2)

from Equation (7.1) and vice versa. In order to do so we have to find the Radon-
Nikodym derivatives dP/dQ and dQ/dP (as always, Q and P restricted to FT ).
Indeed, with

dQ
dP

= exp(−
∫ T

0

a(t)− r
σ

dW P(t)− 1

2

∫ T

0

(
r − a(t)

σ
)2 dt), (7.4)

and

dP
dQ

= exp(−
∫ T

0

r − a(t)

σ
dWQ(t)− 1

2

∫ T

0

(
a(t)− r

σ
)2 dt), (7.5)

we have the relation W P(t) = WQ(t) −
∫ t

0
a(s)−r
σ ds. Of course we take a such

that the stochastic integrals in (7.4) and in (7.5) are well defined. Note that
the probability measures P and Q are equivalent on FT . In Corollary 4.3 we
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have seen this for constant functions a. Note that a consequence of Girsanov’s
theorem is that the martingale parts in the equations for S, the terms with the
two Brownian motions have the same coefficients, whereas the coefficients of the
parts with dt differ.

Remark 7.1 The quantity a(t)−r
σ in the expression for dQ

dP is known as the
market price of risk, a standardized excess rate of return over the risk-free rate
r. We will see an analog of this in the next chapter for stochastic interest rate
models.

In Section 1.2 we also considered the cumulative return process. We found in
Proposition 1.10 a limit process R that was such that under the measure Q all
increments R(t) − R(s) have a normal N(r(t − s), σ2(t − s)) distribution for
t > s. This suggest to model R as a Brownian motion with drift, so

R(t) = R(0) + rt+ σWQ(t).

Likewise we can model R under the probability measure P as

R(t) = R(0) +

∫ t

0

a(s) ds+ σW P(t).

Note that the Radon-Nikodym derivatives in (7.4) and in (7.5) transform the
two representation for R in each other. Compare the equations for S and R to
obtain both under the measures P and Q (like Equation (1.5) in discrete time)

dS(t) = S(t) dR(t). (7.6)

Hence we can express S in terms of R using the Doléans exponential by the
relation S = S(0)E(R), both under P and Q. Note the similarity with the
discrete time expression (1.6).

Recall that we took for the bond price process B(t) = ert, so

dB(t) = rB(t) dt. (7.7)

We observe the similarity of the dt terms in equations (7.1) and (7.7). Calling
a(t) in Equation (7.2) the rate of return of S under P and similarly r the rate
of return of S under Q, then we see that the rate of return of S under Q is
just equal to the interest rate, the rate of return of the riskless asset, the bond.
So we can characterize Q as the probability measure that gives the stock the
same rate of return as the riskless asset. Because of this, Q is also called the
risk neutral probability measure. The alternative name equivalent martingale
measure is explained by noting that Q and P have been seen to be equivalent
probability measures and that the discounted price process S̄ is a martingale
under Q.

7.2 Self-financing portfolios and hedging

Consider a portfolio process (xt, yt) with value process V , so V (t) = xtS(t) +
ytB(t). Let us assume that V is a continuous semimartingale under the proba-
bility measure P, so that we can speak of the stochastic differential of V . This
allows us to formulate the definition of self-financing portfolios in a way that is
the natural counterpart in continuous time of Equations (1.2) and (1.3), unlike
the somewhat artificial Definition 5.1.
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Definition 7.2 A portfolio process is called self-financing if it satisfies the in-

tegrability condition EQ
∫ T

0
x(u)2S(u)2 du < ∞ and if we have for all t ∈ [0, T ]

P-almost surely (and hence Q-almost surely)

V (t) = V (0) +

∫ t

0

xu dS(u) +

∫ t

0

yu dB(u).

Like in discrete time, it is possible to show that this definition can equivalently
be stated in terms of discounted processes. Let V̄ (t) = e−rtV (t), t ∈ [0, T ]. We
have

Proposition 7.3 A portfolio process is self-financing iff we have for all t ∈ [0, T ]

almost surely V̄ (t) = V (0) +
∫ t

0
xu dS̄(u). A self-financing portfolio process is

therefore such that the process V̄ is a martingale under Q.

Proof Exercise 7.1. �

Remark 7.4 Note that for Definition 7.2 and Proposition 7.3 we need the
stochastic integrals

∫ t
0
xu dS(u) and

∫ t
0
xu dS̄(u). Compare this to Definition 5.1

where we needed a special form of the value process V , because stochastic
integrals had not been introduced yet. Proposition 7.3 also tells us that the
discounted value process of a self-financing portfolio is a martingale under Q
and EQV̄ (T )2 <∞.

Let us turn to arbitrage portfolios. By definition these are self-financing and such
that the corresponding value process V satisfies P(V (0) = 0) = 1, P(V (T ) ≥
0) = 1 and P(V (T ) > 0) > 0. Clearly, we can equivalently rephrase the latter
three conditions in terms of the discounted valued process V̄ , P(V̄ (0) = 0) = 1,
P(V̄ (T ) ≥ 0) = 1 and P(V̄ (T ) > 0) > 0. As before, a market is arbitrage free, if
no arbitrage portfolios exist. We have the following corollary to Proposition 7.3,
whose proof now relies on Definition 7.2. This corollary, as well as the next one,
we have already encountered in Section 5, albeit in a different setting since
stochastic integrals had not yet been defined.

Corollary 7.5 Consider the market as described by Equation (7.2). Assume
that there exists an equivalent martingale measure Q. Then this market is
arbitrage free.

Proof Consider a self-financing portfolio. According to Proposition 7.3, its dis-
counted value process is a martingale under Q and hence EQV̄ (T ) = EQV̄ (0). If
the portfolio would be an arbitrage portfolio, then we would have by equivalence
of P and Q that Q(V̄ (0) = 0) = 1. But then we would have EQV̄ (0) = 0 and
then also EQV̄ (T ) = 0, which is impossible since we also have Q(V̄ (T ) ≥ 0) = 1
and Q(V̄ (T ) > 0) > 0. �

The next proposition says that any process that is a martingale can be seen as
the value process of a self-financing portfolio in the sense of Definition 7.2, if we
restrict the class of martingales under consideration.

Proposition 7.6 Let a process V̄ be a martingale under Q and suppose that
there exists a function v̄ ∈ C1,2 such that V̄ (t) = v̄(t, S̄(t)). Then the portfolio
defined by xt = v̄x(t, S̄(t)) and yt = V̄ (t) − xtS̄(t) is self-financing and its
discounted value process is just V̄ .
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Proof We exploit again the martingale property of V̄ . Apply Theorem 6.13 to
V̄ and use Equation (7.3). We obtain

dV̄ (t) = v̄t(t, S̄(t)) dt+ v̄x(t, S̄(t)) dS̄(t) +
1

2
v̄xx(t, S̄(t)) d〈S̄〉t

= v̄t(t, S̄(t))dt+ v̄x(t, S̄(t))σS̄(t) dWQ(t) +
1

2
v̄xx(t, S̄(t))σ2S̄(t)2dt.

In this equation the collected terms ending with dt vanish, because V̄ is a
martingale. Hence we are left with dV̄ (t) = v̄x(t, S̄(t)) dS̄(t). So, choosing xt
as v̄x(t, S̄(t)) and yt as yt = V̄ (t) − xtS̄(t), we get that V̄ is the discounted
value process associated with this portfolio and that the portfolio process is self
financing in view of Proposition 7.3. �

Proposition 7.6 has as an immediate consequence that every simple claim can
be hedged.

Corollary 7.7 Every simple claim X = F (S(T )) with EQ|X| < ∞ can be
hedged by a self-financing portfolio.

Proof Let X̄ = e−rTX. By the Markov property of S̄ (under Q), there exists a
function v̄ such that the martingale EQ[X̄|Ft] can be written as v̄(t, S̄(t)). Since
v̄(T, S̄(T )) = X̄ the proof is completed by invoking Proposition 7.6. �

The Itô calculus can also be used to find hedging strategies for certain composite
claims. These claims are of the following special structure. They depend on
S(T ) and a certain integral of transformations of S. An example of such a
claim is the Asian call option with maturity time T and strike price K, which

is the claim defined as the one whose pay-off is ( 1
T

∫ T
0
S(t) dt−K)+.

Let U(t) =
∫ t

0
g(u, S(u)) du with some given function g : R2 → R. As-

sume that U(t) is well defined for all t and consider the claim F (S(T ), U(T )).
Suppose that it is possible to hedge this claim (with a self-financing portfo-
lio). In that case the discounted value of the portfolio is equal to the dis-
counted price process of the claim and so it must be a martingale. We thus
have V̄ (t) = EQ[F̄ (S(T ), U(T ))|Ft]. It would be nice if we could write V̄ (t) =
e−rtV (t) with V (t) = v(t, S(t), U(t)) for some function v, and indeed this is
what happens. To understand this we argue as follows, just like we did for
simple claims. Consider the computation of the conditional expectation of

F (S(T ),
∫ T

0
g(u, S(u)) du. We decompose as follows. S(T ) = S(T )

S(t) S(t) and∫ T
0
g(u, S(u)) du =

∫ t
0
g(u, S(u)) du+

∫ T
t
g(u, S(u)) du.

Given Ft we completely know in the latter expression the first summand,

which is just U(t). The second summand we write as
∫ T
t
g(u, S(u)

S(t) S(t)) du. Now

we exploit the independence under Q of S(u)
S(t) and the whole past of S up to t

(a consequence of the independent increment property of a Brownian motion).
Carrying out the conditional expectation with values S(t) = s and U(t) = u
then leaves us with the unconditional expectation

EQF (
S(T )

S(t)
s, u+

∫ T

t

g(u,
S(u)

S(t)
s) du) =: v(t, s, u),

an expression in terms of s and u, just what we desired. Can we characterize
this expression? Yes, like for simple claims we have that v is the solution of
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a partial differential equation with a boundary condition. We now state the
result.

Theorem 7.8 Let v, a sufficiently smooth function of t, x, u (here t ∈ [0, T ],
x ≥ 0, u ∈ R) be the solution of the partial differential equation

vt(t, x, u) + xrvx(t, x, u)

+
1

2
σ2x2vxx(t, x, u) + g(t, x)vu(t, x, u)− rv(t, x, u) = 0, (7.8)

with boundary condition v(T, x, u) = F (x, u). The portfolio consisting of xt =
vx(t, S(t), U(t)) and yt = (v(t, S(t), U(t)) − xtS(t))e−rt is self-financing and
hedges the claim F (S(T ), U(T )). The fair price of the claim at time t is V (t) =
v(t, S(t), U(t)).

Proof We apply the multi-dimensional version of the Itô formula to the process
V (t) = v(t, S(t), U(t)). We get, omitting the arguments t, S(t) and U(t) in v
and g, in shorthand notation

dV (t) = vt dt+ vx dS(t) + vu dU(t) +
1

2
vxx d〈S〉t

= vt dt+ vx rS(t) dt+ vx σS(t) dWQ(t) + vu g dt+
1

2
vxx σ

2S(t)2 dt

= rV (t) dt+ vx σS(t) dWQ(t),

where we used in the last equality that v was a solution of (7.8). Hence the
discounted value process V̄ , recall that V̄ (t) = e−rtV (t), satisfies

dV̄ (t) = −rV̄ (t) dt+ e−rtdV (t) (7.9)

= e−rtvx σS(t) dWQ(t) (7.10)

= vx dS̄(t). (7.11)

So if we define x and y as in the assertion of the theorem, we get V̄ (t) =
xtS̄(t)+yt, the discounted value process of the portfolio, and dV̄ (t) = xtdS̄(t), so
that the portfolio is self-financing. From the boundary condition on v we obtain
v(T, S(T ), U(T )) = F (S(T ), U(T )), this portfolio is thus a hedging portfolio for
the claim F (S(T ), U(T )). �

As a corollary to Theorem 7.8 we get

Corollary 7.9 Every claim F (S(T ), U(T )) that satisfies an appropriate inte-
grability condition can be hedged. The hedging portfolio is given in Theo-
rem 7.8.

Proof Similar to that of Corollary 7.7, using Theorem 7.8. �

7.3 More general claims

We have seen above that we can hedge certain composite claims, but they had
a special structure. Recall from Section 1 that we called a market complete if
every claim can be hedged. We ask ourselves whether the Black-Scholes market
is complete, and if it is, how for a given claim the hedge portfolio would look
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like. The answer is affirmative, although one has to put some mild technical
restrictions on the claim under consideration. Recall that W = W P is a Brow-
nian motion under P. A most effective one is to demand that a claim X has
finite second moment under Q. Under that condition, as we shall see below, any
FT = FWT -measurable claim, not only simple ones, can be hedged.

This fact is a consequence of the martingale representation theorem (MRT),
a non-trivial result in probability theory, that says that for any martingale M
(under P!) that is adapted to the Brownian filtration FW = {FWt , t ∈ [0, T ]},
where FWt = σ(Ws, s ≤ t), and that satisfies EM(T )2 <∞, an adapted process

φ satisfying E
∫ T

0
φ2
u du can be found such that

M(t) = M(0) +

∫ t

0

φu dW (u), t ∈ [0, T ]. (7.12)

As we have seen M̃(t) := EQ[e−rTX|Ft] gives a martingale under Q. We’d like
to apply the MRT, but the first problem is that here we don’t have a martingale
under P. This could be circumvented by a change of notation (replace P with
Q), but then the second problem shows up: the Ft are generated by W , and
although WQ is adapted to the Ft, it is in general not true that Ft equals
σ(WQ(s), s ≤ t), but only Ft ⊃ σ(WQ(s), s ≤ t). Yet, the two filtrations
coincide, and the problem disappears, in the important case where W (t) and
WQ(t) differ by a nonrandom quantity, like in (4.7). See Exercise 7.9 for a way
out in the general case. This leads to

Proposition 7.10 Let X be an FT = FWT -measurable claim with EQX
2 <∞.

Then there exists an adapted process φ̄ such that

V̄ (t) := EQ[e−rTX|Ft] = V̄ (0) +

∫ t

0

φ̄u dS̄(u), t ∈ [0, T ].

Moreover, choosing xt = φ̄t and yt = V̄ (t)−xtS̄t yields a self-financing hedging
strategy of X and V̄ is the discounted value process of the claim X.

Proof Apply the result of Exercise 7.9 to get an adapted process φ̃ such that

V̄ (t) = V̄ (0) +

∫ t

0

φ̃u dWQ(u)

Recall that dS̄(t) = σS̄(t) dWQ(t), so that one can write

V̄ (t) = V̄ (0) +

∫ t

0

φ̃u
σS̄(u)

dS̄(u).

Choose then φ̄t = φ̃t
σS̄(t)

. �

In general, the process φ̃ (like φ) is hard to characterize. There is usually no
partial differential equation that has the value process of the portfolio as a so-
lution. There is, however a theoretical description of xt in terms of what is
called a Malliavin derivative. This again touches upon a very advanced math-
ematical theory. However in discrete time we also encountered this derivative,
when we described for the CRR market xn as DVn

DSn
, see (5.6), which also had

an interpretation as some sort of derivative. In the continuous time case, as we
said, the situation is much more complex, although it is indeed possible to give
a meaning to the formal expression xt = DV

DS (t).
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7.4 American style claims

In this section we briefly treat one example of an American claim, the American
call option with maturity T and strike price K. The pay-off of this claim at a
by the investor chosen time τ ≤ T is (S(τ) −K)+. The (random) time τ may
assume any value between 0 and T and may depend on the random evolution
of the stock price, τ thus becomes a random variable, but has to be chosen such
that only past information of the stock price is used. So, we require that for
any t ≤ T the event {τ ≤ t} depends on the values of S at times s ≤ t only.
In technical terms, given a filtration, we require for all t ∈ [0, T ] that the event
{τ ≤ t} is Ft-measurable, and when this is true, τ is called a stopping time.
Note that any deterministic τ is a stopping time, because then, for any t, the
event {τ ≤ t} is either ∅ or Ω; both sets belong to any σ-algebra.

What is ‘American’ in this case is that the owner of the claim doesn’t have
to wait to maturity to exercise it, but may do it at any time before it, when
it seems profitable. The problem here becomes to find a strategy that tells
an investor when to exercise the claim. For an arbitrary claim X (not only a
call option), technically speaking, one wants to maximize EQe

−rτX, which is
by definition the value at time t = 0 of the claim when exercised at τ , where
τ runs through the set of stopping times bounded by T . So the problem is
finding supτ EQe

−rτX, and a maximizer τ∗ (suppose it exists) is then called
the optimal stopping time, or optimal exercise time. This is an example of an
optimal stopping problem.

Problems of this type are hard to solve. But in the special case of a call
option we can, and the answer is at first glance rather surprising: the optimal
strategy is to wait until maturity! As a result, the value of the American claim
is thus the same as that of its European version with same maturity time and
same strike price, although the owner of the European claim has no freedom
to choose himself an appropriate moment to exercise it. Let us see why this
equivalence takes place.

Let us denote the price of the American option at t by CA(t) and the price of
the corresponding European option by CE(t). Clearly one should have CA(t) ≥
CE(t) for all t. For simplicity we show this for t = 0. The value of the American
claim is CA(0) = supτ EQe

−rτX, which is greater than CE(0) = EQe
−rTX, as

the deterministic time T is also a stopping time. Hence CA(t) ≥ CE(t) for t = 0.
Consider a market with interest rate r > 0. We compare two financial

products traded at time t. The first one is a portfolio that consists of 1 share
of the stock and a loan with value K from the bank that has to be paid back
at time T . At time t the loan thus has value e−r(T−t)K. The total value of
this portfolio at time t is thus S(t) − e−r(T−t)K. The other product is one
European call option with payoff (S(T )−K)+, whose value at t is thus CE(t).
We compare the values of the two products at time T . They are S(T ) − K
and CE(T ) = (S(T ) − K)+, respectively and we have the obvious inequality
S(T )−K ≤ CE(T ). But then this inequality between the two values is preserved
at any time t < T and we get S(t) −Ke−r(T−t) ≤ CE(t). Hence we also have
the strict inequality S(t)−K < CE(t) ≤ CA(t). Now suppose the owner of an
American call wants to exercise his option at the chosen time τ = t < T , he
will only do this when S(t) > K, and will then be paid S(t)−K and thus gets
less than the value of the American call. This means that it is not profitable
for him to exercise the option before maturity. So the optimal time to exercise
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the American claim is τ = T and hence the value CA(t) of the American claim
is equal to the value CE(t) of the European claim, CA(t) = CE(t).

This surprising result has no counterpart for the American put option. It is
possible to show that the value of an American put is strictly larger than the
value of the European put. It is interesting to see why an argument similar to
the one we used for a call option breaks down in this case (Exercise 7.10).

7.5 The Greeks

Starting point of this section is the Black-Scholes formula (1.27) for the price of
a European call option. Clearly, it depends on a number of parameters. We shall
investigate the sensitivity of the price w.r.t. these parameters. By this we mean
that we shall quantify how small changes in the parameter result in the price
of a European call. Not surprisingly, we can express these in terms of partial
derivatives and these are known as the ‘Greeks’. We write C = C(t, s, r, σ) (here
s is the value of S(t)) for the expression (1.27) and abbreviate the di(t, x) by
di. Note that these two quantities depend on t, s, r, σ too. Now we introduce
the following sensitivity parameters, or sensitivity measures.

∆ =
∂C

∂s
(delta),

Γ =
∂2C

∂s2
(gamma),

ρ =
∂C

∂r
(rho),

Θ =
∂C

∂t
(theta),

V =
∂C

∂σ
(vega).

Of course, the ‘Greeks’ in turn depend on all parameters as well, see Proposi-
tion 7.11, but for reasons of clarity we suppress this in the notation. In principle
it is possible to define similar sensitivity measures for prices of other derivatives
as well. Below we confine ourselves to formulas for call options, because we can
give explicit expressions for them. The result is the following proposition.

Proposition 7.11 Let φ be the density of the standard normal distribution
and Φ its distribution function. The following hold.

∆ = Φ(d1)

Γ =
φ(d1)

sσ
√
T − t

ρ = K(T − t)e−r(T−t)Φ(d2)

Θ = − sφ(d1)σ

2
√
T − t

− rKe−r(T−t)Φ(d2)

V = sφ(d1)
√
T − t.

Proof Exercise 7.11. �
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For a number of reasons it may be attractive to manage portfolios that are not
sensitive, also called neutral, to one or more quantities like stock price or volatil-
ity. The corresponding partial derivatives then have to be (close to) zero. In
general, for a given portfolio this will not be the case of course, but sometimes
an extension of the portfolio with an additional derivative may accomplish it.
Suppose we have a portfolio with value V (depending on some relevant quanti-
ties), not necessarily a hedge portfolio of a certain claim, and we wish to make
it ∆-neutral by addition of z units of a product having value D. The resulting
new value is delta-neutral if

0 =
∂V

∂s
+ z

∂D

∂s
.

It follows that we should choose z = −∆V

∆D
, in self-evident notation. In practice,

adopting this as a basis for a trading strategy, is not always attractive, since one
has to re-balance the portfolio at every time to keep it ∆-neutral. Moreover, if
the delta of the portfolio itself is subject to big changes (a big value for Γ, Γ is
always positive), the result at any time will be major adjustments of the portfolio
(z depends on t). This may lead to high transactions costs (which we have
completely ignored before) in practice. In such a situation, one may extend the
portfolio with yet another product in order to accomplish Γ-neutrality. It turns
out a good idea to take the underlying stock as this extra product. Supposing
we buy an extra w shares, we require the two following equations to hold.

∂V

∂s
+ z

∂D

∂s
+ w

∂s

∂s
= 0

∂2V

∂s2
+ z

∂2D

∂s2
+ w

∂2s

∂s2
= 0.

Solving this system of equations (using that ∂s
∂s = 1 and ∂2s

∂s2 = 0) results in
(again in self-evident notation)

z = −ΓV
ΓD

w =
ΓV
ΓD

∆D −∆V .

And the story doesn’t end here . . .

7.6 Exercises

7.1 Prove Proposition 7.3.

7.2 Consider the Black-Scholes market with claim
∫ T

0
S(u) du.

(a) Show that the fair price of this claim at time t is given by V (t) with

V (t) = er(t−T )U(t)+S(t) 1−er(t−T )

r , where U(t) =
∫ t

0
S(u) du and r 6= 0 the

interest rate. What is V (t) if r = 0?

(b) Write V (t) as v(t, S(t), U(t)) and determine a partial differential equation
for v.

(c) Find the hedge strategy for this claim.
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7.3 Consider in a Black-Scholes market a European call and a European put
option. Denote by Ct the price at time t ≤ T of the call and by Pt the price of
the put. Derive the put-call parity Ct − Pt = St − er(t−T )K.

7.4 Consider the price of a European call option in the Black Scholes market.
One has V (t) = C(t, S(t)) with C as in Equation (1.27). Show by direct applica-
tion of the Itô formula that V satisfies the SDE dV (t) = rV (t) dt+g(t) dWQ(t),
where you also specify what g(t) is.

7.5 Consider the Black-Scholes market. Let V be the value process of a simple
claim. Show that there exists a process g such that V satisfies

dV (t) = rV (t)dt+ g(t) dWQ(t).

7.6 Consider in a Black-Scholes market the claim F (S(T )) = K1(a,b)(S(T ))
(this is called a binary spread). Determine for each time t ≤ T the fair price
of this claim. Give also a PDE with boundary condition that is satisfied by the
price function (as a function of t and S(t)).

7.7 Consider a straddle in the Black-Scholes market. A straddle is a claim with
pay-off at maturity equal to X = |S(T )−K|. Find the price of this claim at any
time t ≤ T . This claim can also be hedged with a constant portfolio that not only
consists of shares and bonds, but contains as a third component European call
options as well. Give this portfolio. Find also a PDE with boundary condition
that is satisfied by the price function (as a function of t and S(t)).

7.8 Consider in the Black-Scholes market a bull-spread. This is a claim with pay-
off min{max{S(T ), A}, B}, where B > A > 0. Like a straddle (Exercise 7.7),
also this claim can be hedged with a constant portfolio consisting of stocks,
bonds and European call options. Find this portfolio and the price process of
the bull-spread. Give also a PDE with boundary condition that is satisfied by
the price function (as a function of t and S(t)).

7.9 The setting is as in Section 7.3. Let V be a martingale under Q, and Z
the density process. The latter means that Z(t) can be written, a bit similar
too (7.4), as Z = E(−

∫ ·
0
b(t) dW P(t)) for an appropriate process b. Note that

dZ(t) = −Z(t)b(t) dW P(t).

(a) Show that M defined by M(t) = V (t)Z(t) is a martingale under P. [Propo-
sition 4.5 is useful here.]

(b) Apply the MRT to write M(t) = V (0) +
∫ t

0
φu dW P(u), and show that one

can also write V (t) = V (0) +
∫ t

0
φ̃u dW (u). To do that you need the Itô

product rule (6.23) and rules for computing quadratic covariation. Express
φ̃u in terms of φu and Z(u).

7.10 Show that an argument similar to the proof of the equivalence of American
and European call options (comparing a simple portfolio with a European call
option) breaks down if we apply it to American and European put options.

7.11 First show (φ denotes the density of the standard normal distribution)

sφ(d1)−Ke−r(T−t)φ(d2) = 0,

and use this to derive the expressions for the Greeks in Proposition 7.11.
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7.12 Compute the Greeks for the forward contract with payoff S(T )−K in the
Black Scholes model.

7.13 Compute the Greeks for a European put option (payoff (K − S(T ))+) in
the Black Scholes model. You may use the results of Proposition 7.11.

7.14 Here you prove the converse of Theorem 7.8. Suppose (the context of the
theorem applies) that a claim F (S(T ), Z(T )) can be hedged by a self-financing
portfolio with value process V if the type V (t) = v(t, S(t), Z(t)), where v is
sufficiently differentiable. Show that v satisfies Equation (7.8).

7.15 Consider Proposition 7.6. Show that the function v̄ satisfies the PDE
(3.11) for x > 0 and t ≥ 0. If V̄ is the discounted price process of a (hedgeable)
claim F (ST ), what is the boundary condition for v̄(T, x)?

7.16 The result of Equation (7.12) is not constructive, it is not told how to
construct the process φ from the given Brownian martingale M . In the following
cases you have to find an explicit expression for φu for u ∈ [0, T ].

(a) Mt = W 3
t − c

∫ t
0
Ws ds for a suitable constant c (which one?).

(b) For some fixed time T we have Mt = E[eWT |Ft].
(c) For some fixed time T we take Mt = E[

∫ T
0
Ws ds|Ft].

(d) If v is a solution to the backward heat equation

∂v

∂t
(t, x) +

1

2

∂v

∂x2
(t, x) = 0,

then Mt = v(t,Wt) is a martingale. Show this to be true under a to be
specified integrability condition. Give also two examples of a martingale
M that can be written in this form.

(e) Suppose a square integrable martingale M is of the form Mt = v(t,Wt),
where W is a standard Brownian motion and v : R2 → R is continuously
differentiable in the first variable and twice continuously differentiable in
the second variable. Show that v satisfies the backward heat equation.
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8 Interest rate models, a swift introduction

In this section we focus on stochastic interest rate models in continuous time.
Until now we always assumed that the interest rate was a constant r, also
called short rate. This assumption will be relaxed and we will study some
consequences. We also present a set of different interest rate notions, of which
the short rate is one example.

8.1 Some general theory

To start, we consider a zero coupon bond with maturity time T > 0. The value
of this product at maturity is fixed at 1 (euro). For t ∈ [0, T ] we denote by
P (t, T ) the (fair) price of this bond at time t. Note that P (T, T ) = 1. As before
we denote by B(t) the bank account at time t. The fair price of the bond at time
t can then be computed just as before when considering the pricing of claims.
Assuming that we have a filtration and that an equivalent martingale measure
Q exists, we get P (t, T ) = B(t)E Q[ 1

B(T ) |Ft].
In the situation that we treated before, r is a constant, we simply get

P (t, T ) = exp(−r(T − t)). This simple expression will radically change if we
make r time dependent and random. As a consequence {P (t, T ), t ∈ [0, T ]}
will become an adapted random process. For fixed t the random mapping
T 7→ P (t, T ) is called the term structure of the bond, also called the discount
curve. Typically this curve turns out to be a smooth function of T , whereas the
dependence of P (t, T ) on t is that of a diffusion process.

The continuously compounded short rate for [t, T ] is

R(t, T ) = − logP (t, T )

T − t
.

The instantaneous forward rate with maturity T prevailing at time t is defined
as (the derivative is assumed to exist)

f(t, T ) = − ∂

∂T
logP (t, T ),

where the derivative is assumed to exist. The function T 7→ f(t, T ) is called the
forward curve at time t. Note that it holds that

P (t, T ) = exp(−
∫ T

t

f(t, s) ds), (8.1)

since P (T, T ) = 1. The instantaneous short rate at time t is defined as

r(t) := f(t, t) = lim
T↓t

R(t, T ) = − ∂

∂T
logP (t, T )|T=t.

This short rate is used to define the bank account B(t) as the solution to the
differential equation

dB(t) = r(t)B(t) dt, B(0) = 1.

Equivalently, one has

B(t) = exp(

∫ t

0

r(u) du).
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Note that the forward curve f determines the bond price, Equation (8.1) and
the short rate r. But knowing the short rate alone is in general not sufficient
to know the bond price. Nevertheless we will see later situations where this is
indeed possible.

Note that for constant r one gets R(t, T ) = r, f(t, T ) = r and r(t) = r.
In this case all introduced rates coincide. Moreover one obtains in this case
B(t) = exp(rt).

8.2 Short rate models

We will model the short rate as a diffusion process, so for some adapted processes
b and σ we assume that

dr(t) = b(t) dt+ σ(t) dW (t), (8.2)

where W is a Brownian motion under the physical measure P, b and σ are certain
stochastic processes that will be specified later on. Furthermore we assume
that there exists an adapted process λ such that Z(T ) := E(−

∫ ·
0
λ(t) dW (t))T

has expectation one. Then Z(T ) determines a probability measure Q on FT ,
dQ
dP = Z(T ). Moreover, we assume that Q is such that P (t,T )

B(t) is a Q-martingale,

seen as a function of t. Consequently, under these assumptions we have, as an
alternative to (8.1),

P (t, T ) = EQ[
B(t)

B(T )
|Ft] = EQ[exp(−

∫ T

t

r(u) du)|Ft]. (8.3)

By Girsanov’s theorem 6.19 we can now also write a stochastic differential equa-
tion for r under Q. With WQ the Q-Brownian motion defined by

WQ(t) = W (t) +

∫ T

0

λ(s) ds, (8.4)

one obtains from (8.2)

dr(t) = (b(t)− λ(t)σ(t)) dt+ σ(t) dWQ(t).

There are many choices possible for λ(t) and hence as many choices for Q, as long
as Z(T ) has expectation one. This has everything to do with non-completeness
of the market with the product B(t) alone. It is a custom to specify a model for
r under (some) Q. This custom will be followed below, by directly specifying
the coefficients appearing in Equation (8.6).

If we specify b, σ and λ further by assuming that b(t), σ(t) and λ(t) are func-
tions of t and r(t), this SDE takes the form (with some ambiguity of notation)

dr(t) = (b(t, r(t))− λ(t, r(t))σ(t, r(t))) dt+ σ(t, r(t)) dWQ(t). (8.5)

Introducing bQ(t, r) = b(t, r)− λ(t, r)σ(t, r), we can rewrite (8.5) as

dr(t) = bQ(t, r(t)) dt+ σ(t, r(t)) dWQ(t). (8.6)

Under mild assumptions it results that r is a Markov process under Q and

consequently P (t, T ) = EQ[exp(−
∫ T
t
r(s) ds|Ft], as a conditional expectation of
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a functional of r(s) with t ≤ s ≤ T given the past becomes a function of t, r(t)
and T . To express this, we write

P (t, T ) = F (t, r(t);T ). (8.7)

Let us apply the Itô formula to F (t, r(t);T ) for t < T with T fixed, assuming
that (8.6) holds and that F is sufficiently differentiable. We obtain, omitting
all arguments,

dF = Ftdt+ Frdr +
1

2
Frrd〈r〉

= (Ft + Frb
Q +

1

2
Frrσ

2)dt+ FrσdWQ.

Recall that B(t) = exp(
∫ t

0
r(s) ds) and apply the product rule to M(t) =

1
B(t)P (t, T ) to get

dM = − 1

B2
rBF dt+

1

B

(
(Ft + Frb

Q +
1

2
Frrσ

2)dt+ FrσdWQ
)

=
1

B

(
(−rF + Ft + Frb

Q +
1

2
Frrσ

2) dt+ Frσ dWQ
)
.

It follows from (8.3) that M(t) = EQ[ 1
B(T ) |Ft], so M is a martingale under Q.

Hence the dt-terms in the above display vanish. In full, writing the arguments
again, one thus obtains

−r(t)F (t, r(t);T ) + Ft(t, r(t);T )

+Fr(t, r(t);T )bQ(t, r(t)) +
1

2
Frr(t, r(t);T )σ2(t, r(t)) = 0.

This equation should hold for any t < T and any possible value of r(t). This
implies that F (t, r;T ) as a function of t and r should solve the partial differential
equation

−rF (t, r;T )+Ft(t, r;T )+Fr(t, r;T )bQ(t, r)+
1

2
Frr(t, r;T )σ2(t, r) = 0, (8.8)

together with the boundary condition F (T, r;T ) = 1. Equation (8.8) together
with the boundary condition is called the term structure equation of the bond.
Should one impose a different boundary condition of the type F (T, r;T ) = Φ(r)
for some appropriate function Φ, representing a claim on the value r(T ), then
F (t, r(t);T ) is the fair price of this claim at time t. This can then be used to
price interest rate derivatives in a fashion analogous to claims in a Black-Scholes
market. We can turn the situation around.

Proposition 8.1 Suppose F (t, r;T ) is a solution to (8.8) with boundary con-
dition F (T, r;T ) = Φ(r). Suppose that it also satisfies the integrability con-

dition EQ(Fr(t, r(t);T )σ(t, r(t)) exp(−
∫ t

0
r(s) ds))2ds < ∞. Then M(t) :=

exp(−
∫ t

0
r(s) ds)F (t, r(t);T ) is a martingale under Q and the price of the claim

Φ(r(T )) at time t is given by F (t, r(t);T ) = EQ[exp(−
∫ T
t
r(s) ds)Φ(r(T ))|Ft].
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Proof Apply the Itô product rule to M(t) and use the fact F solves (8.8). A
computation then shows that (in abbreviated notation) dM = Fr

B σdWQ. By
the condition on the expectation in the statement of the proposition, it follows
that M is indeed a martingale. Hence

M(t) = EQ[M(T )|Ft] = EQ[exp(−
∫ T

0

r(s) ds)Φ(r(T ))|Ft],

where the conditional expectation is now well defined. Multiplication with
B(t) = exp(

∫ t
0
r(s) ds) gives the price of the claim. �

Corollary 8.2 Under the assumptions of Proposition 8.1 the bond price satis-
fies under the probability measures Q and P the stochastic differential equations

dP (t, T ) = r(t)P (t, T ) dt+ P (t, T )σF (t;T ) dWQ, (8.9)

dP (t, T ) = bF (t;T )P (t, T ) dt+ P (t, T )σF (t;T ) dW, (8.10)

where σF (t;T ) = σ(t,r(t))Fr(t,r(t);T )
F (t,r(t);T ) is the volatility of P (t, T ), and bF (t;T ) =

r(t) + λ(t, r(t))σF (t;T ).

Proof Apply the Itô rule to F (t, r(t);T ) and Equation (8.8) to obtain (8.10)
and then (8.4) to obtain (8.9). �

Remark 8.3 The relation λ(t, r(t)) = bF (t;T )−r(t)
σF (t;T )

can be interpreted as being

the market price of risk of the bond. Compare to Remark 7.1 in Section 7.1 for
the Black-Scholes market analogue. Note that this market price of risk is the
same for all bonds in the market, irrespective of their maturity time T .

8.3 Affine term structures

One speaks of an affine term structure if the function F of Equation (8.7) has
a special dependence on t, T and r, namely

F (t, r;T ) = exp(−A(t, T )−B(t, T )r), (8.11)

for some appropriate functions A and B. The term in the exponential of (8.11)
is (for every t, T ) an affine function of r. Note that necessary in this case is
A(T, T ) = 0 and B(T, T ) = 0 as F (T, r;T ) = 1 for all r (and T ). We will see
that this situation occurs for some popular short rate models, i.e. for certain
specific function bQ and σ in (8.6), although there also exists a much more
general theory. In the remainder of the present section we will work under the
risk neutral measure Q and we simply write W and b instead of WQ and bQ.

Proposition 8.4 The short rate model (8.6) with b(t, r) = b0(t) + b1(t)r and
σ2(t, r) = a0(t) + a1(t)r, where ai and bi are continuous functions (i = 0, 1)
yields an affine term structure as in Equation (8.11) if and only if the functions
A and B satisfy the differential equations (a system of Riccati equations where
the dot denotes differentiation w.r.t. t),

Ȧ(t, T ) =
1

2
a0(t)B(t, T )2 − b0(t)B(t, T ), A(T, T ) = 0, (8.12)

Ḃ(t, T ) =
1

2
a1(t)B(t, T )2 − b1(t)B(t, T )− 1, B(T, T ) = 0. (8.13)
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Proof Let F be as in (8.11) with the specified functions b and σ. We first
compute, omitting the arguments t and T , the partial derivatives Ft = −F (Ȧ+
Ḃr), Fr = −FB and Frr = FB2. Plugging all this into (8.8), we obtain,
omitting arguments and after dividing by F ,

−r − (Ȧ+ Ḃr)−B(b0 + b1r) +
1

2
B2(a0 + a1r) = 0. (8.14)

Under the assumption that (8.11) holds with the specified functions b and σ,
the partial differential equations (8.8) and (8.14) are equivalent. In other words,
under this assumption, F solves (8.8) iff A and B satisfy (8.14).

Suppose now that A and B satisfy (8.12), respectively (8.13). Then, by
a simple substitution, also (8.14) is satisfied for all r and t < T . Conversely,
assume that (8.14) holds, for all r (and t < T ), in particular for r = 0. That case
yields −Ȧ−Bb0 + 1

2B
2a0 = 0 which gives Equation (8.12). Moreover, using this,

one obtains from (8.14) the differential equation −r− Ḃr−Bb1r+ 1
2B

2a1r = 0,
which yields (8.13). �

With the functions b and σ as in Proposition 8.4, Equation (8.6) becomes

dr(t) = (b0(t) + b1(t)r(t)) dt+
√
a0(t) + a1(t)r(t) dW (t). (8.15)

This SDE needs to have a solution and in particular the argument of the square
root has to be nonnegative for all possible values of r(t). We discern two cases.

In the first case we allow r(t) to have any real value and so we have to
impose (for all t) a1(t) = 0 and a0(t) ≥ 0. In the second case we want r(t) to
be nonnegative and then we have to impose a0(t) = 0, a1(t) ≥ 0 and b0(t) ≥
0. To understand the latter conditions, let’s see what happens if r(t) = 0 in
(8.15) in a rather heuristic way. One then gets dr(t) = b0(t) dt+

√
a0(t) dW (t).

To assure that r(t) remains nonnegative one needs b0(t) ≥ 0 (gives then an
upward push) and

√
a0(t) needs to be zero, otherwise the possibly negative

Brownian increment dW (t) (although not much more than notation, think of it
as a random variable) could push r(t) to fall below zero.

So we have for each of these cases a model. The first one is

dr(t) = (b0(t) + b1(t)r(t)) dt+
√
a0(t) dW (t),

with a0(t) ≥ 0. It is common to take the functions b1 and a0 as constants, and
with σ =

√
a0, we get

dr(t) = (b0(t) + b1r(t)) dt+ σ dW (t), (8.16)

This model is called the Hull-White model. In the particular case that also b0(·)
is a constant function, denoted b0, one has the Vasiček model,

dr(t) = (b0 + b1r(t)) dt+ σ dW (t). (8.17)

The Vasiček model produces random variables r(t) that have a normal distri-
bution, see Exercise 8.1. As a consequence r(t) can assume negative values
with positive probability, which has been critized in the past. By now, this has
become a ‘normal’ situation. To alleviate the criticism, one may switch to a
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different model in which r(t) is guaranteed to stay nonnegative. This (second)
model is

dr(t) = (b0(t) + b1(t)r(t)) dt+
√
a1(t)r(t) dW (t), r(0) > 0,

with a1(t) ≥ 0 and b0(t) ≥ 0. Of particular interest is the case where a1(t), b0(t)
and b1(t) are constant functions, a1 ≥ 0 and b0 ≥ 0. This is the Cox-Ingersoll-
Ross (CIR) model, with σ =

√
a1,

dr(t) = (b0 + b1r(t)) dt+ σ
√
r(t) dW (t). (8.18)

The r(t) resulting from (8.18) doesn’t have a particularly nice distribution, for
which however formulas are available.

The Riccati Equations (8.12) and (8.13) are in general difficult, if not im-
possible, to analytically solve in view of the time dependent coefficients. This
holds especially for (8.13), whereas A(t, T ) is an integral that can hopefully com-
puted once B(t, T ) is known. For the Vasiček and CIR models with constant
coefficients there are explicit solutions, see Exercises 8.2 and 8.3.

8.4 Forward curve fitting

The Vasiček model has only a very few parameters (as well as the CIR model).
In principle they can be obtained by using observed bond prices of P (0, T ), the
term structure at time t = 0. But there are many of them, just as many maturity
times (in principle infinitely many). Hence obtaining a perfect fit of the Vasiček
model to all observed bond prices is hopeless. A least squares approach to fit
parameters of the computed values of P (0, T ) for this model to their observed
counterparts is a common way out, hoping it results in an acceptable fit. The
Hull-White extension (8.16) of the Vasiček model (8.17) has the non-constant
function b0(·) and the resulting flexibility turns out to be helpful to fit the initial
forward curve.

Recall from (8.1) that P (0, T ) = exp(−
∫ T

0
f(0, u) du) and combine this with

Equations (8.7) and (8.11). Write ′ to denote differentiation w.r.t. T and obtain

f(0, T ) = A′(0, T ) +B′(0, T )r(0).

The Riccati equations (8.12) and (8.13) take the form

Ȧ(t, T ) =
1

2
σ2B(t, T )2 − b0(t)B(t, T ), A(T, T ) = 0,

Ḃ(t, T ) = −b1B(t, T )− 1, B(T, T ) = 0.

A simple calculation shows that (b1 is taken nonzero)

B(t, T ) =
1

b1
(eb1(T−t) − 1),

A(t, T ) = −σ
2

2

∫ T

t

B(s, T )2 ds+

∫ T

t

b0(s)B(s, T ) ds.

Note that Ḃ(t, T ) = −B′(t, T ). These relations are useful in the proof of the
next Proposition.
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Proposition 8.5 The initial forward curve T 7→ f(0, T ) is in the Hull-White
model related to the function b0 by

b0(T ) = f ′(0, T ) +
σ2

2

∂

∂T
B(0, T )2 − b1f(0, T )− b1

σ2

2
B(0, T ). (8.19)

Proof Exercise 8.5 �

Proposition 8.5 can be used to fit the Hull-White model to an observed curve
of initial forward rates f∗(0, T ) (assumed to be differentiable in T ). Given b1
and σ, one obtains a to the observations fitted function b∗0 by replacing f(0, T )
in (8.19) by f∗(0, T ). What then remains to be done for a full specification of
the model is to choose b1 and σ, in practice often done by matching theoretical
prices with observed prices for a selected number of financial products, or by
different considerations that are for some reason ‘convenient’.

The proposition has a nice corollary. If one has observed bond prices P ∗(0, t)
and corresponding forward rates f∗(0, t) for all t in an interval [0, T ], and if one
assumes the Hull-White model, then it is possible to determine also the prices
P (t, T ) of bounds maturing at T at any time t ≤ T .

Corollary 8.6 Assume the Hull-White model. Then for any t ≤ T bond prices
P (t, T ) can be computed from observed bond prices and forward rates at time
t = 0 in a consistent way by

P (t, T ) =
P ∗(0, T )

P ∗(0, t)
exp

(
B(t, T )(f∗(0, t)− r(t)) +

σ2

4b0
B2(t, T )(1− e2b0t)

)
.

Proof There is not much more to do than using b0 as given (8.19) in A(t, T ),
(8.11) and performing very tedious calculations. These are omitted. �

8.5 Exercises

8.1 Consider the Vasiček model (8.17), let t > s ≥ 0.

(a) Show that

r(t) = eb1(t−s)r(s) +
b0
b1

(eb1(t−s) − 1) + σeb1t
∫ t

s

e−b1u dW (u).

(b) Show that conditional on Fs, the distribution of r(t) is normal with mean

eb1(t−s)r(s) + b0
b1

(eb1(t−s) − 1) and variance σ2

2b1
(e2b1(t−s) − 1).

(c) Suppose that b1 < 0 and that r(0) has a normal distribution with mean

− b0b1 and variance − σ2

2b1
. What is the distribution of r(t)?

8.2 Consider the Vasiček model (8.17) for the short rate.

(a) Show that the Riccati equations take the following form.

Ȧ(t, T ) =
1

2
σ2B(t, T )2 − b0B(t, T ), A(T, T ) = 0,

Ḃ(t, T ) = −b1B(t, T )− 1, B(T, T ) = 0.
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(b) Solve the Riccati equations and show that the solutions are given by

A(t, T ) =
σ2

4b31
(4eb1(T−t) − e2b1(T−t) − 2b1(T − t)− 3)

+
b0
b21

(eb1(T−t) − 1− b1(T − t)),

B(t, T ) =
1

b1
(eb1(T−t) − 1).

8.3 Consider the CIR model (8.18) for the short rate.

(a) Show that the Riccati equations take the following form.

Ȧ(t, T ) = −b0B(t, T ), A(T, T ) = 0,

Ḃ(t, T ) =
1

2
σ2B(t, T )2 − b1B(t, T )− 1, B(T, T ) = 0.

(b) Solve the Riccati equations and show that the solutions are given by

A(t, T ) = −2b0
σ2

log

(
2γe(γ−b1)(T−t)/2

(γ − b1)(eγ(T−t) − 1) + 2γ

)
+
b0
b21

(eb1(T−t) − 1− b1(T − t)),

B(t, T ) =
2(eγ(T−t) − 1)

(γ − b1)(eγ(T−t) − 1) + 2γ
,

where γ =
√
b21 + 2σ2.

8.4 Assume that the bond prices P (t, T ) are as in (8.7) and r satisfies (8.6).

(a) Show that P (t, T ) satisfies

dP (t, T ) = P (t, T )r(t) dt+ P (t, T )σP (t) dWQ(t),

and give an expression for σP (t). Specialize to the case where F is affine,
so it satisfies (8.11), to give a more explicit expression for σP (t).

(b) Let P̄ (t, T ) = B(t)−1P (t, T ). Show that

dP̄ (t, T ) = P̄ (t, T )σP (t) dWQ(t).

There is no drift (no dt term) in the equation for P̄ (t, T ), which is not
surprising. Explain.

8.5 Prove Proposition 8.5.
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A Some results in Probability and in Analysis

A.1 Bare essentials of probability

The reader is supposed to be familiar with the concept of probability space. We
mostly denote such as space by (Ω,F ,P). Here Ω is a non-empty set, F a σ-
algebra on it (elements of σ are called events), and P : F → [0, 1] a probability
measure. An event F happens almost surely, abbreviated a.s., if P(F ) = 1.
On R we usually work with the Borel σ-algebra, the smallest σ-algebra that
contains the open sets in R. The notion of Borel σ-algebra extends to arbitrary
topological spaces.

A function X : Ω → R is called a random variable (or F-measurable) if
the inverse images X−1[B] belong to F for all B ∈ B. Commonly we use the
notation {X ∈ B} for X−1[B]. Let σ(X) = {X−1[B] : B ∈ B}. It follows that
X is a random variable iff σ(X) ⊂ F . The distribution of a random variable X,
denoted PX , is the probability measure on B defined by PX(B) = P(X ∈ B),
for B ∈ B.

A function f : R → R is called Borel-measurable if f−1[B] belong to B for
all B ∈ B. Note that the concept of measurabilty depends on the σ-algebras. A
continuous function f is Borel-measurable. A number of operations on random
variables yield new random variables. See Exercise A.22 for some standard
examples.

Expectation of random variables, denoted EX, are by definition Lebesgue
integrals

∫
Ω
X dP, well defined if

∫
Ω
|X|dP < ∞. If X has a density f , this

reduces to
∫
R xf(x) dx. For discrete random variables the expectation is a sum.

In general, for Borel-measurable h, the expectation Eh(X), if well defined, is
equal to the Lebesgue integral

∫
R hdPX . In the density case the latter integral

equals
∫
R h(x)f(x) dx.

A.2 Normal random variables

If X is a normally distributed real random variable with mean µ and variance
σ2 > 0, then by definition it has density p given by

p(x) =
1√

2πσ2
exp(− (x− µ)2

2σ2
).

An extension of this formula holds for the case where X = (X1, . . . , Xn)> is a
random vector in Rn. If EX = µ ∈ Rn and X has covariance matrix Cov (X) =
Σ, which is assumed to be strictly positive definite, then by definition X has a
density on Rn given by

p(x) =
1

(2π)n/2(det Σ)1/2
exp(−1

2
(x− µ)>Σ−1(x− µ)). (A.1)

A random vector X with such a density is said to have a nondegenerate multi-
variate normal distribution. If the matrix Σ is singular, then it is still possible
to speak of multivariate normal distributions, although a density in this case
does not exist.

An important property of multivariate normal random vectors is that affine
transformations are again multivariate normal. If A ∈ Rm×n and b ∈ Rm and if
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A has full rank, then Y = AX+b is again multivariate normal with EY = Aµ+b
and Cov (Y ) = AΣA>. Note that Cov (Y ) is again strictly positive definite, so
that Y also possesses a density (on Rm). It now follows that every subvector of
X is nondegenerate normal.

Another important property of multivariate normally distributed random
vectors is that uncorrelated components are independent. Specifically, if X1 and
X2 are subvectors of X such that Cov (X1, X2) = 0, then X1 and X2 are inde-
pendent random vectors.

Here is a consequence of this last property. Let X1 be a subvector of X
with covariance matrix Σ1. Then we have Z := X2 − Cov (X2, X1)Σ−1

1 X1

is independent (see Exercise A.7) of X1. Hence the conditional expectation
(see Section A.6 for a definition and some properties) E [X2|X1] is equal to
Cov (X2, X1)Σ−1

1 X1 + EZ = EX2 + Cov (X2, X1)Σ−1
1 (X1 − EX1).

If EX1 and EX2 are zero, then E [X2|X1] = Cov (X2, X1)Σ−1
1 X1 and hence

we have the decomposition X2 = E [X2|X1] + Z, with E [X2|X1] and Z inde-
pendent random vectors.

A.3 Characteristic functions

Let X be a random vector in Rn (n ≥ 1). The characteristic function of X
is λ 7→ E exp(iλ>X). We immediately see that characteristic functions only
depend on the distribution of X: if X and Y have the same distribution, then
their characteristic functions coincide. But for different distributions, the char-
acteristic functions are different as well. So characteristic functions correspond
uniquely to the underlying distributions and the terminology ‘characteristic’ is
completely justified. Characteristic functions are very useful in probability. The
best known example of their use is the Central limit theorem, see Section A.5.

Consider as an example a random variable X that has a standard normal
distribution, so it has density p(x) = 1√

2π
exp(− 1

2x
2). Let φ be its characteristic

function. Then

φ(λ) =

∫ ∞
−∞

1√
2π

exp(iλx− 1

2
x2) dx.

With methods from complex integration it is not difficult to show that φ(λ) =
exp(− 1

2λ
2). An alternative method is presented in Exercise A.4. Knowing this,

it is easy to show that the characteristic function of N(µ, σ2) distributed random
variable is given by φ(λ) = exp(iµλ− 1

2σ
2λ2). But then it is almost immediate

(Exercise A.6) that for this case

p(x) =
1

2π

∫ ∞
−∞

exp(−iλx)φ(λ) dλ. (A.2)

It can be shown that relation (A.2) holds more general. The density can be found
back from the characteristic function by an integral transformation (Fourier
transform) if the characteristic function belongs to L1(R).

Other properties that we use are the following. X and Y are independent
random vectors iff E exp(iλ>X + iµ>Y ) = E exp(iλ>X)E exp(iµ>Y ). Here is
an example: if X has a N(0, σ2) distribution and Y has a N(0, τ2) distribution,
then X and Y are independent iff E exp(iλX + iµY ) = exp(− 1

2 (σ2λ2 + τ2µ2)).
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Another property concerns derivatives of characteristic functions. Let X be
a real random variable and let φ be its characteristic function. If E |X|k < ∞,
then φ is k times differentiable and φ(k)(0) = ikEXk.

A.4 Modes of convergence

In this section we briefly treat various convergence concepts for random vari-
ables. Let us start by defining them. First a notational convention. If X is a
random variable, then F (or sometimes FX) denotes its distribution function.
If there are indexed random variables like Xn, then their distribution functions
are denoted Fn (or sometimes FXn).

Definition A.1 Consider a sequence of random variables X1, X2, . . . and an-
other random variable X. We say that

(i) Xn converges in probability to X if for all ε > 0 one has limn→∞ P(|Xn−
X| > ε) = 0.

(ii) Xn converges to X almost surely (a.s.), if P(ω : limn→∞Xn(ω) = X(ω)) =
1.

(iii) Xn converges to X in L1(Ω,F ,P) if limn→∞ E |Xn −X| = 0.

(iv) Xn converges to X in L2(Ω,F ,P) if limn→∞ E |Xn −X|2 = 0.

(v) Xn converges to X in distribution if limn→∞ Fn(x) = F (x) in all x ∈ R
at which F is continuous.

Here are some relations between the different modes of convergence.

Proposition A.2 We have the following implications.

(i) If Xn converges to X almost surely, then also in probability.

(ii) If Xn converges to X in L2(Ω,F ,P), then also in L1(Ω,F ,P).

(iii) If Xn converges to X in L1(Ω,F ,P), then also EXn → EX.

(iv) If Xn converges to X in L1(Ω,F ,P), then also in probability.

(v) If the sequence Xn is bounded and Xn converges to X in probability, then
also in L2(Ω,F ,P).

(vi) If Xn converges to X in probability, then there is a (Xnk) such that Xnk

converges to X almost surely.

(vii) If Xn converges to X in probability, then Xn also converges to X in
distribution.

(viii) Denote by
∗→ any of the modes of convergence in (i)-(iv) of Definition A.1.

Then Xn
∗→ X and Yn

∗→ Y imply Xn + Yn
∗→ X + Y .

Proof We only prove (vi), the other assertions we leave as an exercise. From the
definition of convergence in probability we have that for each k the probability
P(|Xn−X| > 1

k ) tends to zero, so eventually it will become less than 2−k. Hence
there is nk such that P(Ek) < 2−k, where Ek = {|Xnk − X| > 1

k . The Borel-
Cantelli lemma implies that P(lim infk→∞Eck) = 1. But for ω ∈ lim infk→∞Eck
we can find some N ∈ N such that for all k > N we have |Xnk(ω)−X(ω)| < 1

k ,
hence the Xnk(ω) converge to X(ω). �
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We also need some results that say, when random variables Xn that converge
to a limit X almost surely, also converge in L1. Here we have some answers,
the basic convergence theorems in measure theory.

Theorem A.3 Let Xn → X almost surely.

(i) (Monotone convergence) If the Xn form a nonnegative increasing sequence
with limit X, then EXn ↑ EX ≤ ∞.

(ii) If the Xn are bounded by a random variable Y , that is such that E |Y | <
∞, then Xn converges to X in L1(Ω,F ,P).

(iii) (Fatou’s lemma) Without any of the two above conditions we still have
lim inf EXn ≥ EX, if the Xn are nonnegative.

Since expectations are by definition integrals w.r.t. the underlying probability
measure, we have similar results for integrals of functions w.r.t. some measure.

A.5 Central limit theorem

The central limit theorem below tells us that the distribution of a standard-
ized sum of iid random variables with finite second moments converges to the
standard normal distribution function. For random variables with the corre-
sponding distributions one speaks of convergence in distribution. Let us make
these notions precise.

Definition A.4 Consider a sequence Z1, Z2, . . . of (real valued) random vari-
ables, another random variable Z and denote by Fn the distribution function of
Zn and by F the distribution function of Z. We say that the Fn weakly converge
to F , if Fn(x) converges to F (x) in all x where F is continuous. In this case we
also say that the Zn converge to Z in distribution.

In probability theory one also considers weak convergence of probability mea-
sures. For random variables this concept takes the following form. We say
that the distributions of the Zn weakly converge to the distribution of a random
variable Z if for all (real or complex valued) bounded continuous functions f
on R one has the convergence E f(Zn) → E f(Z). One of the versions of the
portmanteau theorem states that convergence in distribution of the Zn to Z is
equivalent to the weak convergence of the distributions of Zn to that of Z. We
use it in the following form.

Theorem A.5 A sequence Z1, Z2, . . . of random variables converges in distri-
bution to a random variable Z iff for all bounded continuous functions h the
convergence Eh(Zn)→ Eh(Z) takes place.

Proof Assume convergence in distribution of the Zn. We have to show conver-
gence of the distribution functions of the Zn to that of Z in all point x where the
latter is continuous. So, let x ∈ R. First note that P(Zn ≤ x) = E1(−∞,x](Zn).
Let ε > 0 be given and let hε be a bounded continuous function that has
value one on (−∞, x], values in (0, 1) on (x, x+ ε) and zero on [x+ ε,∞). Let
hε(y) = hε(y + ε). Note that hε ≤ 1(−∞,x] ≤ hε and hence Ehε(Zn) ≤ P(Zn ≤
x) ≤ Ehε(Zn). The two extreme members of this inequality converge to Ehε(Z)
and Ehε(Z). Use that P(Z ≤ x − ε) ≤ Ehε(Z) and Ehε(Z) ≤ P(Z ≤ x + ε)
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to see that with ε → 0 we obtain lim supn→∞ P(Zn ≤ x) ≤ P(Z ≤ x) and
lim infn→∞ P(Zn ≤ x) ≥ P(Z < x). The result follows.

The proof of the converse statement is as follows. Suppose first that h is
a bounded continuous function with compact support contained in an interval
(−A,A] (with A > 0). Let ε > 0 be given. Since h is uniformly continuous on
(−A,A] there exists N ∈ N such that |h(x) − h(y)| < ε as soon as |x − y| <
1/N . Divide (−A,A] into intervals INk = (LNk , R

N
k ] of equal length 1/N . Let

h̄Nk = sup{h(x) : x ∈ INk } and observe that h(x) ≥ h̄Nk − ε for x ∈ INk .
Then we have Eh(Zn) =

∑
k Eh(Zn)1INk (Zn) ≤

∑
k h̄

N
k P(LNk < Zn ≤ RNk ) →∑

k h̄
N
k P(LNk < Z ≤ RNk ) as n → ∞. Hence we have lim supn Eh(Zn) ≤∑

k h̄
N
k P(LNk < Z ≤ RNk ).

Since we also have Eh(Z) ≥
∑
k h̄

N
k P(LNk < Z ≤ RNk ) − ε, we arrive at

lim supn Eh(Zn) ≤ Eh(Z) + ε. Replacing h with −h we get the companion
inequality lim infn Eh(Zn) ≥

∑
k h̄

N
k P(LNk < Z ≤ RNk )− ε. Let ε→ 0 to finish

the proof for continuous functions with compact support. Use this result to
prove the assertion for arbitrary bounded continuous h (Exercise A.11). �

Here is a useful result, that show that convergence in distribution is weaker than
convergence in probability (and then also weaker than almost sure convergence).

Proposition A.6 Suppose Xn converges to X in probability. Then we also
have convergence of Xn to X in distribution.

Proof Let ε > 0 and consider

P(Xn ≤ x) = P(Xn ≤ x, |Xn −X| ≤ ε) + P(Xn ≤ x, |Xn −X| > ε)

≤ P(X ≤ x+ ε) + P(|Xn −X| > ε).

It follows that lim supP(Xn ≤ x) ≤ P(X ≤ x + ε) for all ε > 0. By right
continuity of x 7→ P(X ≤ x) we obtain lim supP(Xn ≤ x) ≤ P(X ≤ x).

Similarly, exchange X and Xn and replace x with x− ε, one has

P(X ≤ x− ε) ≤ P(Xn ≤ x) + P(|Xn −X| > ε).

It then follows that P(X ≤ x − ε) ≤ lim inf P(Xn ≤ x). If x is a continuity
point of x 7→ P(X ≤ x), then we obtain for ε → 0 the inequality P(X ≤ x) ≤
lim inf P(Xn ≤ x). Together with the inequality for the limsup, this proves the
assertion. �

The most important example of weak convergence is the content of the Central
limit theorem:

Theorem A.7 Let X1, X2, . . . be a sequence of independent and identically
distributed random variables with mean µ and variance σ2 < ∞. Then for all
x ∈ R we have

P(

∑n
i=1(Xi − µ)

σ
√
n

≤ x)→ Φ(x),

as n tends to ∞, where Φ is the distribution function of the standard normal
distribution.
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To connect the statement of Theorem A.7 with the introduction of this section
it is sufficient to take Zn =

∑n
i=1(Xi − µ)/σ

√
n, since Φ is continuous in any

element of R.

The standard proof of the Central limit theorem uses characteristic functions. In
view of the property that they correspond uniquely to distributions, this sounds
reasonable. However one also needs the theorem that distribution functions Fn
converge weakly to a distribution function F iff the characteristic functions of
the Fn converge pointwise to the characteristic function of F . (Note that one
implication of this theorem is easy in view of the portmanteau theorem, the
other implication is harder to prove). Let us take this theorem for granted and
sketch the proof of Theorem A.7.

Proof of Theorem A.7. Without loss of generality we assume that EXk = 0.
We start off with some facts from analysis.

Recall that for complex zn → z we have the convergence (1 + zn
n )n → ez.

Let Rn(x) = eix −
∑n
k=0(ix)k/k! for x ∈ R. Then (this is part of Exercise A.9)

|Rn(x)| ≤ min{2|x|n

n!
,
|x|n+1

(n+ 1)!
}. (A.3)

Let φ be the characteristic function of the Xk. It then follows (this is another
part of Exercise A.9) that

|φ(λ)− 1 +
1

2
σ2λ2| ≤ E |R2(λX)| ≤ λ2E

(
min{|X|2, 1

6
|λ||X|3}

)
. (A.4)

Letting λ → 0, we obtain from (A.4) by application of the dominated conver-
gence theorem that φ(λ) = 1− 1

2σ
2λ2(1 + o(1)) for λ→ 0.

Now we are ready to prove the assertion of the theorem. Let Zn =
∑n
i=1 Xi
σ
√
n

.

It has characteristic function φZn(λ) = φ( λ
σ
√
n

)n. Using the expansion above for

φ, we can write φZn(λ) =
(

1− λ2

2n (1 + o(1))
)n

which converges to exp(− 1
2λ

2),

the characteristic function of the N(0, 1) distribution. In view of the remarks
preceding the theorem, this is exactly what we had to prove. �

Sometimes one has to work with a central limit theorem for arrays. Let us state
what this means. We consider for each n ∈ N integers kn and random variables
Xn,k, with k = 1, . . . , kn. The family {Xn,k : n ∈ N, k = 1, . . . , kn} is called a
triangular array, a reasonable name if kn is increasing in n.

Theorem A.8 Consider a triangular array of random variables {Xn,k : n ∈
N, k = 1, . . . , kn} with limn→∞ kn = ∞. Assume that for each n the random
variables Xn,k for k = 1, . . . , kn are independent and identically distributed.

Define Sn =
∑kn
k=1Xn,k. Assume moreover that EXn,k = 0 for all n, k and

that limn→∞ ES2
n = σ2 with σ2 < ∞. Then we have weak convergence of the

distributions of the Sn to the N(0, σ2) distribution.

Proof Exercise A.12. �

We close this section that all notions and results above can be completely taken
over to the case where one deals with finite dimensional random vectors. The
situation drastically changes if one considers random vectors in infinite dimen-
sional spaces, but this is of no concern for this course.
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A.6 Conditional expectations

Let a probability space (Ω,F ,P) be given. Consider two random variables or
vectors X and Y that both assume finitely many values in sets X and Y respec-
tively. Assume that P(Y = y) > 0 for all y ∈ Y. Then the conditional prob-
abilities P(X = x|Y = y) are all well defined as well as for any function f on
X the conditional expectation E [f(X)|Y = y] :=

∑
x∈X f(x)P(X = x|Y = y).

Consider the function f̂ defined by f̂(y) = E [f(X)|Y = y]. With the aid of f̂
we define the conditional expectation of f(X) given Y , denoted by E [f(X)|Y ],

as f̂(Y ). A simple calculation suffices to check the relation

E [f(X)|Y ] =
∑
y

E (f(X)1{Y=y})

P(Y = y)
1{Y=y} =

∑
y

f̂(y)1{Y=y}. (A.5)

Elementary properties of conditional expectation like linearity are in this case
easy to prove. Other properties are equally fundamental and easy to prove.
They are listed in Proposition A.9. Replacing X above by (X,Y ) we can also
define conditional expectations like E [f(X,Y )|Y ].

Proposition A.9 The following properties hold for conditional expectations.

(i) If X and Y are independent, then E [f(X)|Y ] = E [f(X)], the uncondi-
tional expectation.

(ii) Let f(X,Y ) be the product f1(X)f2(Y ). Then

E [f1(X)f2(Y )|Y ] = f2(Y )E [f1(X)|Y ].

(iii) If X and Y are independent, then

E [f(X,Y )|Y ] =
∑
x∈X

f(x, Y )P(X = x).

Proof Exercise A.13. �

The random variable Y induces a sub-σ-algebra of F on Ω, call it G, which is
generated by the sets {Y = y} and that G = σ(Y ). Note that the sets {Y = y}
constitute a partition of Ω and hence every set in G is a finite union of some
{Y = y}.

Consider again the function f̂ above. It defines another function on Ω, F say,
according to F (ω) = f̂(y) on the set {ω : Y (ω) = y}, hence F (ω) = f̂(Y (ω)), in

short F = f̂(Y ). In this way we can identify the conditional expectation f̂(Y )
with the random variable F . Note that F is G-measurable, it is constant on the
sets {Y = y}. Moreover, one easily verifies (Exercise A.14) that

E (F1{Y=y}) = E (f(X)1{Y=y}). (A.6)

In words, the expectation of f(X) and its conditional expectation over the sets
{Y = y} are the same, and therefore we will also have

E (F1G) = E (f(X)1G) for every set G ∈ G. (A.7)

Conditional expectation can also be defined for random variables that are not
discrete. To that end we proceed directly to the general definition as it is used in
modern probability theory. That it is possible to define conditional expectation
as we will do below is a consequence of the Radon-Nikodym theorem in measure
theory. The definition is motivated by (A.7).
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Definition A.10 If X is a random variable with E |X| < ∞ and G a sub-σ-
algebra of F , then the conditional expectation of X given G is any G-measurable
random variable X̂ with the property that EX1G = E X̂1G for all G ∈ G. We
will use the notation E [X|G] for any of the X̂ above.

Note that the conditional expectation is not uniquely defined, but only up to
almost sure equivalence, if X̂ and X̂ ′ both satisfy the requirements of Defi-
nition A.10 then P(X̂ = X̂ ′) = 1, see Exercise A.23. Different X̂ are called
versions of the conditional expectation. Conditioning with respect to a random
variable (vector) Y is obtained by taking G equal to the σ-algebra that Y induces
on Ω. It is a theorem in probability theory that any version of the conditional
expectation given Y can be represented by a (measurable) function of Y . We
have seen this to be true at the beginning of this section. The most important
properties of conditional expectation that we use in this course are collected in
the following proposition.

Proposition A.11 Let X be a random variable with E |X| <∞.

(i) E (E [X|G]) = EX.

(ii) If X is independent of G, then E [X|G] = EX.

(iii) If H is a sub-σ-algebra of G, then E [X|H] = E [E [X|G]|H] (iterated con-
ditioning).

(iv) If Y is G-measurable and E |XY | <∞, then E [XY |G] = E [X|G]Y .

(v) If X is independent of G, Y is G-measurable and f is a measurable function
on R2 with E |f(X,Y )| <∞, then E [f(X,Y )|G] =

∫
f(x, Y )PX(dx), with

PX the distribution of X. Alternatively written, E [f(X,Y )|G] = f̂(Y ),

where f̂(y) = E f(X, y).

(vi) The conditional expectation is a linear operator on the space of random
variables with finite expectation.

A special occurs of conditional expectation occurs if G is generated by a partition
{G1, . . . , Gm} of Ω with all P(Gi) > 0. Then, completely analogous to (A.5),

E [X|G] =
∑
i

E (X1Gi)

P(Gi)
1Gi . (A.8)

Indeed, (A.5) is a special case of (A.8). Take G = σ(Y ) and Gi = {Y = yi},
where the yi are the different values that Y assumes.

If the random variable X in Definition A.10 has the stronger integrability prop-
erty EX2 <∞, then one has (this is Exercise A.25)

E (X − X̂)2 ≤ E (X − Y )2, for all G-measurable Y with EY 2 <∞. (A.9)

Equation (A.9) offers a nice interpretation of conditional expectation as a pro-
jection, think of this! And with this interpretation in mind, property (iii) of
Proposition A.11 should look familiar: it is analogous to repeated projection,
first on a subspace, than on a smaller subspace, being equivalent to immediate
projection on the smaller subspace.
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A.7 Filtrations and Martingales

In probabilistic terms the loose term ‘information’ can be expressed by means
of σ-algebras. One is given a probability space (Ω,F ,P). A filtration in discrete
time is by definition an increasing sequence of sub-σ-algebras of F . So we
have a family F = (Fn)n≥0 where the Fn are sub-σ-algebras of F that satisfy
Fn ⊂ Fn+1 for all n ≥ 0.

Information often comes to us in the form of an observed sequence of random
variables X = (X1, X2, . . .), defined on (Ω,F ,P). For each n we then put
Fn = σ(X1, . . . , Xn), the smallest σ-algebra that makes X1, . . . , Xn measurable
functions on Ω. In this case one often speaks of the filtration generated by the
sequence X1, X2, . . . and one sometimes write, to emphasize this relation, FX
and FXn . In this situation the Fn are invariant under many transformations
of the observations. For instance if we take Sn =

∑n
k=1Xk (n ≥ 0), then the

filtrations FX and FS are the same: one knows all S1, . . . , Sn iff one knows all
X1, . . . , Xn.

Let F be a given filtration. A process X that is such that Xn is Fn-
measurable for all n is called adapted (to F). Obviously, any process X is
adapted to FX .

Martingales form one of the corner stones in modern probability. Let us first
give a formal definition.

Definition A.12 A sequence M of random variables is said to be a martingale
w.r.t. a filtration F if the following conditions are satisfied.

(i) For every n ≥ 0 the random variable Mn is Fn-measurable.

(ii) E |Mn| <∞ for all n.

(iii) E [Mn+1|Fn] = Mn for all n ≥ 0.

Property (iii) in Definition A.12 is equivalent to (this is Exercise A.26)

E [Mm|Fn] = Mn, for all m ≥ n. (A.10)

Sometimes this conditional expectation property is explicitly formulated, using
the definition of a conditional expectation as in Definition A.10, as

E [Mm1F ] = E [Mn1F ], for all F ∈ Fn.

Another equivalent formulation of property (iii) is

E [∆Mn+1|Fn] = 0 for all n ≥ 0.

The standard and easiest example of a martingale is the sum of independent
random variables with zero expectation (this is Exercise A.15). But there is also
a method to generate new martingales starting from a given one. To explain
this method we have to introduce predictable sequences of random variables.
A process H = (H1, H2, . . .) is said to be w.r.t. a filtration F if for all n ≥ 1
the random variable Hn is Fn−1-measurable. If we want to include a variable
H0, we take F−1 the trivial σ-algebra, which implies that H0 is a non-random
constant. Suppose that M is martingale w.r.t. to a given filtration F and that H
is a predictable process (w.r.t. the same filtration). Assume that the products
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Hn(Mn−Mn−1) have finite expectation (this surely happens if H is bounded).
Define the process V by

Vn =

n∑
k=1

Hk∆Mk =

n∑
k=1

Hk(Mk −Mk−1), (A.11)

(with M−1 = 0 if we also need k = 0). Then also V is a martingale w.r.t. F
(this is Exercise A.17).

The relevant notions in continuous time are similarly defined. A filtration in
continuous time is an increasing collection of sub-σ-algebras of F . So we have a
family F = (Ft)t∈[0,∞) where the Ft are sub-σ-algebras of F that satisfy Fs ⊂ Ft
for all t ≥ s ≥ 0. A process X in continuous time, so X = (X(t), t ≥ 0), is
adapted to the filtration F if X(t) is Ft-measurable for all t ≥ 0.

A martingale in continuous time is an adapted process M that satisfies the
conditions of Definition A.12 ‘with n replaced by t’. More precisely, we have for
the martingale property (iii) in Definition A.12 the analog of (A.10),

E [Mt|Fs] = Ms, for all t > s,

equivalent to

E [Mt1F ] = E [Ms1F ], for all t > s and F ∈ Fs. (A.12)

Occasionally we need a convenient property of martingales that have the prop-
erty that EM2

t <∞ for all t. In that case one has (Exercise A.27)

E [(Mt −Ms)
2|Fs] = E [M2

t −M2
s |Fs], for all t ≥ s. (A.13)

If any continuous time process X is given, then we will again use the notation
FX for the filtration it generates. So FX = {FXt : t ∈ [0,∞)}, where FXt is
the smallest σ-algebra that makes all the X(s) with s ≤ t random variables.
The theory of continuous time filtrations and stochastic processes is much more
subtle and difficult than the discrete time theory, but in this course we don’t
need these subtleties.

A.8 The heat equation: uniqueness of solutions

In Section 3 we announced that under regularity conditions the heat equation
has a unique solution, see Theorem 3.3. In this section we state and prove a
theorem on this. In the proof of this theorem we use a maximum principle that
will be discussed first. For given T > 0 and real constants A and B, let D ⊂ R2

be the open rectangular domain D = {(t, x) : 0 < t < T,A < x < B}. We
consider a function u that belongs to C1,2(D) and that is continuous on the
boundary ∂D of D. We will also need the parabolic boundary ∂0D = {(t, x) ∈
∂D : t = 0, or x ∈ {A,B}}. Here is the parabolic maximum principle.

Proposition A.13 If the function u above satisfies the heat inequality

ut(t, x) ≤ 1

2
uxx(t, x), (t, x) ∈ D, (A.14)

then

max
(t,x)∈D̄

u(t, x) = max
(t,x)∈∂0D

u(t, x).
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Proof The proof is easier if we would have a strict inequality in (A.14). So let
us assume this for the time being. Let ε ∈ (0, T ) and consider in what follows
the restricted domain Dε = {(t, x) ∈ D : t < T − ε}. Suppose that u has a
maximum on the closure D̄ε of Dε that is attained at an interior point (t0, x0)
of Dε. Then the function t 7→ u(t, x0) is maximal at t0 and hence ut(t0, x0) = 0,
whereas the function x 7→ u(t0, x) is maximal in x0 and hence uxx(t0, x0) ≤ 0.
Hence, in (t0, x0) the strict inequality (A.14) would be violated. We conclude
that the maximum of u on D̄ε is attained on the boundary ∂Dε.

Suppose now that u is maximal at (T−ε, x0) ∈ ∂Dε\∂0Dε. As above we then
have uxx(T −ε, x0) ≤ 0, whereas we also conclude that ut(T −ε, x0) ≥ 0 (would
this be negative, than t 7→ u(t, x0) would be decreasing in a neighborhood of
T−ε and thus we could find t′ < T−ε with u(t′, x0) > u(T−ε, x0) contradicting
maximality at (T − ε, x0)). This again violates (A.14). Hence we conclude

max
(t,x)∈D̄ε

u(t, x) = max
(t,x)∈∂0Dε

u(t, x). (A.15)

Now we let ε ↓ 0 and use uniform continuity of u on D̄ to conclude that the left
hand side of (A.15) increases to max(t,x)∈D̄ u(t, x) and the right hand side to
max(t,x)∈∂0D u(t, x). We proved the assertion for functions u for which we have
strict inequality in (A.14).

The general case is as follows. Instead of considering u directly we consider
u′ defined by u′(t, x) = u(t, x) − δt, with δ > 0. Then u′ satisfies the strict in-
equality and we conclude in view of the forgoing that the assertion of the propo-
sition is valid for u′. But we also have the two inequalities max(t,x)∈D̄ u

′(t, x) ≥
max(t,x)∈D̄ u(t, x)− δT and max(t,x)∈∂0D u

′(t, x) ≤ max(t,x)∈∂0D u(t, x). Hence,
by δ ↓ 0, max(t,x)∈D̄ u(t, x) ≤ max(t,x)∈∂0D u(t, x) and the result follows. �

The uniqueness theorem for solutions to the heat equation is a consequence of
the following

Theorem A.14 Let u ∈ C1,2((0,∞) × R) and continuous on [0,∞) × R. Let
there be nonnegative constants A and B such that |u(t, x)| ≤ A exp(Bx2) for
all (t, x) ∈ [0,∞)×R. If u satisfies the heat inequality ut ≤ 1

2uxx on (0,∞)×R
and if u(x, 0) ≤ 0 for all x ∈ R, then u(t, x) ≤ 0 for all (t, x) ∈ [0,∞)× R.

Proof Fix T ∈ (0, 1
4B ). We will first show that the assertion of the theorem

is valid on [0, T ]× R. Let w(t, x) = (2T − t)−1/2 exp(x2/2(2T − t)) for (t, x) ∈
(0, T ) × R and note that w satisfies the heat equation. Let δ > 0 and define
v = vδ by v(t, x) = u(t, x)− δw(t, x), then v satisfies the heat inequality as well.
Consider for h > 0 the domain D = Dh = {(t, x) : t ∈ (0, T ), |x| < h}. We
apply the parabolic maximum principle to v with respect to the domain D and
we estimate the function v on ∂0D. Letting x = ±h, one obtains

v(t,±h) ≤ A exp(Bh2)− δw(t, h)

≤ A exp(Bh2)− δ(2T )−1/2 exp(h2/4T ), (A.16)

where the last inequality follows from the previous one by taking t = 0, since

t 7→ w(t, h) is increasing. By taking h big enough (h2 > log A
√

2T
δ /( 1

4T − B)),
we can make (A.16) negative. Since we trivially have v(0, x) ≤ u(0, x) ≤ 0 we
conclude that v(t, x) ≤ 0 on all of ∂0D and hence on D̄ by Proposition A.13.
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Note that it now follows that v(t, x) ≤ 0 on [0, T ]× R by letting h→∞. This
means that u(t, x) ≤ δw(t, x) and we conclude that thus (by letting δ ↓ 0)
u(t, x) ≤ 0 for all (t, x) ∈ [0, T ]×R. Play now the same game with the function
u′ defined by u′(t, x) = u(t + T, x) for t ∈ [0, T ]. Clearly also u′ satisfies the
conditions of the theorem, so we conclude that u′(t, x) ≤ 0 and hence u(t, x) ≤ 0
for (t, x) ∈ [T, 2T ]× R. Iteration of this procedure concludes the proof. �

Corollary A.15 Under the conditions of Theorem A.14 the heat equation with
initial condition u(0, ·) = f admits at most one solution.

Proof Suppose that u and u′ are two solutions, then their difference v = u−u′
is a solution to the heat equation with initial condition v(0, x) = 0. A double
application of Theorem A.14 yields the result. �

A.9 Exercises

A.1 Let X be a random variable with P(X ≥ 0) = 1 and P(X > 0) > 0.

(a) Show that there exists n ∈ N such that P(X > 1/n) > 0. (Reason by
contradiction, assume that P(X > 1/n) = 0 for all n ∈ N.)

(b) Show that EX > 0.

(c) Suppose X is such that P(X ≥ 0) = 1 and EX = 0. Show that it follows
that P(X > 0) = 0, equivalently P(X = 0) = 1.

A.2 Show by computation that the density of a non-degenerate multivariate
normal random vector has integral equal to 1.

A.3 Let Z be a standard normal random variable. Show by integration that
E exp(uZ) = exp( 1

2u
2) for u ∈ R. If X has a normal N(µ, σ2) distribution,

what is E exp(uX)?

A.4 Let X have the standard normal distribution and φ(λ) = E exp(iλX), for
λ ∈ R.

(a) Argue that φ′(λ) = iE (X exp(iλX)).

(b) Show (use integration by parts) that φ′(λ) = −λφ(λ).

(c) Conclude that φ(λ) = exp(− 1
2λ

2).

(d) Let X ∼ N(µ, σ2). Show that φ(λ) = exp(iµλ− 1
2σ

2λ2).

A.5 Let Z be a random variable with N(µ, σ2) distribution. Determine m(u) =
E euZ (m is called the moment generating function of Z). Hint: Write the
expectation as an integral with integration variable z and apply the substitution

y = z−µ−uσ2

σ .

A positive random variable Z is said to have a log-normal distribution with pa-
rameters µ and σ2 if logZ has a N(µ, σ2) distribution. What is the expectation
of a log-normally distributed random variable with parameters µ and σ2?

A.6 Show by computation of the integral that Equation (A.2) holds for standard
normal random variables.

A.7 Use characteristic functions to show that for a multivariate normal random
vector X with X> = (X>1 , X

>
2 ) the components are independent iff they are

uncorrelated.
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A.8 Let for each n ∈ N the random variable Xn be degenerate in 1/n. Show
that E f(Xn) → f(0) for every (bounded) continuous function f . Determine
the limit random variable X to which the Xn converge weakly. Show also that
the distribution functions Fn of Xn converge in all x ∈ R. Is the limit function
the distribution function X?

A.9 Define for x ∈ R the functions Rn by Rn(x) = eix −
∑n
k=0(ix)k/k!. Show

that |R0(x)| ≤ min{2, |x|}, Rn(x) = i
∫ x

0
Rn−1(t) dt and finally that the esti-

mates (A.3) and (A.4) are valid.

A.10 Suppose that X1, X2, . . . converges in distribution to the standard normal
distribution. Let (an) and (bn) be convergent sequences in R with limits a and
b. Show that limn→∞ P(an < Xn ≤ bn) = Φ(b)− Φ(a).

A.11 Finish the proof of Theorem A.5.

A.12 Prove Theorem A.8.

A.13 Prove Proposition A.9.

A.14 Let X and Y be finite valued random variables and f a function defined
on the range of X, and let f̂(Y ) := E [f(X)|Y ].

(a) Write F = f̂(Y ). Show that (A.6) holds, with (A.7) as its consequence.

(b) Conversely, if f̂ is a function defined on the range of Y with the property

of Equation (A.6). Show that f̂(y) = E [f(X)|Y = y] for all y with P(Y =
y) > 0.

A.15 Let X1, X2, . . . be an independent sequence with EXn = 0 for all n. Let
for each n the random variable Mn be defined by Mn =

∑n
k=1Xk. Show that

M is martingale w.r.t. the filtration FX .

A.16 Let X1, X2, . . . be independent random variables with EXi = 1 for all i.
Define Pn =

∏n
i=1Xi and let Fn = σ(X1, . . . , Xn) (n ≥ 1). Show that the Pn

form a martingale sequence.

A.17 Show that the process V defined by Equation (A.11) is a martingale.

A.18 Let Xn be multivariate normal random vectors, with expectations µn and
covariance matrices Σn. Suppose that the Xn converge in L2-sense to a random
vector X. Show that also X has a multivariate normal distribution. What are
the expectation and covariance matrix of X?

A.19 Let u : R2 → R be given by u(t, x) = αt+x2. Note that u is a solution to
the heat equation ut = 1

2αuxx. Consider the region D = {(t, x) : t > 0, |x| < h},
where h > 0. Find (for different values of α) the points of D̄ where u attains a
maximum. Make a sketch of the level sets of u.

A.20 Here is an example of nonunicity of solutions to the heat equation. Let the
initial condition be u(0, ·) = 0. One solution is u(t, x) ≡ 0. Let φ be an infinitely

many times differentiable function. Show that u(t, x) =
∑∞
n=0

x2n

(2n)!
dn

dtnφ(t)

is a solution to the heat equation. Next we make the special choice φ(t) =
exp(−1/t2)1{t>0}. This function belongs to C∞(R) and is ‘flat’ in t = 0, all
derivatives in t = 0 are zero. Note that now u(0, ·) = 0, whereas u(t, x) is not
identically zero for t > 0. Why can’t we apply Theorem A.14?
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A.21 Let u ∈ C1,2((0, T ) × R) and continuous on [0, T ] × R. Assume that u
satisfies |u(t, x)| ≤ A exp(B log |x|2) for some A,B > 0 and that u(T, ·) = 0.
If u is a solution to the Black-Scholes partial differential equation, then u is
identically zero on [0, T ]× R.

A.22 Let X and Y be random variables defined on the same probability space
(Ω,F ,P).

(a) Show that X + Y and aX are random variables too, where a ∈ R is a
constant. The space of random variables is thus a vector space over R.

(b) Show that XY is a random variable.

(c) Let f : R → R be a Borel-measurable function. Show that f ◦X (usually
denoted f(X)) is a random variable.

A.23 Show that two versions of the conditional expectation are equal almost
surely: if X̂ and X̂ ′ both satisfy the requirements of Definition A.10, then
P(X̂ = X̂ ′) = 1. Hint: take G = {X̂ > X̂ ′}.

A.24 Prove Proposition A.11 (iii) from the general Definition A.10 of condi-
tional expectation.

A.25 Show the validity of the inequality in (A.9)

A.26 Show that the martingale property (iii) of Definition A.12 and Equa-
tion A.10 are equivalent.

A.27 Prove the validity of Equation A.13.
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