1. If X and Y are independent random variables with $\mathbb{E}|X| < \infty$ and $\mathbb{E}|Y| < \infty$ (assumed to hold throughout this exercise), then the product formula $\mathbb{E}(XY) = \mathbb{E}X \cdot \mathbb{E}Y$ holds. To show this you have to apply (parts of) the standard machine1 a couple of times.

(a) First a special case. Let X be positive but arbitrary otherwise, and $Y = 1_A$ for some set $A \in \mathcal{F}$. Use the standard machine to show that $\mathbb{E}(X1_A) = \mathbb{E}X \cdot \mathbb{P}(A)$.

(b) Prove now, using the previous item and the standard machine again, the product formula for $X \geq 0$ and $Y \geq 0$.

(c) Why are X^+ and Y^+ also independent random variables?

(d) Complete the proof for arbitrary X and Y.

2. Let X and Y be random variables defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and let $\mathcal{G} = \sigma(Y)$.

(a) Show that the collection of events $\{Y \in B\}$, where B runs through the Borel sets $\mathcal{B}(\mathbb{R})$, forms a σ-algebra (so you show that it has all the defining properties of a σ-algebra). This σ-algebra will be denoted \mathcal{H}.

(b) Show the two inclusions $\mathcal{H} \subset \mathcal{G}$ and $\mathcal{G} \subset \mathcal{H}$. For the latter you need the ‘minimality property’ of $\sigma(Y)$.

(c) Let $X = 1_G$ for some $G \in \mathcal{G}$. Find a function $f : \mathbb{R} \rightarrow [0, 1]$ that is Borel-measurable (and check this property!) such that $X = f(Y)$.

(d) Use the standard machine to prove the following result. If X is \mathcal{G}-measurable, then there exists a Borel-measurable function $f : \mathbb{R} \rightarrow \mathbb{R}$ such that $X = f(Y)$.

3. Let X_1, X_2, \ldots be random variables defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Assume that the X_i are nonnegative and let $S_n = \sum_{i=1}^{n} X_i$ for $n \geq 1$. It is known that the S_n are random variables (measurable functions) as well. We define $S(\omega) = \lim_{n \to \infty} S_n(\omega)$, which exists for every $\omega \in \Omega$ but may be infinite.

1Recall that the standard machine is a method of proving along steps: (1) for indicator functions; (2) for nonnegative simple functions; (3) for nonnegative functions by approximation with simple functions (the approximating sequence always exists); (4) general case.
(a) Show that S is a random variable (Hint: show first that $\{S > a\} = \bigcup_{n=1}^{\infty} \{S_n > a\}$ for $a > 0$).

(b) Note that $\mathbb{E} S \leq \infty$ is well defined. Show that $\mathbb{E} S = \sum_{i=1}^{\infty} \mathbb{E} X_i$.

(c) Assume that $\sum_{i=1}^{\infty} \mathbb{E} X_i < \infty$. Show that $\mathbb{P}(S < \infty) = 1$.

4. Let X be a random variable defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. A well known property is that $\mathbb{E} X = 0$ if $X = 0$ a.s. In this exercise you will show this.

(a) Suppose that X assumes finitely many values y_0, y_1, \ldots, y_n and also that $X = 0$ a.s. Show that $\mathbb{E} X = 0$.

(b) Suppose that $X \geq 0$, but also $X = 0$ a.s. Argue by using lower Lebesgue sums and the previous item that $\mathbb{E} X = 0$.

(c) Let X be arbitrary but still $X = 0$ a.s. Show again that $\mathbb{E} X = 0$.

5. Recall the definition of infimum, written as inf. If x_1, x_2, \ldots is a finite or infinite sequence of real numbers, then $x = \inf\{x_1, x_2, \ldots\}$ iff (1) $x \leq x_k$ for all k and (2) if $y > x$, there exists x_k such that $x_k < y$. It may happen that $x = -\infty$. For finite sequences x_1, \ldots, x_n, $\inf\{x_1, \ldots, x_n\}$ is the minimum of the x_k. An example with an infinite sequence is $\inf\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\} = 0$, another example is $\inf\{1, \frac{1}{2}, 1, \frac{1}{3}, 1, \frac{1}{4}, \ldots\} = 0$.

If we have an infinite sequence of random variables X_1, X_2, \ldots, we say that the random variable X is $\inf\{X_1, X_2, \ldots\}$ if for every $\omega \in \Omega$ one has $X(\omega) = \inf\{X_1(\omega), X_2(\omega), \ldots\}$. From now on we assume to have a sequence of nonnegative random variables X_1, X_2, \ldots. For each n we define the random variable $Y_n := \inf\{X_n, X_{n+1}, X_{n+2}, \ldots\}$, also written as $Y_n = \inf_{m \geq n} X_m$.

(a) Show that (each) Y_n is a random variable by considering events like $\{Y_n \geq a\}$.

(b) Show that the Y_n form an increasing sequence of random variables. They then have a limit $Y_\infty \leq \infty$.

(c) Show that $Y_n \leq X_m$ for all $m \geq n$, and conclude that $\mathbb{E} Y_n \leq y_n := \inf\{\mathbb{E} X_n, \mathbb{E} X_{n+1}, \ldots\}$. Note that the y_n form an increasing sequence too.

(d) Show that $\mathbb{E} Y_\infty \leq \lim_{n \to \infty} y_n$. This property is often written as $\mathbb{E} \lim_{n \to \infty} \inf_{m \geq n} X_m \leq \lim_{n \to \infty} \inf_{m \geq n} \mathbb{E} X_m$, and is known as Fatou’s lemma.
In the previous item, a strict inequality may occur. Consider thereto the probability space with $\Omega = (0, 1)$, \mathcal{F} the Borel sets in $(0, 1)$ and \mathbb{P} the Lebesgue measure. We take $X_n(\omega) = n 1_{(0,1/n)}(\omega)$. Show that indeed strict inequality now takes place in Fatou’s lemma (so you compute both sides of the inequality).

6. In this exercise we need limits of sequences of subsets of a given set Ω, which we define in two cases. Suppose that we have an increasing sequence of sets A_n ($n \geq 0$), i.e. $A_n \subset A_{n+1}$ for all $n \geq 0$. Then we define $\overline{A} = \lim_{n \to \infty} A_n := \bigcup_{k=0}^{\infty} A_k$. If the sequence is decreasing, $A_n \supset A_{n+1}$ for all n, we define $\overline{A} = \lim_{n \to \infty} A_n := \bigcap_{k=0}^{\infty} A_k$. We work with a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and we consider an increasing sequence of events A_n (so $A_n \in \mathcal{F}$ for all n). Let $D_0 = A_0$ and $D_n = A_n \setminus A_{n-1}$ for $n \geq 1$.

(a) Show that $\mathbb{P}(A_n) = \sum_{k=0}^{n} \mathbb{P}(D_k)$.

(b) Show that $\overline{A} = \bigcup_{k=0}^{\infty} D_k$.

(c) Show that $\mathbb{P}(A_n) \to \mathbb{P}(\overline{A})$ for $n \to \infty$.

(d) Suppose that events B_n ($n \geq 0$) form a decreasing sequence. Show that $\mathbb{P}(B_n) \to \mathbb{P}(\overline{B})$. (Hint: consider the B_n^c.)

7. Let X, Y be random variables, defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, so they are both \mathcal{F}-measurable.

(a) Let $c \in \mathbb{R}$. Show (make a sketch!) that $\{(x, y) \in \mathbb{R}^2 : x + y > c\} = \bigcup_{q \in \mathbb{Q}} \{(x, y) \in \mathbb{R}^2 : x > q, y > c - q\}$.

(b) Show that $X + Y$ is also \mathcal{F}-measurable. NB: For this it is sufficient to show that $\{X + Y > c\} \in \mathcal{F}$ for all $c \in \mathbb{R}$.

8. Let x_1, x_2, \ldots be a sequence of real numbers. We put, for $n \geq 1$, $\overline{x}_n = \sup\{x_n, x_{n+1}, \ldots\}$ and $\underline{x}_n = \inf\{x_n, x_{n+1}, \ldots\}$. Note that the \overline{x}_n form a decreasing sequence and the \underline{x}_n an increasing one, and hence both sequences have a limit, denoted \overline{x} and \underline{x} respectively. One always has $\overline{x} \geq x$ and $\underline{x} = \inf\{\overline{x}_1, \overline{x}_2, \ldots\}$. Moreover, the original sequence with the x_n has a limit x iff $x = \overline{x} = \underline{x}$.

Consider now a sequence of random variables X_n defined on some $(\Omega, \mathcal{F}, \mathbb{P})$. As these are measurable functions, we can define \overline{X}_n as the function s.t. $\overline{X}_n(\omega) = \sup\{X_n(\omega), X_{n+1}(\omega), \ldots\}$ and likewise \underline{X}_n, \overline{X}, \underline{X}.
(a) Consider \(E_a = \{ X_n \leq a \} \) for arbitrary \(a \in \mathbb{R} \). Show that \(E_a \in \mathcal{F} \) and conclude that \(X_n \) is a random variable (for every \(n \)).

(b) Show that \(X_n \) is a random variable.

(c) Show that \(\overline{X} \) and \(X \) are random variables too.

(d) Show that \(\{ \omega : \lim_{n \to \infty} X_n(\omega) \text{ exists} \} = \{ \omega : \overline{X}(\omega) - X(\omega) \leq 0 \} \) and that this set belongs to \(\mathcal{F} \).

(e) Assume that \(X(\omega) = \lim_{n \to \infty} X_n(\omega) \) exists for every \(\omega \). Show that \(X \) is a random variable.

9. Consider a sequence of random variables \(X_n \) defined on some \((\Omega, \mathcal{F}, \mathbb{P})\) and put \(S_n = \sum_{k=1}^{n} X_k \) for \(n \geq 1 \).

(a) Assume all \(X_n \geq 0 \). Show that \(\mathbb{E} \sum_{k=1}^{\infty} X_k = \sum_{k=1}^{\infty} \mathbb{E} X_k \). Hint: apply the Monotone Convergence Theorem to the \(S_n \).

From here on the assumption that the \(X_n \) are nonnegative is dropped.

(b) Show that \(\mathbb{E} \sum_{k=1}^{\infty} |X_k| = \sum_{k=1}^{\infty} \mathbb{E} |X_k| \).

(c) Assume \(\sum_{k=1}^{\infty} \mathbb{E} |X_k| < \infty \). Show that \(\mathbb{E} \sum_{k=1}^{\infty} X_k = \sum_{k=1}^{\infty} \mathbb{E} X_k \).

10. Consider a probability space and a sequence of events \((E_n)_{n \geq 1}\). The event \(E := \lim \sup E_n \) is defined as \(E = \bigcap_{n=1}^{\infty} U_n \), where \(U_n = \bigcup_{m=n}^{\infty} E_m \).

Note that the \(U_n \) form a decreasing sequence. Further we have \(E^c = \bigcup_{n=1}^{\infty} D_n \), with \(D_n = \bigcap_{m=n}^{\infty} E_m^c \). We also write \(D_n^N = \bigcap_{m=n}^{N} E_m^c \) for \(N \geq n \).

(a) Show that \(\mathbb{P}(E) \leq \mathbb{P}(U_n) \) for every \(n \) and that \(\mathbb{P}(E) = 0 \) if \(\sum_{n=1}^{\infty} \mathbb{P}(E_n) < \infty \).

From now on we assume that the \(E_n \) are independent events.

(b) Show that \(\mathbb{P}(D_n^N) \leq \exp(-\sum_{m=n}^{N} \mathbb{P}(E_m)) \). [Recall \(e^{-x} \geq 1 - x \].

(c) Assume further also that \(\sum_{n=1}^{\infty} \mathbb{P}(E_n) = \infty \). Show that \(\mathbb{P}(D_n) = 0 \) for all \(n \) and deduce that \(\mathbb{P}(E) = 1 \).

The conclusions in (a) and (c) are together known as the Borel-Cantelli lemma.

11. Consider a probability space \((\Omega, \mathcal{F}, \mathbb{P})\) on which a random variable \(X \) is defined with \(\mathbb{E} |X| < \infty \). Let \(\mathcal{G} \) be a sub-\(\sigma\)-algebra of \(\mathcal{F} \) and let \(\bar{X} = \mathbb{E}[X|\mathcal{G}] \).
(a) Show that $E \hat{X}^+ \leq E |X| \mathbf{1}_{\{\hat{X} > 0\}}$. Hint: use $x^+ = x \mathbf{1}_{\{x > 0\}}$ and the definition of conditional expectation.

(b) Show that $E |\hat{X}| \leq E |X|$.

12. Consider the Pareto distribution with parameters $\alpha, \mu > 0$. This distribution has density

$$p_{\alpha, \mu}(x) = \frac{\alpha \mu^\alpha}{x^{\alpha+1}} \mathbf{1}_{\{x \geq \mu\}}.$$

Let Y_1, \ldots, Y_n be a sample from this distribution, and $X_i = \log Y_i$, $i = 1, \ldots, n$. It is possible to show that $E X_1 = \log \mu + \frac{1}{\alpha}$ and $\text{Var} X_1 = \frac{1}{\alpha^2}$. Suppose μ is known.

(a) Let $\hat{\alpha}_n$ be the maximum likelihood estimator of α. Show that $\hat{\alpha}_n = \frac{1}{X_n - \log \mu}$.

(b) Deduce from the Central limit theorem for averages and the Delta method that $\sqrt{n}(\hat{\alpha}_n - \alpha)$ converges in distribution to $N(0, \alpha^2)$.

In the sequel also μ is unknown.

(c) Show that the maximum likelihood estimator of μ is $\hat{\mu}_n = \exp(X_n)$, where $X_n = \min\{X_1, \ldots, X_n\}$.

(d) Show that $X_i - \log \mu$ has an exponential distribution and that $\mathbb{P}(n(X_n - \log \mu) > c) = \exp(-ca)$ for any $c > 0$.

(e) Show that $\mathbb{P}(n(\hat{\mu}_n - \mu) > c) \rightarrow \exp(-ca/\mu)$ for any $c > 0$. [Depending on the method, you may need $\log(1 + x) = x + O(x^2)$ for $x \rightarrow 0$.]

(f) What is the (obvious) maximum likelihood estimator, call it $\hat{\alpha}_n$ again, of α in the present situation? Argue that the limit distribution of $\sqrt{n}(\hat{\alpha}_n - \alpha)$ is the same as in question ??.

13. Let X_1, \ldots, X_n be independent random variables with a $N(\theta, \theta^2)$ distribution. Here $\theta \neq 0$ is an arbitrary real parameter. We consider the maximum likelihood estimator $\hat{\theta}_n$, a maximizer of $M_n(\theta)$, where $M_n(\theta) = \frac{1}{n} \sum_{i=1}^n \log p_\theta(X_i)$ and $p_\theta(X_i)$ the likelihood of θ when X_i is observed and $\theta_0 \neq 0$ is the true parameter. Probabilities or expectations below are taken under the true parameter. It turns out that $\hat{\theta}_n = -\frac{1}{2} \overline{X}_n + \text{sign}(\overline{X}_n) \sqrt{\frac{1}{4} \overline{X}_n^2 + \overline{X}_n^2}$. Here \overline{X}_n is the average of the X_i and \overline{X}_n^2 is the average of the X_i^2. In the computations you may need the following results: $\mathbb{E}_{\theta_0} X^3 = 4\theta_0^3$, $\mathbb{E}_{\theta_0} X^4 = 10\theta_0^4$.

5
(a) Show that $M_n(\theta) = -\frac{1}{2} \log \frac{\theta_0^2}{\theta} - \frac{1}{2n} \sum_{i=1}^n \left(\frac{X_i}{\theta} - 1 \right)^2 + \frac{1}{2n} \sum_{i=1}^n \left(\frac{X_i}{\theta_0} - 1 \right)^2$.

(b) Show: $M_n(\theta) \xrightarrow{P} M(\theta) = -\frac{1}{2} \log \theta^2 + \frac{1}{2} \log \theta_0^2 - \frac{1}{2} \frac{\theta_0^2}{\theta^2} - \frac{1}{2} \frac{(\theta_0 - 1)^2}{\theta}$.

(c) Show that $M(\theta_0) = 0$ and that θ_0 is the maximizer of M.

(d) We expect that $\hat{\theta}_n$ is consistent. Show this by a direct argument, using the law of large numbers for \bar{X}_n and \bar{X}_n^2.

(e) Let $\Psi_n(\theta) = \dot{M}_n(\theta)$ and $\Psi(\theta) = \dot{M}(\theta)$. What would you expect (ignoring certain conditions) for the asymptotic variance of $\hat{\theta}_n$?

(f) Show that the Fisher information I_{θ_0} equals $3 \theta_0^{-2}$.

(g) The central limit theorem gives $\sqrt{n} \left(\frac{\bar{X}_n - \theta_0}{\theta^2} \right) \xrightarrow{D} N(0, \Sigma(\theta_0))$, where $\Sigma(\theta_0) = \begin{pmatrix} \theta_0^2 & 2 \theta_0^3 \\ 2 \theta_0^3 & 6 \theta_0^5 \end{pmatrix}$. Use this and the fact that $\hat{\theta}_n = \phi(\bar{X}_n, \bar{X}_n^2)$ (for which ϕ?) to deduce that indeed $\hat{\theta}_n$ is asymptotically normal with variance given by the inverse of the Fisher information.

14. Consider a probability space (Ω, F, P) on which is defined a random variable X that has a standard exponential distribution, $P(X \leq x) = 1 - e^{-x}$ for $x \geq 0$. Let λ be a positive constant and consider $Z = \lambda \exp\left(-\left(\lambda - 1\right)X\right)$, a positive random variable. Using Z we define a new measure P' on F by $P'(F) = E[1_F Z]$ (theory guarantees that P' is indeed a measure).

(a) Show that $E Z = 1$. Is P' a probability measure?

(b) Show (by computing an integral) that $P'(X \leq x) = 1 - e^{-\lambda x}$. It follows that X has an exponential distribution with parameter λ under P'.

15. Consider a probability space (Ω, F, P) and let X be a nonnegative random variable defined on it. Let h be a monotone increasing function, $h : [0, \infty) \to [0, \infty)$ with $h(0) = 0$. We will need the product space $S = \Omega \times [0, \infty)$ with the product σ-algebra $F \times B[0, \infty)$ and the product measure $P \times \lambda$, where λ is the Lebesgue measure on $B[0, \infty)$.

(a) Show that h is Borel-measurable. [Hint: consider the sets $\{ h \leq c \}$ for $c > 0$; these sets have a nice structure.]

(b) We can extend h to a function on S by putting $h(\omega, x) = h(x)$. Show (use part (a)) that h is $F \times B[0, \infty)$-measurable. In a similar way the identity map on $[0, \infty)$ (i.e. $u \mapsto u$) can be considered $F \times B[0, \infty)$-measurable.
(c) Show that it follows that the set \(E := \{(\omega, u) \in \Omega \times [0, \infty) : h(X(\omega)) \geq u\} \) is \(\mathcal{F} \times \mathcal{B}[0, \infty) \)-measurable.

(d) Use the set \(E \) above and Fubini’s theorem to show that \(E h(X) = \int_0^\infty (1 - F(h^{-1}(u))) \, du \), where \(F \) is the distribution function of \(X \) and \(h^{-1} \) is the inverse function of \(h \).

16. Consider a probability space \((\Omega, \mathcal{F}, \mathbb{P})\) on which is defined a random variable \(X \). Assume \(\mathbb{E}|X| < \infty \), \(G \) a sub-\(\sigma \)-algebra of \(\mathcal{F} \) and let \(\hat{X} \) be (a version of) \(\mathbb{E}[X|G] \).

(a) Show that \(\hat{X} \leq \mathbb{E}[|X| |G] \) and conclude that \(|\hat{X}| \leq \mathbb{E}[|X| |G] \).

(b) Let \(f \) be a convex differentiable function. Then for every \(x, x_0 \) it holds that \(f(x) \geq f(x_0) + f'(x_0)(x - x_0) \). Note that \(y = f(x_0) + f'(x_0)(x - x_0) \) gives the tangent line of \(f \) at \(x_0 \). Verify this inequality by a sketch for \(f(x) = |x|^2 \). Use the inequality with \(x = X \) and \(x_0 = \hat{X} \), assuming that \(\mathbb{E}|X|^p < \infty \), to show that \(\mathbb{E}|X|^p \geq \mathbb{E}|\hat{X}|^p \) for \(p > 1 \).

Consider also a sequence \((G_n)\) of sub-\(\sigma \)-algebras of \(\mathcal{F} \) and let, for each \(n \), \(X_n \) be (a version of) the conditional expectation \(\mathbb{E}[X|G_n] \).

(c) Suppose that for some \(a > 0 \) it holds that \(\mathbb{E}|X|^{1+a} < \infty \). Show that \(|X_n|1_{|X_n|>m} \leq \frac{|X_n|^{1+a}}{m^a} \) and deduce that \(\sup_n \mathbb{E}|X_n|1_{|X_n|>m} \to 0 \) for \(m \to \infty \). [A sequence \((X_n)\) with this property is said to be uniformly integrable.]

17. Under certain conditions, among them continuous dependence of \(I_0 \) on \(\theta \), one has that \(\sqrt{n}(\hat{\theta}_n - \theta) \) has an asymptotically normal \(\mathcal{N}(0, I_0) \) distribution. Here \(\hat{\theta}_n \) is the maximum likelihood estimator, which is assumed to be consistent, based on a sample from a distribution with density \(p_{\theta_0} \) and \(\theta_0 \) is one-dimensional.

(a) Show that \(\sqrt{n}I_{\hat{\theta}_n}(\hat{\theta}_n - \theta_0) \to N(0, I_0) \).

Consider a sample \(X_1, \ldots, X_n \) from an exponential distribution with density \(\frac{1}{\theta} \exp(-x/\theta) \). Later we will use the different parametrization with \(\lambda = 1/\theta \). Recall that \(\mathbb{E}X_1 = \theta_0 \) and \(\text{Var} X_1 = \theta_0^2 \). \(\theta_0 \) is the ‘true’ parameter. Consider the maximum likelihood estimator \(\hat{\theta}_n \).

(b) Show by using the ordinary central limit theorem that \(\sqrt{n}(\hat{\theta}_n - \theta_0) \to N(0, \theta_0^2) \).
(c) Compute the maximum likelihood estimator \(\hat{\lambda}_n \) of \(\lambda = 1/\theta_0 \) and show by the delta method that \(\sqrt{n}(\hat{\lambda}_n - \lambda_0) \sim N(0, \lambda_0^2) \).

(d) Compute (under the alternative parametrization) the Fisher information \(I_{\lambda_0} \) and show that the answer of question ?? agrees with the general result on the asymptotic behaviour on maximum likelihood estimators.

(e) Give a confidence interval of level \(1 - \alpha \) for \(\theta_0 \).

18. In the formula for the asymptotic distribution of the Huber estimator one needs the derivative \(V_\theta \) w.r.t. \(\theta \) of \(P_{\psi_\theta} = \int \psi(x-\theta)p(x)\,dx \), where \(\psi \) is the usual Huber function and \(p \) a probability density function.

We define the measure \(\mu \) on \(B(\mathbb{R}) \) by \(\mu(B) = \int_B 1_{[-k,k]}(x)\,dx \) (the integral can be seen as a Riemann integral and as an integral w.r.t. the Lebesgue measure \(\lambda \)). The function \(\psi \) and the measure \(\mu \) are related by \(\psi(x) + k = \mu((-\infty,x]) = \int_{(-\infty,x]} \,d\mu \). It follows that \(\mu \ll \lambda \) and for a measurable function \(h \) for which the integrals exist, one has \(\mu(h) = \int 1_{[-k,k]}(x)h(x)\,dx \).

(a) Understanding that \(\psi(x-\theta) \) can be written as an integral minus the constant \(k \), show by application of Fubini’s theorem that \(P_{\psi_\theta} = k - \int_{-k}^k F(u+\theta)\,du \), where \(F \) is the distribution function with density \(p \).

(b) Show that \(V_\theta = F(\theta - k) - F(\theta + k) \).

(c) As an alternative to the ordinary Huber function, one can also use the scaled Huber function \(\bar{\psi}_k = \frac{1}{k} \psi \). Note that \(\lim_{k \to 0} \bar{\psi}_k(x) = \text{sign}(x) \). Show that the asymptotic distribution of the Huber estimator doesn’t change if we replace \(\psi \) by \(\bar{\psi}_k \) in the estimation procedure.

(d) Let \(\bar{V}_{\theta,k} \) be the derivative of \(\int \bar{\psi}_k(x-\theta)p(x)\,dx \). Compute the limit, you may assume that \(p \) is continuous, of \(\bar{V}_{\theta,k} \) for \(k \to 0 \). Why can you expect this result?

19. Consider a probability space \((\Omega, \mathcal{F}, \mathbb{P}) \) and let \(X \) be a nonnegative random variable defined on it. For \(t \geq 0 \) put \(\phi(t) = \mathbb{E} \exp(-tX) \).

(a) Show that \(0 \leq \phi(t) \leq 1 \) for all \(t \geq 0 \).

(b) Show (use dominated convergence) that \(\phi \) is continuous at any \(t \geq 0 \), i.e. \(\lim_{h \to 0} \phi(t+h) = \phi(t) \). [Note: for \(t = 0 \) one only has right continuity.]
(c) Assume $\mathbb{E} X < \infty$ and consider $r(h) := \frac{1}{h}(\phi(t) - \phi(t + h)) = \frac{1}{h}\mathbb{E}(e^{-tX}(1 - e^{-hX}))$ for any fixed t and h such that $t + h \geq 0$. Show that $r(h) \to \mathbb{E}[e^{-tX}]$ for $h \to 0$. Deduce that $\phi'(t) = -\mathbb{E}[e^{-tX}]$. [You may use that $|e^{-a} - e^{-b}| \leq |a - b|$ for $a, b \geq 0$ and $\frac{1}{h}(1 - e^{-hu}) \to u$ for $h \to 0$.]

(d) Assume that $\mathbb{E} X^2 < \infty$. Knowing what $\phi'(t)$ is, you show that $\phi''(t) = -\mathbb{E}[e^{-tX}X^2]$.

(e) Look at $\phi(0)$, $\phi'(0)$ and $\phi''(0)$. Guess what $\phi^{(k)}(0)$ should be ($k \in \mathbb{N}$), and what the needed assumption should be.

20. Let f, f_1, f_2, \ldots be density functions of probability distributions on $(\mathbb{R}, \mathcal{B})$, they are nonnegative, measurable and their integrals w.r.t. the Lebesgue measure λ equal 1.

(a) Show that $(f_n - f)^- \leq f$ and $|f_n - f| = (f_n - f) + 2(f_n - f)^-.$

(b) Assume that $f_n \to f$ a.e. Show that $\int |f_n - f| \, d\lambda \to 0$.

(c) Assume that $f_n \to f$ a.e. Show that $F_n(x) \to F(x)$ for all $x \in \mathbb{R}$.

21. Assume that X, X_1, X_2, \ldots are \mathbb{R}^1-valued random variables. They have the property that $\lim_{n \to \infty} \mathbb{E} h(X_n) = \mathbb{E} h(X)$ for every bounded and continuous function h on \mathbb{R}. For every $x \in \mathbb{R}$ and $m \in \mathbb{N}$ we define $h_{x,m} : \mathbb{R} \to [0, 1]$ by

$$h_{x,m}(u) = \begin{cases}
1 & \text{if } u < x, \\
1 + m(x - u) & \text{if } x \leq u \leq x + \frac{1}{m}, \\
0 & \text{if } u > x + \frac{1}{m}.
\end{cases}$$

Note that $1_{(-\infty, x]}(u) \leq h_{x,m}(u) \leq 1_{(-\infty, x + \frac{1}{m}]}(u)$ (draw a picture, if you like).

(a) Show that $\mathbb{P}(X_n \leq x) \leq \mathbb{E} h_{x,m}(X_n)$, $\mathbb{E} h_{x,m}(X) \leq \mathbb{P}(X \leq x + \frac{1}{m})$, and conclude that $\lim \sup_{n \to \infty} \mathbb{P}(X_n \leq x) \leq \mathbb{P}(X \leq x + \frac{1}{m})$.

(b) Show that $\lim \inf_{n \to \infty} \mathbb{P}(X_n \leq x) \geq \mathbb{P}(X \leq x - \frac{1}{m})$.

(c) Show that $X_n \Rightarrow X$.

22. Let ψ be the usual Huber function (depending on some $k > 0$),

$$\psi(u) = \begin{cases}
-k & \text{if } u < -k, \\
u & \text{if } -k \leq u \leq k, \\
k & \text{if } u > k.
\end{cases}$$
We also have a sample X_1, \ldots, X_n of IID random variables with a common density function p_{θ_0} that is everywhere strictly positive. The parameter θ_0 is to be estimated. We consider for $\theta \in \mathbb{R}$ the random variables $\Psi_n(\theta) = \frac{1}{n} \sum_{i=1}^{n} \psi(X_i - \theta)$ for $\theta \in \mathbb{R}$, and, with $\psi_0(x) = \psi(x - \theta)$, $\Psi(\theta) = \mathbb{E} \Psi_n(\theta) = \mathbb{E} \psi_0(X_1) = P \psi_0$.

(a) The equation $\Psi_n(\theta) = 0$ has a solution, $\hat{\theta}_n$ say. Why?

(b) Show by a direct computation of the expectation $\mathbb{E} \psi_0(X_1)$ (you have to compute an integral) that $\Psi(\theta) = k - \int_{\theta-k}^{\theta+k} F_{\theta_0}(x) \, dx$, where F_{θ_0} is the distribution function of p_{θ_0}. [The integral you can compute as the sum of three integrals, one of them you further compute using integration by parts. Or, you do integration by parts on a single integral.]

It is now also given that $p_{\theta_0}(x) = p(x - \theta_0)$, where p is a density function that is symmetric around zero.

(c) Show that $\Psi(\theta) < 0$ for every θ and that $\Psi(\theta) = 0$ iff $\theta = \theta_0$. [In your answer you may first show that $\Psi(\theta_0)$ is the integral of an odd function; recall that f is odd if $f(-x) = -f(x)$.]

(d) Argue that $\hat{\theta}_n$ is a consistent estimator of θ_0.

(e) Show that $\sqrt{n}(\hat{\theta}_n - \theta_0)$ is asymptotically normal with variance σ^2 equal to
$$
\sigma^2 = \frac{\int_{-k}^{k} x^2 p(x) \, dx + k^2 \int_{|x| \geq k} p(x) \, dx}{(\int_{-k}^{k} p(x) \, dx)^2}.
$$

23. Let X_1, \ldots, X_n be a sample from a distribution with a positive and finite variance σ^2. Independently from this sample there is another sample Y_1, \ldots, Y_{2n} from a distribution with positive and finite variance τ^2. Note that in the second case the sample size is twice as big as in the first case. X_i and Y_i are one dimensional. The parameter σ^2 is estimated by $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2$ and τ^2 is estimated by $\hat{\tau}^2 = \frac{1}{2n} \sum_{i=1}^{2n} (Y_i - \bar{Y})^2$. It is known that $\sqrt{n}(\hat{\sigma}^2 - \sigma^2)$ has a limit law which is normal with variance equal to $\kappa_X - \sigma^4$, where $\kappa_X = \mathbb{E} (X_1 - \mathbb{E} X_1)^4$, which is assumed to be finite (in what follows only the constant κ_X itself matters). Of course there is a parallel result for $\hat{\tau}^2$ (but note again the different sample size there).

(a) What is the limit law of the random vector $\sqrt{n} \left(\frac{\hat{\sigma}^2 - \sigma^2}{\hat{\tau}^2 - \tau^2} \right)$?
(b) We are interested in estimating the ratio \(r = \sigma^2 / \tau^2 \) which we do by \(\hat{r} = \hat{\sigma}^2 / \hat{\tau}^2 \). What is the limit law of \(\sqrt{n}(\hat{r} - r) \)? [There is a certain method to apply here.]

(c) If the distribution of the \(X_i \) is normal, then it is known that \(\kappa_X = 3\sigma^4 \) and a similar result holds for normal \(Y_i \). Show that in this case the limit variance of \(\sqrt{n}(\hat{r} - r) \) is equal to \(3\sigma^4 / \tau^4 \).

(d) Give a \((1 - \alpha)\)-confidence interval for \(r \) under the normality assumptions of the previous item.

24. Consider a probability space \((\Omega, \mathcal{F}, \mathbb{P})\). Let \(E_1, E_2, \ldots \) be an arbitrary sequence of events, put \(U_n = \bigcup_{m \geq n} E_m, n \geq 1 \).

(a) Write the limit \(U \) of the \(U_n \) in terms of the \(E_n \).

(b) Show the following. If \(\sum_{n \geq 1} \mathbb{P}(E_n) < \infty \), then \(\mathbb{P}(\lim \sup E_n) = 0 \). [Hint: Find upper and lower bounds of \(\mathbb{P}(U_n) \).]

It is further assumed that the \(E_n \) are independent events (then also their complements \(E_n^c \) are independent) and \(\sum_{n \geq 1} \mathbb{P}(E_n) = \infty \). Put \(D_n^N = \bigcap_{m=n}^N E_m^c \) for \(N \geq n \geq 1 \).

(c) Show that \(\mathbb{P}(D_n^N) \leq \exp(-\sum_{m=n}^N \mathbb{P}(E_m)) \). [Hint: it holds that \(1 - x \leq e^{-x} \).]

(d) Let \(D_n^\infty = \bigcap_{m=n}^\infty E_m^c \). Show that \(\mathbb{P}(D_n^\infty) = 0 \).

(e) Show that \(\mathbb{P}(\lim \inf E_n^c) = 0 \).

(f) Show that \(\mathbb{P}(\lim \sup E_n) = 1 \).

25. Let \(X_1, X_2, \ldots \) be a sequence of nonnegative random variables, defined on a probability space \((\Omega, \mathcal{F}, \mathbb{P})\), and put \(S_\infty = \sum_{i=1}^\infty X_i \). We also have the measurable space \((\mathbb{N}, \mathcal{N}, \tau)\), where \(\mathbb{N} \) is the set of positive integers, \(\mathcal{N} \) is the power set of \(\mathbb{N} \) and \(\tau \) the counting measure.

We consider the product set \(\mathbb{N} \times \Omega \) with the product \(\sigma \)-algebra \(\mathcal{N} \times \mathcal{F} \) and the product measure \(\tau \times \mathbb{P} \). On the product set we define the mapping \(X : \mathbb{N} \times \Omega \to \mathbb{R} \) by \(X(k, \omega) = X_k(\omega) \). Let, for a given Borel set \(B \) in \(\mathbb{R} \), \(A := X^{-1}[B] = \{(k, \omega) : X(k, \omega) \in B\} \) and \(A_k := X_k^{-1}[B] = \{\omega : X_k(\omega) \in B\} \), for \(k \in \mathbb{N} \). Note that \(A = \bigcup_{k \in \mathbb{N}} \{k\} \times A_k \), i.e. \((k, \omega) \in A \) iff \(\omega \in A_k \).

(a) Why are the sets \(\{k\} \times A_k \) above elements of \(\mathcal{N} \times \mathcal{F} \)?

(b) Show that \(X \) is a measurable mapping on \(\mathbb{N} \times \Omega \) with the product \(\sigma \)-algebra \(\mathcal{N} \times \mathcal{F} \), i.e. the set \(A \) above belongs to \(\mathcal{N} \times \mathcal{F} \) (for any Borel set \(B \)).
(c) Show by an application of Fubini’s theorem (recall that summation is an example of Lebesgue integration) that \(E S_\infty = \sum_{i=1}^{\infty} E X_i \).

(d) If the \(X_i \) are not necessarily nonnegative, give then an integrability condition on the \(X_i \) such that the equality \(E S_\infty = \sum_{i=1}^{\infty} E X_i \) is still true.

26. Consider a probability space \((\Omega, \mathcal{F}, \mathbb{P})\) on which are defined nonnegative random variables \(X, X_n (n \geq 1) \) that have the property that \(X_n \overset{P}{\to} X \) (so \(\mathbb{P}(|X_n - X| > \varepsilon) \to 0 \) as \(n \to \infty \) for every \(\varepsilon > 0 \)). Let \(Y_n = \frac{X_n}{1+X_n} \) and \(Y = \frac{X}{1+X} \) and note that \(Y_n \leq 1 \).

(a) Do we have \(Y_n \overset{P}{\to} Y? \)

(b) Show the two inequalities \(|Y_n - Y| \leq 2 \) and \(|Y_n - Y| \leq |X_n - X| \).

(c) Show that \(E |Y_n - Y| \leq 2 \mathbb{P}(|X_n - X| > \varepsilon) + \varepsilon \) for every \(\varepsilon > 0 \).

(d) Show that \(Y_n \overset{L_1}{\to} Y \), i.e. \(E |Y_n - Y| \to 0 \).

27. Consider a sample from exponential distribution, i.e. one has an IID sequence \(X_1, \ldots, X_n \) where all \(X_i \) have a density \(p_\lambda(x) = \lambda e^{-\lambda x} \) for \(x \geq 0 \) and a parameter \(\lambda > 0 \). Along with the \(X_i \) one also observes \(Y_i = \cos X_i \), \(i = 1, \ldots, n \). Probabilities, expectations, etc. depending on \(\lambda \), when necessary, are denoted \(\mathbb{P}_\lambda, \mathbb{E}_\lambda \), etc. and \(\overline{Y}_n \) is the average of the \(Y_i \).

(a) Show that \(\mathbb{E}_\lambda Y_i = \frac{\lambda^2}{1+\lambda^2} \) [Hint: use two times integration by parts, for which you may want to use that \(\frac{d\sin x}{dx} = \cos x \) and \(\frac{d\cos x}{dx} = -\sin x \).]

(b) Show that the moment estimator using the \(Y_i \) as (transformed) observations is \(\hat{\lambda}_n = \sqrt{\frac{\overline{Y}_n}{1-\overline{Y}_n}} \), provided that \(\overline{Y}_n \in (0,1) \).

(c) Show that \(\overline{Y}_n < 1 \) a.s. and show by invoking the Law of Large Numbers (LLN) for \(\overline{Y}_n \) that \(\overline{Y}_n \to 0 \) with probability tending to 1.

(d) Show by using the above LLN that \(\hat{\lambda}_n \overset{P}{\to} \lambda \) (so, the \(\hat{\lambda}_n \) are consistent estimators of \(\lambda \)).

The standardized moment estimator \(\sqrt{n}(\hat{\lambda}_n - \lambda) \) has a limit law, which is normal with variance \(\frac{(1+\lambda^2)^4}{4\lambda^2} \sigma^2(\lambda) \), where \(\sigma^2(\lambda) = \text{Var}_\lambda(Y_1) \). [In fact \(\sigma^2(\lambda) = \frac{5\lambda^2+2}{(\lambda^4+2)(\lambda^4+1)^2} \), which we take for granted.] Below you are asked to provide two justifications of this result.
(e) Show by application of the theory of moment estimators that the postulated limit law is correct. [If it is convenient for you, you rename the above λ as λ_0, the ‘true’ parameter.]

(f) Show by application of the theory for M-estimators that the postulated limit law is correct. [You don’t have to verify the conditions of the theorem you’d like to use; just blindly apply the assertions.]