Financial Stochastics 2002
Exercises
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Week 1

1.

Prove the strong law of large numbers for Brownian motion: % — 0

a.s. Hint: Use Doob’s maximal inequality with p = 2 to deduce that

w; t [ Wi 8 C
Esup;, <1<y, 5+ < 47 and then P(supgn o;con+1 =5 > €) < 5. Finish

the proof by application of the Borel-Cantelli lemma.

. Show that for Brownian motion (according to definition 2.1) it holds that

Wy — Wy is independent of .7-':/‘/ for all t > s. Hint: Let C be the union of
all o-algebras of the form o(Ws,,... , W ), where 0 < s1 < --- < s, <.
Then C is closed under finite intersections. Let D be the sets in FYV that
are independent of W; — W,. Then D is a d-system that contains C.

Let T be a stopping time that is a.s. finite. Define for all £ € N the random
variables T, by T}, = 27¥[2*T + 1] ([] means integer part). Show that the
T}, are stopping times as well and that T, | T a.s.

. Use the reflection principle to show that P(supy<s<; Wi > a) = 2P(W; >

a) for all a > 0.

Show that for two stopping times S and T the identity Fsrr = Fs N Fr
holds.

Let T be a finite stopping time and X an adapted cadlag process. Show
that X is Fp-measurable, if the underlying filtration contains all null
sets of F.



Week 2

1.

Show that every constant map T : @ — [0,00), T = t( say for some tg, is
a stopping time and that Fr = F,.

Show also that for a set F' € F; the random variable ¢ - 1p 4+ 00 - 1pe is a
stopping time.

Show that a map T : Q — [0,00] is a stopping time w.r.t. {F;4 >0 iff
{T <t} e F foralt>0.

Prove that for closed sets I and entirely continuous adapted processes X
the random variables Dr = inf{t > 0 : X; € I'} are stopping times.

. Show that for a right continuous adapted process X, a stopping time T

and a right continuous filtration we have that Xt is Fpr-measurable. Hint:
Do this first for stopping times that take values in a countable set.

Show that a nonnegative local martingale M is a supermartingale. Hint:
Use ‘Fatou’.

Show that a martingale is a local martingale.

If T is s stopping time, then the process 1(g 7] is predictable. Show this,
and deduce that all simple processes are predictable.

Show that for a martingale M € M2 and a simple process H the stochastic
integral HeM belongs to M3 as well and that ||H||(a = ||HeM]||. Prove
that the last equality also holds for H € £2(M).

Show that L?(M) is a Hilbert space.



Week 3

1.

Let M € e¢M3. Show that the map I, : L?(M) — cM3 defined by
Iny(H) = H o M is linear.

. Let T be a stopping time, M € ¢M3 and H € L*(M). Show that (H e

M)T :HI(O,T] .M.

Let M € cMg1oc and H € II(M). Show that the definition of H e M via
stopping times is independent of the chosen sequence of stopping times.

We proved for a bounded X € ¢S the validity of the formula
t
X2 =X2+ 2/ X, dX, + [M];.
0

Show that it also holds for arbitrary X € ¢S. Deduce now the (stochastic)
product rule (integration by parts formula) for X, Y € ¢S.

Let M € eMooc and Z = Zyexp(M — %[M]), for some Zy € Fy. Show
the representation

t
Zy = Zy +/ ZsdMs. (1)
0

Let Y = 1. Show that dY = —Y dM + Y d[M]. Let Z be any process
that can be represented as in equation (1). Use the product rule to show

that ZY = 1, and hence that Z is the only ‘solution’ to (1).

(a) A process X is called progressive if for all ¢ > 0 the maps X* :
[0,] x @ — R defined by X'(s,w) = X(s,w) are B([0,t]) x F;-
measurable. Show that a progressive process is adapted.

(b) Let X be an entirely right continuous adapted process and let ¢} =
kt2=". Define the processes X (") by

X(n)(sa w) = Z X(t}rch w)l(t};_l,tg] (8)
k

Show that X (™ (s,w) — X(s,w) for all (s,w) € [0,1] x Q and that
(5,w) = XM (5,w) is B([0, t]) x Fi-measurable for all n. Deduce that
X is progressive.

Let X be a progressive process and T be a stopping time. Show (use that
a composition of measurable maps is measurable itself) that the stopped
process X1 is also progressive. Deduce that X7 is Fr-measurable. We
follow the notation and conventions of HK.



Week 7

In all exercises of this week the basic setup is on the filtered probability space
(Q, F,F,P) that is assumed to support a d-dimensional Brownian motion which,
together with the P-null sets of Fy, generates the filtration F. All semimartin-
gales are supposed to be (at least) defined on this space.

1. Let Z be a positive continuous semimartingale with Ep|Z;| < oo for all ¢
and define the pre-term structure by

1
DtT == 7Ep[ZT|ft]
t

Show that with Z; = Ep[Z;|F/*] we get a pricing kernel term structure
model for the collection of D;r.

2. Show that the unit-rolling numeraire defined by

Nu = Dt

=
Y D

is indeed a numeraire. Find the corresponding self-financing portfolio and

show that it is predictable.

3. Suppose that Q is a probability measure that is equivalent to P on Fp
(T > 0) with density process z, a positive (F,P) martingale of the form
z = E(p), where p is some (F,P)-local martingale. We know that W :=
W — [W, u] is Brownian motion under Q. Let M be an (F, Q) martingale
with My = 0. Show that the martingale representation holds for M, i.e.
there exists a predictable process H such that for all t < T

t
M, :/ H, dW,.
0

Hint: Write M; = W Apply the Tto-rule and the Martingale
representation theorem for (F,P) (local) martingales.
Note: This result is used in example 8.11.

4. Consider the setting of theorem 8.18. Show that this generates a short
rate model. So you have to show that r; = —limy o %log Dyyn (as.)

and that Dyr = Ezlexp(— ftT re ds)|Fy].
Let for each T the process m.r be the martingale (under Z) defined by
myr = Ez[Cr|Ft] (¢t < T). Show that D.r is a submartingale that satisfies

t t
1
DtT = DOT + / TstT ds + / C_ deT.
0 0 s

Why do we call Z the risk-neutral measure?



Week 8

In all exercises of this week the basic setup is on the filtered probability space
(Q, F,F,P) that is assumed to support a d-dimensional Brownian motion which,
together with the P-null sets of Fy, generates the filtration F. All semimartin-
gales are supposed to be (at least) defined on this space.

1. Show that, in the context of theorem 8.21, the forward rates satisfy

dfyr = —oyrXer dt + oy dW,.

2. Let a and b be nonnegative measurable functions with fooo asds < oo and
fooo bs ds < oo. Consider the Flesaker-Hughston term structure given by

with 4; = ftoo asds, By = ftoo b, ds and M a nonnegative positive martin-
gale under some measure Z (locally equivalent to P) with My = 1.
(a) Show that the above defines a pricing kernel term structure.

(b) Investigate whether it is possible (by a change of measure) to get a
Finite Variation Kernel term structure.

(¢) Investigate (add assumptions where necessary) whether we can cast
this model as a Heath-Jarrow-Morton term structure.

3. Consider the Vasicek-Hull-White model with constant coefficients, so for
the short rate r we have

d’l"t = (9 — art) dt + O'th,

where W is a Brownian motion under the risk neutral measure Q. Com-
pute the (non-random) constants A;r and Byr such that

Dyr = Agre” Prrme,

4. Consider the Vasicek-Hull-White model:
dry = (0 — ary) dt + o dWh,
where W is Brownian motion (under the risk neutral measure). Show the
equality
2

g —2a
exp(Byr for — EBETO — e~ — Byrry,

Dot

D =
tT DOt

where the B;r are as in exercise 3 and where fy; is the forward rate over
the interval [0,¢]. (Notice that this expression doesn’t explicitly depend
on 6, so that we may replace the contant € in the SDE for r by a function
without changing the resulting formula for D,r).



5. Consider the Cox-Ingersoll-Ross model with constant coefficients, so for
the short rate r we have

th = (0 - G/I’t) dt+ O'\/Eth,

where W is a Brownian motion under the risk neutral measure Q. Show
that there exist (non-random) constants A;r and By such that

Dyr = Agpe” Brrme,

(You may want to determine these constants, in which case you have to
perform some tedious computations).

6. Consider the Vasicek-Hull-White model with constant coefficients, so for
the short rate r we have

dry = (0 — ary) dt + o dWr,

where W is a Brownian motion under the risk neutral measure Q. Com-
pute the coefficients in the Heath-Jarrow-Morton description of the asso-
ciated forward rates.

7. (A version of the Stochastic Fubini theorem) Let T' > 0 and for each
s € 10, T) the process H.; be adapted and assume that (s,t) — Hyg(w) is
continuous for all w. Assume also that E fOT fOT H;sdsdt < co. Put for
s,t €10,7T)

T
X, = / Hyy AW,
0

and

T
Y, :/ Hys ds.
0

(a) Show that X, and Y; are well defined.
(b) Let 0 =tg < --- < tp = T and put Hf, = 3" 1, 4 (E)He, s

Show that
T T
/ X;LdSZ/ Y/ dW,
0 0

with X7 = [/ HL dW; and Y, = [\ H! ds.
(c) Show that [ X,ds= [ Y, dW,.



