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Week 1

1. Prove the strong law of large numbers for Brownian motion: Wt

t → 0
a.s. Hint: Use Doob’s maximal inequality with p = 2 to deduce that
E supt0<t<t1

W 2
t

t2 ≤ 4 t1
t20

and then P(sup2n<t<2n+1
|Wt|

t > ε) ≤ 8
ε22n . Finish

the proof by application of the Borel-Cantelli lemma.

2. Show that for Brownian motion (according to definition 2.1) it holds that
Wt −Ws is independent of FW

s for all t ≥ s. Hint: Let C be the union of
all σ-algebras of the form σ(Ws1 , . . . ,Wsn), where 0 ≤ s1 < · · · < sn ≤ s.
Then C is closed under finite intersections. Let D be the sets in FW

s that
are independent of Wt −Ws. Then D is a d-system that contains C.

3. Let T be a stopping time that is a.s. finite. Define for all k ∈ N the random
variables Tk by Tk = 2−k[2kT + 1] ([·] means integer part). Show that the
Tk are stopping times as well and that Tk ↓ T a.s.

4. Use the reflection principle to show that P(sup0≤s≤tWs > a) = 2P(Wt >
a) for all a > 0.

5. Show that for two stopping times S and T the identity FS∧T = FS ∩ FT

holds.

6. Let T be a finite stopping time and X an adapted cadlag process. Show
that XT is FT -measurable, if the underlying filtration contains all null
sets of F .
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Week 2

1. Show that every constant map T : Ω→ [0,∞), T = t0 say for some t0, is
a stopping time and that FT = Ft0 .
Show also that for a set F ∈ Ft the random variable t · 1F +∞ · 1F c is a
stopping time.

2. Show that a map T : Ω → [0,∞] is a stopping time w.r.t. {Ft+}t≥0 iff
{T < t} ∈ Ft for all t ≥ 0.

3. Prove that for closed sets Γ and entirely continuous adapted processes X
the random variables DΓ = inf{t > 0 : Xt ∈ Γ} are stopping times.

4. Show that for a right continuous adapted process X, a stopping time T
and a right continuous filtration we have that XT is FT -measurable. Hint:
Do this first for stopping times that take values in a countable set.

5. Show that a nonnegative local martingale M is a supermartingale. Hint:
Use ‘Fatou’.

6. Show that a martingale is a local martingale.

7. If T is s stopping time, then the process 1(0,T ] is predictable. Show this,
and deduce that all simple processes are predictable.

8. Show that for a martingale M ∈M2
0 and a simple process H the stochastic

integral H•M belongs toM2
0 as well and that ||H||[M ] = ||H•M ||2. Prove

that the last equality also holds for H ∈ L2(M).

9. Show that L2(M) is a Hilbert space.
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Week 3

1. Let M ∈ cM2
0. Show that the map IM : L2(M) → cM2

0 defined by
IM (H) = H •M is linear.

2. Let T be a stopping time, M ∈ cM2
0 and H ∈ L2(M). Show that (H •

M)T = H1(0,T ] •M .

3. Let M ∈ cM0,loc and H ∈ Π(M). Show that the definition of H •M via
stopping times is independent of the chosen sequence of stopping times.

4. We proved for a bounded X ∈ cS the validity of the formula

X2
t = X2

0 + 2
∫ t

0

Xu dXu + [M ]t.

Show that it also holds for arbitrary X ∈ cS. Deduce now the (stochastic)
product rule (integration by parts formula) for X,Y ∈ cS.

5. Let M ∈ cM0,loc and Z = Z0 exp(M − 1
2 [M ]), for some Z0 ∈ F0. Show

the representation

Zt = Z0 +
∫ t

0

Zs dMs. (1)

Let Y = 1
Z . Show that dY = −Y dM + Y d[M ]. Let Z̃ be any process

that can be represented as in equation (1). Use the product rule to show
that Z̃Y = 1, and hence that Z is the only ‘solution’ to (1).

6. (a) A process X is called progressive if for all t > 0 the maps Xt :
[0, t] × Ω → R defined by Xt(s, ω) = X(s, ω) are B([0, t]) × Ft-
measurable. Show that a progressive process is adapted.

(b) Let X be an entirely right continuous adapted process and let tnk =
kt2−n. Define the processes X(n) by

X(n)(s, ω) =
∑

k

X(tnk , ω)1(tn
k−1,tn

k ](s).

Show that X(n)(s, ω) → X(s, ω) for all (s, ω) ∈ [0, t] × Ω and that
(s, ω) 7→ X(n)(s, ω) is B([0, t])×Ft-measurable for all n. Deduce that
X is progressive.

7. Let X be a progressive process and T be a stopping time. Show (use that
a composition of measurable maps is measurable itself) that the stopped
process XT is also progressive. Deduce that XT is FT -measurable. We
follow the notation and conventions of HK.
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Week 7

In all exercises of this week the basic setup is on the filtered probability space
(Ω,F ,F,P) that is assumed to support a d-dimensional Brownian motion which,
together with the P-null sets of F0, generates the filtration F. All semimartin-
gales are supposed to be (at least) defined on this space.

1. Let Z be a positive continuous semimartingale with EP|Zt| < ∞ for all t
and define the pre-term structure by

DtT =
1
Zt
EP[ZT |Ft].

Show that with Z̃t = EP[Zt|FA
t ] we get a pricing kernel term structure

model for the collection of DtT .

2. Show that the unit-rolling numeraire defined by

Nu
t =

Dtbt+1c∏bt+1c
i=1 Di−1,i

is indeed a numeraire. Find the corresponding self-financing portfolio and
show that it is predictable.

3. Suppose that Q is a probability measure that is equivalent to P on FT

(T > 0) with density process z, a positive (F,P) martingale of the form
z = E(µ), where µ is some (F,P)-local martingale. We know that W̃ :=
W − [W,µ] is Brownian motion under Q. Let M be an (F,Q) martingale
with M0 = 0. Show that the martingale representation holds for M , i.e.
there exists a predictable process H such that for all t ≤ T

Mt =
∫ t

0

Hs dW̃s.

Hint: Write Mt = EP[MT zT |Ft]
zt

. Apply the Itô-rule and the Martingale
representation theorem for (F,P) (local) martingales.
Note: This result is used in example 8.11.

4. Consider the setting of theorem 8.18. Show that this generates a short
rate model. So you have to show that rt = − limh↓0

1
h logDt,t+h (a.s.)

and that DtT = EZ[exp(−
∫ T

t
rs ds)|Ft].

Let for each T the process m·T be the martingale (under Z) defined by
mtT = EZ[ζT |Ft] (t ≤ T ). Show that D·T is a submartingale that satisfies

DtT = D0T +
∫ t

0

rsDsT ds+
∫ t

0

1
ζs
dmsT .

Why do we call Z the risk-neutral measure?
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Week 8

In all exercises of this week the basic setup is on the filtered probability space
(Ω,F ,F,P) that is assumed to support a d-dimensional Brownian motion which,
together with the P-null sets of F0, generates the filtration F. All semimartin-
gales are supposed to be (at least) defined on this space.

1. Show that, in the context of theorem 8.21, the forward rates satisfy

dftT = −σtT ΣtT dt+ σtT dWt.

2. Let a and b be nonnegative measurable functions with
∫∞

0
as ds <∞ and∫∞

0
bs ds <∞. Consider the Flesaker-Hughston term structure given by

DtT =
AT +BTMt

At +BtMt

with At =
∫∞

t
as ds, Bt =

∫∞
t
bs ds and M a nonnegative positive martin-

gale under some measure Z (locally equivalent to P) with M0 = 1.

(a) Show that the above defines a pricing kernel term structure.

(b) Investigate whether it is possible (by a change of measure) to get a
Finite Variation Kernel term structure.

(c) Investigate (add assumptions where necessary) whether we can cast
this model as a Heath-Jarrow-Morton term structure.

3. Consider the Vasicek-Hull-White model with constant coefficients, so for
the short rate r we have

drt = (θ − art) dt+ σ dWt,

where W is a Brownian motion under the risk neutral measure Q. Com-
pute the (non-random) constants AtT and BtT such that

DtT = AtT e
−BtT rt .

4. Consider the Vasicek-Hull-White model:

drt = (θ − art) dt+ σ dWt,

where W is Brownian motion (under the risk neutral measure). Show the
equality

DtT =
D0T

D0t
exp(BtT f0t −

σ2

4a
B2

tT (1− e−2at)−BtT rt,

where the BtT are as in exercise 3 and where f0t is the forward rate over
the interval [0, t]. (Notice that this expression doesn’t explicitly depend
on θ, so that we may replace the contant θ in the SDE for r by a function
without changing the resulting formula for DtT ).
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5. Consider the Cox-Ingersoll-Ross model with constant coefficients, so for
the short rate r we have

drt = (θ − art) dt+ σ
√
rt dWt,

where W is a Brownian motion under the risk neutral measure Q. Show
that there exist (non-random) constants AtT and BtT such that

DtT = AtT e
−BtT rt .

(You may want to determine these constants, in which case you have to
perform some tedious computations).

6. Consider the Vasicek-Hull-White model with constant coefficients, so for
the short rate r we have

drt = (θ − art) dt+ σ dWt,

where W is a Brownian motion under the risk neutral measure Q. Com-
pute the coefficients in the Heath-Jarrow-Morton description of the asso-
ciated forward rates.

7. (A version of the Stochastic Fubini theorem) Let T > 0 and for each
s ∈ [0, T ] the process H·s be adapted and assume that (s, t) 7→ Hts(ω) is
continuous for all ω. Assume also that E

∫ T

0

∫ T

0
Hts ds dt < ∞. Put for

s, t ∈ [0, T ]

Xs =
∫ T

0

Hts dWt

and

Yt =
∫ T

0

Hts ds.

(a) Show that Xs and Yt are well defined.

(b) Let 0 = t0 < · · · < tn = T and put Hn
ts =

∑n
i=1 1(ti−1,ti](t)Hti−1s

Show that ∫ T

0

Xn
s ds =

∫ T

0

Y n
t dWt

with Xn
s =

∫ T

0
Hn

ts dWt and Y n
t =

∫ T

0
Hn

ts ds.

(c) Show that
∫ T

0
Xs ds =

∫ T

0
Yt dWt.
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