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1 Probability from a measure theoretic perspec-
tive

Although it will play no role in this course, for completeness we present an
outline of the basic of foundations probability theory from a measure theoretic
perspective. The central object is a probability space (Ω,F ,P), which we will
explain now.

Think of a probabilistic experiment on the background for which we have Ω
as the set of all possible outcomes. An event is usually understood as a subset of
Ω. But we will require more, the set of all subsets of Ω that deserve to be called
events, denoted F , has to obey certain requirements, it has to be a σ-algebra.
This means that F is such that

• ∅ ∈ F ,

• If A ∈ F , then also its complement Ac is an element of F ,

• If A1, A2, . . . is a sequence of sets in F , then also the union
⋃∞
i=1Ai belongs

to F .

It is a nice exercise to show that also finite unions like A1 ∪ A2 belong to F ,
whenever A1, A2 ∈ F . Also finite and countable intersections A1 ∩ A2 and⋂∞
i=1Ai belong to F , if the Ai belong to it. It follows that from certain events

one can construct new events by taking intersections, unions, and complements,
even countably infinite often. So all set theoretic operations applied to events
yield events again, as long as they are performed at most countably often.

If the set Ω is finite or countable, one usually take the power set of Ω (all
its subsets) as the collection of events F . But if Ω is countably infinite, like
Ω = R or Ω = (0, 1), for technical reasons one takes a smaller collection. In
the latter two examples, one usually takes the Borel sets (denoted B), these are
the sets that can be generated by at most countably often applied set theoretic
operations to all open intervals. For example, if Ω = R, then by definition an
interval (−∞, a) is an element of B, but then also [a,∞). Also every singleton
belongs to B, since {a} = ∩∞n=1(a− 1/n, a+ 1/n). Other sets in B are (−∞, a],
(a, b], [a, b), Q (the set of rational numbers), etc. In fact any ‘normal ’ subset
of R will be in B, although formally there is a tautology here (all sets in B are
‘normal’. . . ).

The notation for the probability of a set A ∈ F is P(A), which resembles the
notation f(x) in case one deals with a function f . Indeed, a probability P, also
known as a probability measure, is a function too, defined on the collection of
events F . More precisely, we say that a function P : F → [0, 1] is a probability
(measure), if

• P(∅) = 0, P(Ω) = 1,

• for disjoint events Ai ∈ F it holds that P(∪∞i=1Ai) =
∑∞
i=1 P(Ai).
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Note that by the property of F being a σ-algebra, automatically the union above
is in F and so its probability is defined. Note also that for disjoint A1 and A2,
both in F , we have the familiar rule P(A1 ∪A2) = P(A1) + P(A2) (you check!).
Other rules for events are P(Ac) = 1−P(A), P(A) = P(A∩B) +P(A∩Bc) and
P(A) =

∑∞
i=1 P(A ∩Bi) if ∪∞i=1Bi = Ω (cutting A up in slices Bi).

A random variable X is by definition a function on Ω, so X : Ω → R,
that is required to be measurable, i.e. {X ∈ B} ∈ F for every Borel set B,
where {X ∈ B} is shorthand notation for {ω ∈ Ω : X(ω) ∈ B}. For example,
every set {X ≤ x} is an element of F for a random variable X (here you take
B = (−∞, x], which indeed belongs to B). In fact, it is possible to show that if
all sets {X ≤ x} (x ∈ R) are elements of F , then X is measurable.

The consequence is that for random variables X now automatically the prob-
abilities P(X ∈ B) = P({ω ∈ Ω : X(ω) ∈ B}) are well defined. Moreover, we
also have the rule P(X ∈ B1 ∪ B2) = P(X ∈ B1) + P(X ∈ B2) for disjoint
B1, B2 in B. The probabilities F (x) := P(X ≤ x) are the values of a function
F : R → [0, 1], called the distribution function of X. Here is a nice exercise:
show that F is non-decreasing and right-continuous. It is a theorem that the
function F uniquely fixes all probabilities P(X ∈ B) for B ∈ B. The collec-
tion of these probabilities form the distribution of X. Moreover the mapping
PX : B → [0, 1] defined by PX(B) := P(X ∈ B) is a probability measure (in the
above sense) on B.

Random vectors X will be considered as vectors of random variables Xi. A
two-dimensional random vector is sometimes denoted as a row (X1, X2) or as

a column

(
X1

X2

)
, depending on the circumstances, or on what is notationally

more convenient.
As said above, this measure theoretic set up will play no role in this course,

but you should have seen once in your life, that also probability theory is based
on definitions and axioms (of which we have only presented the most basic ones),
like any other branch of mathematics.

2 Some facts on stochastic convergence

Inn the next propositions we collect some facts on stochastic convergence. In
particular we first present how the different modes of convergence are related
and how convergence is preserved under transformations.

Proposition 2.1 Let X,X1, X2, . . . and Y1, Y2, . . . be random variables, c a real
constant.

1. If Xn
P→ X, then also Xn

d→ X.

2. If Xn
d→ c, then also Xn

P→ c.

3. If Xn
P→ c, then also g(Xn)

P→ g(c), if g is a continuous at c. Similar

statement for
d→.
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4. If Xn
d→ X and Yn

d→ c, then g(Xn, Yn)
d→ g(X, c), if g is a continuous

function (on R2).

In the next proposition we collect some ‘calculus rules’, that give rules for com-
bining results, when one deals with two ‘convergent’ sequences, even if the modes
of convergence differ.

Proposition 2.2 Let X,X1, X2, . . . and Y1, Y2, . . . be random variables, c a real
constant.

1. If Xn
P→ X and Yn

P→ Y , then also Xn ± Yn
P→ X ± Y .

2. If Xn
P→ X and Yn

P→ Y , then also XnYn
P→ XY , and also Xn/Yn

P→ X/Y
provided P (Y 6= 0) = 1.

3. If Xn
d→ X and Yn

P→ c, then also Xn ± Yn
d→ X ± c.

4. If Xn
d→ X and Yn

P→ c, then also XnYn
d→ Xc, and Xn/Yn

d→ X/c
provided c 6= 0.

3 Consistency of the MLE

If a random variable or vectorX has a (univariate or multivariate) density f(x|θ)
or a pmf p(x|θ), then `(θ|X) denotes the log likelihood. In the density case, we
have `(θ|X) = log f(X|θ). Note the use of capital letters, to emphasize that we
are dealing with random variables here. Below we assume that the parameter θ
belongs to (some subset of) R and that the partial derivatives of `(θ|X) exist.
We denote ˙̀(θ|X) = ∂

∂θ `(θ|X); the notation ῭(θ|X) should now be obvious.
If X = (X1, . . . , Xn) is a sample (independent random variables having the

same distribution, they are iid) with marginal densities f(xi|θ), then `(θ|X) =∑n
i=1 `(θ|Xi). Let θ0 denotes the ‘true’ (the one you want to know by esti-

mation) and θ an arbitrary parameter value. The MLE when one observes a
sample, can be found by maximizing

1

n

n∑
i=1

`(θ|Xi),

an average of iid random variables. By the LLN, this quantity converges in
Pθ0 -probability to their common expectation Eθ0`(θ|X1) =: g(θ). It is then

reasonably to think that the MLE θ̂ converges to the maximum of θ 7→ g(θ).
We show that the latter has a maximum at θ = θ0. The first order condition is
that ġ(θ0) = 0 which we check as follows. First we compute

˙̀(θ|X1) =
∂

∂θ
log f(X1|θ) =

ḟ(X1|θ)
f(X1|θ)

. (3.1)
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Interchanging differentiation and integration (expectation), we have

ġ(θ) = Eθ0 ˙̀(θ|X1)

=

∫
ḟ(x|θ)
f(x|θ)

f(x|θ0) dx.

Hence ġ(θ0) =
∫
ḟ(x|θ0) dx. Interchanging differentiation and integration again,

we obtain ġ(θ0) = ∂
∂θ0

∫
f(x|θ0) dx. This is equal to zero, since the integral

equals one. We conclude ġ(θ0) = 0. To know that θ0 is a maximum, one
has to verify that g̈(θ0) < 0. This can be done along the same lines, as you
should verify, see also Remark 4.3 below. Then we hope that θ0 is the only local
maximum and thus a global maximum. This is actually true, but needs another
argument and an extra condition.

The rough idea is thus that for large n the MLE should be ‘close’ to the
maximizer of θ 7→ g(θ), which is shown to be θ0. Additional mathematics is
needed to justify this rough idea and to conclude that indeed consistency of the

MLE θ̂n holds, when the sample size n tends to infinity: θ̂n
Pθ0→ θ0, whatever the

value of θ0.

4 Fisher information

We define the Fisher information and derive some properties. The importance
of the Fisher information is explained in the next section. Below X is some
random variable, or a random vector or a sample, depending on the context.
We assume that all derivatives that we encounter exist.

Definition 4.1 Let X have a distribution depending on a parameter θ. The
Fisher information about θ contained in X, denoted I(θ|X), is defined by
Eθ
(

˙̀(θ|X)2
)
, usually simply called Fisher information. Note that I(θ|X) ≥ 0.

Proposition 4.2 Under some regularity conditions we have

(i) It holds that Eθ ˙̀(θ|X) = 0.

(ii) The Fisher information also satisfies I(θ|X) = Varθ ˙̀(θ|X).

(iii) An alternative formula is I(θ|X) = −Eθ ῭(θ|X).

(iv) For a sample X = (X1, . . . , Xn) we have

I(θ|X) =

n∑
i=1

I(θ|Xi) = nI(θ|X1).

In this case we usually write I(θ) instead of I(θ|X1) and we have thus
have I(θ|X) = nI(θ).

Proof We give the proof of the first two items for the case where X is a random
variable with a density f(x|θ). If X is higher dimensional you only need more
integrals.
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(i) Recall (3.1) and use X instead of X1. Then

Eθ ˙̀(θ|X) =

∫
ḟ(x|θ)
f(x|θ)

f(x|θ) dx =

∫
ḟ(x|θ) dx =

∂

∂θ

∫
f(x|θ) dx = 0.

Note that we interchanged integration and expectation.
(ii) Recall that for any random variable Y with expectation zero, one has

that VarY = EY 2 and use the previous assertion with Y = ˙̀(θ|X).
(iii) Start with the result of the first assertion, which reads in integral form

0 =
∫

˙̀(θ|x)f(x|θ) dx. Differentiate under the integral sign, use the product
rule and (3.1) to get

0 =

∫ (
῭(θ|x)f(x|θ) + ˙̀(x|θ)ḟ(x|θ)

)
dx

=

∫ (
῭(θ|x)f(x|θ) + ˙̀(x|θ)2f(x|θ)

)
dx

= Eθ ῭(θ|X) + Eθ ˙̀(X|θ)2

= Eθ ῭(θ|X) + I(θ|X),

by definition of I(θ|X). The results follows.
(iv) In case we are dealing with a sample we have with x = (x1, . . . , xn) the

product rule for the multivariate (joint) density f(x|θ) =
∏n
i=1 f(xi|θ). Hence,

by taking logarithms, replacing x by X, one obtains `(θ|X) =
∑n
i=1 `(θ|Xi)

and then by differentiation ˙̀(θ|X) =
∑n
i=1

˙̀(θ|Xi). Note that we now have a
sum of independent random variables and the sum rule for the variance ap-
plies: Varθ ˙̀(θ|X) =

∑n
i=1 Varθ ˙̀(θ|Xi). Knowing the second assertion, we get

I(θ|X) =
∑n
i=1 I(θ|Xi). But since the Xi all have the same distribution, all

I(θ|Xi) are equal to I(θ|X1), which completes the proof. �

Remark 4.3 The function g in the previous section has the property that
g̈(θ0) = −I(θ0|X1) ≤ 0. Show that the equality holds true and conclude that g
has a (local) maximum in θ0.

5 Asymptotics for the MLE

The importance of the Fisher information is mainly because of the following
theorem. Recall the notation of the previous section.

Theorem 5.1 Under regularity conditions (for instance, differentiation of the
likelihood w.r.t. θ is possible, etc.) one has the following central limit theorem

type of result for the distribution of the MLE. Let θ̂n be the MLE based on a
sample of n observations. Then√

nI(θ)(θ̂n − θ)
dθ→ Z,

where the distribution of Z is standard normal.
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Remark 5.2 Two remarks. The convergence in distribution takes place under
the condition that the distribution of θ̂n is used with the parameter value θ, just

as consistency also involves this parameter, when we write θ̂n
Pθ→ θ. This explains

why use the symbol
dθ→ instead of

d→, as we did when discussing convergence in
distribution. The second remark applies to the (exceptional) situation in which√
nI(θ)(θ̂n− θ) would exactly have a N(0, 1) distribution. Then we would have

Eθ(
√
nI(θ)(θ̂n − θ)) = 0 and Varθ

(√
nI(θ)(θ̂n − θ)

)
= 1, which is equivalent

to Eθ θ̂n = θ and Varθ(θ̂n) = 1
nI(θ) , as you easily check. Realizing that these

properties only hold in a certain asymptotic sense (which has to be treated with
care!), we paraphrase them by saying that the MLE is asymptotically unbiased
and has an asymptotic variance equal to 1

nI(θ) .

Sketch of the proof We have for an arbitrary differentiable function f the
Taylor expansion f(y) = f(x) + (y− x)f ′(x) + · · · . Apply this to f(·) = ˙̀(·|X),

y = θ̂n and x = θ and use ˙̀(θ̂n|X) = 0 to get

0 = ˙̀(θ|X) + (θ̂n − θ) ˙̀(θ|X) + · · · ,

where we neglect the higher order remainder terms since θ̂n−θ is small for large
n by consistency of the MLE. It follows that we have the approximation

θ̂n − θ ≈ −
˙̀(θ|X)
˙̀(θ|X)

and therefore, use a bit of elementary algebra,

√
nI(θ)(θ̂n − θ) ≈

1√
nI(θ)

˙̀(θ|X)

− 1
nI(θ)

῭(θ|X)
.

We treat numerator and denominator separately. Let

Zi =
˙̀(θ|Xi)√
I(θ)

.

Then we have EθZi = 0 and Varθ Zi = 1 by Proposition 4.2. Moreover the Zi
are iid. The numerator we can thus rewrite as Nn := 1√

n

∑n
i=1 Zi to which we

apply the Central Limit Theorem. It converges in distribution to a standard

normal random variable Z, Nn
dθ→ Z.

To treat the denominator, call it Dn, we put

Wi = −
῭(θ|Xi)

I(θ)
.

Invoking Proposition 4.2 again, we see that EθWi = 1. Hence Dn = 1
n

∑n
i=1Wi.

By the Law of large numbers (the Wi are iid), Dn converges in probability to

the common expectation of the Wi and we obtain Dn
Pθ→ 1.
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Combining the results for Nn and Dn, we find

Nn
Dn

dθ→ Z,

by the rules (see the slides) for combining convergence in probability and con-
vergence in distribution. �

6 Asymptotic optimality of the MLE

First we treat the Cramér-Rao bound on the variance of an unbiased estimator.

Theorem 6.1 (Cramér-Rao) Let θ̂ = θ̂(X) be an unbiased estimator of θ,
computed from a random vector X. Let I(θ|X) be the Fisher information. Then

the mean squared error of θ̂, which is in this case equal to its variance, satisfies

Varθ θ̂ ≥
1

I(θ|X)
.

In particular, when X = (X1, . . . , Xn) is a sample, then we have Varθ θ̂ ≥ 1
nI(θ) .

Proof Recall that the correlation coefficient ρ = ρ(Y, Z) of a pair of random
variables always lies between −1 and +1, so 0 ≤ ρ2 ≤ 1. This implies that
always

Cov(Y, Z)2 ≤ Var(Y )Var(Z).

We choose Y = ˙̀(θ|X), Z = θ̂(X) and compute for these the variances and
covariance. We know from Proposition 4.2 that Varθ( ˙̀(θ|X)) = I(θ|X). We

are interested in Varθ(θ̂(X)) and so the only thing left to compute is the covari-

ance Covθ( ˙̀(θ|X), θ̂(X)). Since Eθ ˙̀(θ|X) = 0, we have Covθ( ˙̀(θ|X), θ̂(X)) =

Eθ
(

˙̀(θ|X)θ̂(X)
)
. We compute this expectation as an integral (under the tem-

porary assumption that X is real valued). In the one but last equation below

we use that θ̂(X) is unbiased, Eθ θ̂(X) = θ.

Eθ
(

˙̀(θ|X) ˆθ(X)
)

=

∫
˙̀(θ|x)θ̂(x)f(x|θ) dx

=

∫
ḟ(x|θ)
f(x|θ)

θ̂(x)f(x|θ) dx

=

∫
ḟ(x|θ)θ̂(x) dx

=
∂

∂θ

∫
f(x|θ)θ̂(x) dx

=
∂

∂θ
θ

= 1.
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Having computed all relevant quantities, we deduce

1 ≤ I(θ|X)Varθ θ̂(X),

from which the result follows. �

The content of Theorem 6.1 is that no unbiased estimator can have a variance
(which is here equal to the MSE) smaller than 1

I(θ|X) , which can thus be consid-

ered as the best possible (best refers to minimum mean squared error for all θ).
If X is a sample (X1, . . . , Xn), the lower bound on the variance in Theorem 6.1
becomes 1

nI(θ) . Where have we seen this quantity before? Indeed, in Theo-

rem 5.1 on the asymptotic normality of the MLE, and the discussion after this
theorem in Remark 5.2. There we have argued that, from a certain asymptotic
point of view, the MLE is almost unbiased for large n with asymptotic variance
approximately equal to 1

nI(θ) . Hence the MLE achieves for large n, asymptoti-

cally the lowest possible value in the Cramér-Rao theorem. This phenomenon
can be summarized by saying that the MLE is asymptotically optimal for the
mean squared error criterion.

7 Results on multiple regression

Starting point is the multivariate regression model

Y = Xβ + ε,

where Y is an n-dimensional random (column) vector, X a n × p matrix, β
the p-dimensional parameter vector and ε an n-dimensional random vector. We
make the usual assumptions,

• the elements εi of the random vector ε are independent and have a common
N(0, σ2) distribution,

• the matrix X has full rank equal to p (and so X>X is invertible).

Note that ε has a multivariate normal distribution with mean vector zero and
covariance matrix equal to σ2In, where In is the n-dimensional identity matrix.
It then follows that Y has a multivariate normal distribution with mean vector
Xβ and covariance matrix equal to σ2In. The least squares estimator of β is
denoted β̂ and we have

β̂ = (X>X)−1X>Y.

The estimator of βi is the i-th element of β̂, denoted β̂i. One quickly shows that
β̂ is an unbiased estimator of β and

β̂ − β = (X>X)−1X>ε.

Moreover β̂ has a multivariate normal distribution with mean β and covariance
matrix σ2(X>X)−1. It follows that Var β̂i = σ2(X>X)−1ii .
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Define ε̂ = Y −Xβ̂. A simple computation shows that

ε̂ = Qε,

where Q = In − X(X>X)−1X>. Note that Q is symmetric, Q2 = Q and
QX = 0 (verify this!). We will see below that

σ̂2 :=
ε̂>ε̂

n− p

is an unbiased estimator of σ2. This leads to a sensible estimator of Var β̂i,
σ̂2(X>X)−1ii . The main result of this section is the following

Theorem 7.1 In the above regression set up the following hold true.

(i) The random vectors β̂ and the residuals ê are independent.

(ii) The random variable 1
σ2 ε̂
>ε̂ has a χ2-distribution with n − p degrees on

freedom, hence E ε̂>ε̂
n−p = σ2 and σ̂2 is an unbiased estimator of σ2.

(iii) The random variables (i = 1, . . . , p)

Ti :=
β̂i − βi

σ̂
√

(X>X)−1ii

have a t-distribution with n− p degrees of freedom.

Proof We start with a series of preliminary facts, for which we need the square
root R of the positive definite matrix X>X, the unique symmetric matrix that
satisfies R2 = X>X. Note that R is invertible (why?) and let V = R−1X> ∈
Rp×n. We compute V V > = R−1X>XR−1 = Ip and see that the rows of V are
orthonormal vectors. Hence there exists a matrix W ∈ R(n−p)×n whose rows
are also orthonormal vectors such that the matrix

U =

(
V
W

)
is orthogonal of size n× n, so UU> = U>U = In. It then follows that

In =
(
V > W>

)(V
W

)
= V >V +W>W.

Likewise it follows from

In =

(
V
W

)(
V > W>

)
=

(
V V > VW>

WV > WW>

)
that V V > = Ip, WW> = In−p, VW

> = 0.
Let

Z = Uε =

(
V ε
Wε

)
=:

(
Z1

Z2

)
.
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Then Z also has a multivariate normal distribution, with covariance matrix
Cov(Z) = UCov(ε)U> = U(σ2In)U> = σ2UU> = σ2In. We conclude, by an
important property of the multivariate normal distribution, that Z has inde-
pendent components, in particular Z1 and Z2 are independent. Note that Z1 is
p-dimensional and Z2 is (n− p)-dimensional. All these considerations now pay
off.

(i) First we have β̂ = β+ (X>X)−1Xε = β+R−1V ε = β+R−1Z1, a linear
transformation of Z1. Second we have Q = In − V >V = W>W and hence
ε̂ = Qε = W>Z2, a linear transformation of Z2. So, β̂ and ε̂ are independent.

(ii) Note that the Z2 = Wε above has a multivariate normal distribution with
zero expectation vector and covariance matrix σ2In−p, as WW> = In−p. Hence
the n−p components of Z are independent and 1

σZ2 has a multivariate standard
normal N(0, In−p) distribution. It follows that 1

σ2Z
>
2 Z2 has a χ2

n−p-distribution.

But from the proof of (i) we know that ε̂>ε̂ = Z>2 WW>Z2 = Z>2 Z2, from which
the assertion on the distribution follows. Since χ2

n−p has expectation n− p, we

find that EZ>2 Z2

σ2 = n− p and hence E σ̂2 = σ2.

(iii) Let ζi = β̂i−βi
σ
√

(X>X)−1
ii

, i = 1, . . . , p. A bit of rewriting yields

Ti =
ζi√

ε̂>ε̂
σ2 /(n− p)

.

Note the following three facts. The numerator and denominator are indepen-
dent random variables (follows from (i)), the numerator has a standard normal

distribution (why?), whereas in the denominator ε̂>ε̂
σ2 has a χ2-distribution with

n− p degrees of freedom (as stated in (ii)), from which the result follows by the
definition of a t-distribution. �

Remark 7.2 The case with p = 1 in the above theorem is a result that you
have encountered earlier. Verify that this indeed the case, by inspecting how β
and σ̂2 look like in this situation.
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