Measure theory and stochastic processes
Additional exercises
1. Let $A = \{A_1, A_2, A_3\}$ be non-empty sets that form a partition of a set Ω. Write down all elements of $\sigma(A)$. Let B_1, B_2 be two subsets of Ω such that $B_1 \cap B_2$ and $(B_1 \cup B_2)^c$ are non-empty. Write down all elements of $\sigma(\{B_1, B_2\})$.

2. Let Ω be a nonempty set and let for each i in some (index) set I F_i be a σ-algebra on Ω. Let C be some collection of subsets of Ω. In alternative wordings compared to Section A.2, but in content the same, we define $\sigma(C)$ to be the smallest σ-algebra that contains C, i.e. the intersection of all σ-algebras that contain C.

(a) Show that $\bigcap_{i \in I} F_i$ (the intersection of all σ-algebras F_i) is a σ-algebra.

(b) Why is there is at least one σ-algebra that contains C?

(c) Here we take $\Omega = \mathbb{R}$. Argue that $B(\mathbb{R})$ is equal to $\sigma(C)$, where $C = \{(-\infty, a], a \in \mathbb{R}\}$.

(d) Consider a function $X : \Omega \to \mathbb{R}$. Let C be a collection of subsets of \mathbb{R} that is such that $\sigma(C) = B(\mathbb{R})$. Suppose that all sets $\{X \in C\}$ (for $C \in C$) belong to a σ-algebra F on Ω. Show that X is a random variable (Definition 1.1.5).

(e) Suppose that for all $a \in \mathbb{R}$ the set $\{X = a\}$ belongs to a σ-algebra F on Ω. Show that X is a random variable.

(f) Suppose that for all $a \in \mathbb{R}$ the set $\{X < a\}$ belongs to a σ-algebra F on Ω. Is X a random variable?

3. Let μ_X be the distribution of a random variable X, see Definition 1.2.3. Show that μ_X is a probability measure on the Borel sets of \mathbb{R}.

4. Assume that the random variable X takes on the different values x_0, x_1, \ldots in \mathbb{R} and that $\mathbb{E}|X| < \infty$. Show that $\mathbb{E}X = \sum_{k=0}^{\infty} x_k \mathbb{P}(X = x_k)$. Special case: X is such that $\mathbb{P}(X = k) = \frac{e^{-\lambda} \lambda^k}{2 \pi k!}$ for $k \in \mathbb{Z} \setminus \{0\}$ and $\mathbb{P}(X = 0) = e^{-\lambda}$. What is $\mathbb{E}X$?

5. Consider the setting of Theorem 1.6.1. Show that \tilde{P} and \mathbb{P} are equivalent iff $\mathbb{P}(Z > 0) = 1$.

6. Show that $\sigma(X)$ as defined in Definition 2.1.3 is indeed a σ-algebra and that $\sigma(X) \subset F$ if X is a random variable on (Ω, F, \mathbb{P}) (there is almost nothing to prove).

7. Let X be a nonnegative random variable. Show that $\int X d\mathbb{P} \geq \frac{\mathbb{P}(X > 1/n)}{n}$.

8. Show (use the previous exercise) that the Radon-Nikodym derivative Z of Theorem 1.6.7 satisfies $Z \geq 0$ \mathbb{P}-a.s. (integrate over the set $\{Z < 0\}$). Use the equivalence of \tilde{P} and \mathbb{P} to show that even $Z > 0$ \mathbb{P}-a.s. Show also that for a possibly different Z' satisfying the assertions of Theorem 1.6.7 one has that $\mathbb{P}(Z > Z') = 0$ and therefore $\mathbb{P}(Z = Z') = 1$. 1
9. Show (use the previous exercise) that the random variable \(Y \) of Theorem B.1 is a.s. nonnegative. Alternative, you can modify the proof of Theorem B.1 with the integrand \(\frac{X+a}{\varepsilon X+a} \) for arbitrary rational \(a > 0 \) instead of \(\frac{X+1}{\varepsilon X+1} \). This yields the existence of \(G \)-measurable random variables \(Y_a \). Show that they are a.s. all the same. So we can define an a.s. limit of them, \(Y \) say. Show that it follows that \(Y \geq 0 \) a.s.

10. Let \(\Pi = \{ A_1, \ldots, A_n \} \) be a partition of \(\Omega \), i.e. the \(A_i \) are non-empty, \(A_i \cap A_j = \emptyset \) for \(i \neq j \) and \(A_1 \cup \cdots \cup A_n = \Omega \). Let \(G = \sigma(\Pi) \) and \(X : \Omega \to \mathbb{R} \). Show that \(X \) is constant on each \(A_i \) iff \(X \) is \(G \)-measurable. If \(X \) is constant on the whole set \(\Omega \), what is \(\sigma(X) \)?

11. Let \((Z_t)_{t \geq 0} \) be a sequence of independent random variables, also independent of another random variable \(X_0 \). Assume that the following recursion hold for some ‘good’ measurable functions.

\[
X_{t+1} = f(X_t, Z_t), \quad t \geq 0.
\]

Find a filtration to which the sequence \((X_t) \) is adapted and that \((X_t) \) is a (discrete time) Markov process (w.r.t. this filtration).

12. Use moment generating functions to show that \(W(u) - W(t) \) and \(W(t) - W(s) \) are independent random variables if \(s < t < u \) (of course \(W \) is a standard Brownian motion). Compute also the conditional MGF \(E[\exp(uW(t))|\mathcal{F}(s)] \) for \(s < t \), where \(\{\mathcal{F}(s)\}_{s \geq 0} \) is a filtration for the Brownian motion. What is the conditional distribution of \(W(t) \) given \(\mathcal{F}(s) \)?