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1.

Introduction
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Financial Derivative

• A financial asset which is defined in terms of some
underlying asset.

• Future stochastic claim.
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Examples

• European calls and puts

• American options

• Forward rate agreements

• Convertibles

• Futures

• Bond options

• Caps & Floors

• Interest rate swaps

• CDO:s

• CDS:s
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Main problems

• What is a “reasonable” price for a derivative?

• How do you hedge yourself against a derivative.
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Natural Answers

Consider a random cash payment Z at time T .

What is a reasonable price Π0 [Z] at time 0?

Natural answers:

1. Price = Discounted present value of future payouts.

Π0 [Z] = e−rTE [Z]

2. The question is meaningless.

Tomas Björk, 2017 49
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interest rate is r



Both answers are incorrect!

• Given some assumptions we can really talk about
“the correct price” of an option.

• The correct pricing formula is not the one on the
previous slide.
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Philosophy

• The derivative is defined in terms of underlying.

• The derivative can be priced in terms of underlying
price.

• Consistent pricing.

• Relative pricing.

Before we can go on further we need some simple
portfolio theory
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2.

Portfolio Theory

Tomas Björk, 2017 52










































































































Portfolios

We consider a market with N assets.

Si
t = price at t, of asset No i.

A portfolio strategy is an adapted vector process

ht = (h1
t , · · · , hN

t )

where

hi
t = number of units of asset i,

Vt = market value of the portfolio

Vt =
N∑

i=1

hi
tS

i
t

The portfolio is typically of the form

ht = h(t, St)

i.e. today’s portfolio is based on today’s prices.
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Self financing portfolios

We want to study self financing portfolio strategies,
i.e. portfolios where purchase of a “new” asset must
be financed through sale of an “old” asset.

How is this formalized?

Definition:
The strategy h is self financing if

dVt =
N∑

i=1

hi
tdSi

t

Interpret!

See Appendix B for details.
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Relative weights

Definition:

ωi
t = relative portfolio weight on asset No i.

We have

ωi
t =

hi
tS

i
t

Vt

Insert this into the self financing condition

dVt =
N∑

i=1

hi
tdSi

t

We obtain

Portfolio dynamics:

dVt = Vt

N∑

i=1

ωi
t
dSi

t

Si
t

Interpret!
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3.

Deriving the Black-Scholes PDE

Tomas Björk, 2017 56










































































































Back to Financial Derivatives

Consider the Black-Scholes model

dSt = µStdt + σStdWt,

dBt = rBtdt.

We want to price a European call with strike price K
and exercise time T . This is a stochastic claim on
the future. The future pay-out (at T ) is a stochastic
variable, Z, given by

Z = max[ST − K, 0]

More general:
Z = Φ(ST )

for some contract function Φ.

Main problem: What is a “reasonable” price, Πt [Z],
for Z at t?
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Main Idea

• We demand consistent pricing between derivative
and underlying.

• No mispricing between derivative and underlying.

• No arbitrage possibilities on the market (B, S,Π)
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Arbitrage

The portfolio ω is an arbitrage portfolio if

• The portfolio strategy is self financing.

• V0 = 0.

• VT > 0 with probability one.

Moral:

• Arbitrage = Free Lunch

• No arbitrage possibilities in an efficient market.
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Arbitrage test

Suppose that a portfolio ω is self financing whith
dynamics

dVt = kVtdt

• No driving Wiener process

• Risk free rate of return.

• “Synthetic bank” with rate of return k.

If the market is free of arbitrage we must have:

k = r

Tomas Björk, 2017 60
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Main Idea of Black-Scholes

• Since the derivative is defined in terms of the
underlying, the derivative price should be highly
correlated with the underlying price.

• We should be able to balance dervative against
underlying in our portfolio, so as to cancel the
randomness.

• Thus we will obtain a riskless rate of return k on
our portfolio.

• Absence of arbitrage must imply

k = r

Tomas Björk, 2017 61
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Two Approaches

The program above can be formally carried out in two
slightly different ways:

• The way Black-Scholes did it in the original paper.
This leads to some logical problems.

• A more conceptually satisfying way, first presented
by Merton.

Here we use the Merton method. You will find the
original BS method in Appendix C at the end of this
lecture.
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Formalized program a la Merton

• Assume that the derivative price is of the form

Πt [Z] = f(t, St).

• Form a portfolio based on the underlying S and the
derivative f , with portfolio dynamics

dVt = Vt

{
ωS

t · dSt

St
+ ωf

t · df

f

}

• Choose ωS and ωf such that the dW -term is wiped
out. This gives us

dVt = Vt · kdt

• Absence of arbitrage implies

k = r

• This relation will say something about f .

Tomas Björk, 2017 63
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Back to Black-Scholes

dSt = µStdt + σStdWt,

Πt [Z] = f(t, St)

Itô’s formula gives us the f dynamics as

df =

{
∂f

∂t
+ µS

∂f

∂s
+

1

2
S2σ2∂2f

∂s2

}
dt

+ σS
∂f

∂s
dW

Write this as

df = µf · fdt + σf · fdW

where

µf =
∂f
∂t + µS∂f

∂s + 1
2S

2σ2∂2f
∂s2

f

σf =
σS∂f

∂s

f

Tomas Björk, 2017 64
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df = µf · fdt + σf · fdW

dV = V

{
ωS · dS

S
+ ωf · df

f

}

= V
{
ωS(µdt + σdW ) + ωf(µfdt + σfdW )

}

dV = V
{
ωSµ + ωfµf

}
dt + V

{
ωSσ + ωfσf

}
dW

Now we kill the dW -term!

Choose (ωS,ωf) such that

ωSσ + ωfσf = 0

ωS + ωf = 1

Linear system with solution

ωS =
σf

σf − σ
, ωf =

−σ

σf − σ

Plug into dV !

Tomas Björk, 2017 65
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We obtain

dV = V
{
ωSµ + ωfµf

}
dt

This is a risk free “synthetic bank” with short rate

{
ωSµ + ωfµF

}

.

Absence of arbitrage implies

{
ωSµ + ωfµf

}
= r

Plug in the expressions for ωS, ωf , µf and simplify.
This will give us the following result.
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Black-Schole’s PDE

The price is given by
Πt [Z] = f (t, St)

where the pricing function f satisfies the PDE (partial differential equation)






∂f

∂t
(t, s) + rs

∂f

∂s
(t, s) +

1

2
σ2s2∂2f

∂s2
(t, s) − rf(t, s) = 0

f(T, s) = Φ(s)

There is a unique solution to the PDE so there is a unique arbitrage free
price process for the contract.
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Black-Scholes’ PDE ct’d






∂f

∂t
+ rs

∂f

∂s
+

1

2
σ2s2∂2f

∂s2
− rf = 0

f(T, s) = Φ(s)

• The price of all derivative contracts have to satisfy
the same PDE

∂f

∂t
+ rs

∂f

∂s
+

1

2
σ2s2∂2f

∂s2
− rf = 0

otherwise there will be an arbitrage opportunity.

• The only difference between different contracts is in
the boundary value condition

f(T, s) = Φ(s)

Tomas Björk, 2017 68
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Data needed

• The contract function Φ.

• Today’s date t.

• Today’s stock price S.

• Short rate r.

• Volatility σ.

Note: The pricing formula does not involve the mean
rate of return µ!

??
Tomas Björk, 2017 69
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Black-Scholes Basic Assumptions

Assumptions:

• The stock price is Geometric Brownian Motion

• Continuous trading.

• Frictionless efficient market.

• Short positions are allowed.

• Constant volatility σ.

• Constant short rate r.

• Flat yield curve.

Tomas Björk, 2017 70
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Black-Scholes’ Formula
European Call

T=date of expiration,
t=today’s date,
K=strike price,
r=short rate,
s=today’s stock price,
σ=volatility.

f(t, s) = sN [d1] − e−r(T−t)KN [d2] .

N [·]=cdf for N(0, 1)-distribution.

d1 =
1

σ
√

T − t

{
ln
( s

K

)
+

(
r +

1

2
σ2

)
(T − t)

}
,

d2 = d1 − σ
√

T − t.

Tomas Björk, 2017 71
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Black-Scholes

European Call,

K = 100, σ = 20%, r = 7%, T − t = 1/4

80 85 90 95 100 105 110 115 120
0
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Dependence on Time to Maturity

80 85 90 95 100 105 110 115 120
0

5

10

15

20

25

S

C

13 weeks
7 weeks
1 week
maturity
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Dependence on Volatility

80 85 90 95 100 105 110 115 120
0
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25
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sigma=0.2
sigma=0.4
sigma=0.6
maturity
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4.

Risk Neutral Valuation

Tomas Björk, 2017 75










































































































Risk neutral valuation

Appplying Feynman-Kac to the Black-Scholes PDE we
obtain

Π [t; X] = e−r(T−t)EQ
t,s [X]

Q-dynamics:






dSt = rStdt + σStdWQ
t ,

dBt = rBtdt.

• Price = Expected discounted value of future
payments.

• The expectation shall not be taken under the
“objective” probability measure P , but under the
“risk adjusted” measure (“martingale measure”) Q.

Note: P ∼ Q

Tomas Björk, 2017 76
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Concrete formulas

Π [0;Φ] = e−rT

∫ ∞

−∞
Φ(sez)f(z)dz

f(z) =
1√
2πT

exp

{

−
[
z − (r − 1

2σ
2)T
]2

2σ2T

}

Tomas Björk, 2017 77
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Interpretation of the risk adjusted
measure

• Assume a risk neutral world.

• Then the following must hold

s = S0 = e−rtE [St]

• In our model this means that

dSt = rStdt + σStdWQ
t

• The risk adjusted probabilities can be intrepreted as
probabilities in a fictuous risk neutral economy.

Tomas Björk, 2017 78
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Moral

• When we compute prices, we can compute as if we
live in a risk neutral world.

• This does not mean that we live (or think that we
live) in a risk neutral world.

• The formulas above hold regardless of the investor’s
attitude to risk, as long as he/she prefers more to
less.

• The valuation formulas are therefore called
“preference free valuation formulas”.

Tomas Björk, 2017 79










































































































Properties of Q

• P ∼ Q

• For the price pricess π of any traded asset, derivative
or underlying, the process

Zt =
πt

Bt

is a Q-martingale.

• Under Q, the price pricess π of any traded asset,
derivative or underlying, has r as its local rate of
return:

dπt = rπtdt + σππtdWQ
t

• The volatility of π is the same under Q as under P .

Tomas Björk, 2017 80
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A Preview of Martingale Measures

Consider a market, under an objective probability
measure P , with underlying assets

B, S1, . . . , SN

Definition: A probability measure Q is called a
martingale measure if

• P ∼ Q

• For every i, the process

Zi
t =

Si
t

Bt

is a Q-martingale.

Theorem: The market is arbitrage free iff there exists
a martingale measure.

Tomas Björk, 2017 81
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5.

Appendices
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Appendix A: Black-Scholes vs Binomial

Consider a binomial model for an option with a fixed
time to maturity T and a fixed strike price K.

• Build a binomial model with n periods for each
n = 1, 2, ....

• Use the standard formulas for scaling the jumps:

u = eσ
√

∆t d = e−σ
√

∆t ∆t = T/n

• For a large n, the stock price at time T will then
be a product of a large number of i.i.d. random
variables.

• More precisely

ST = S0Z1Z2 · · ·Zn,

where n is the number of periods in the binomial
model and Zi = u, d

Tomas Björk, 2017 83
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Recall
ST = S0Z1Z2 · · ·Zn,

• The stock price at time T will be a product of a
large number of i.i.d. random variables.

• The return will be a large sum of i.i.d. variables.

• The Central Limit Theorem will kick in.

• In the limit, returns will be normally distributed.

• Stock prices will be lognormally distributed.

• We are in the Black-Scholes model.

• The binomial price will converge to the Black-
Scholes price.

Tomas Björk, 2017 84
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Binomial convergence to Black-Scholes
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Binomial ∼ Black-Scholes

The intuition from the Binomial model carries over to
Black-Scholes.

• The B-S model is “just” a binomial model where
we rebalance the portfolio infinitely often.

• The B-S model is thus complete.

• Completeness explains the unique prices for options
in the B-S model.

• The B-S price for a derivative is the limit of the
binomial price when the number of periods is very
large.

Tomas Björk, 2017 86
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Appendix B: Portfolio theory

We consider a market with N assets.

Si
t = price at t, of asset No i.

A portfolio strategy is an adapted vector process

ht = (h1
t , · · · , hN

t )

where

hi
t = number of units of asset i,

Vt = market value of the portfolio

Vt =
N∑

i=1

hi
tS

i
t

The portfolio is typically of the form

ht = h(t, St)

i.e. today’s portfolio is based on today’s prices.

Tomas Björk, 2017 87
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Self financing portfolios

We want to study self financing portfolio strategies,
i.e. portfolios where

• There is now external infusion and/or withdrawal of
money to/from the portfolio.

• Purchase of a “new” asset must be financed through
sale of an “old” asset.

How is this formalized?

Problem: Derive an expression for dVt for a self
financing portfolio.

We analyze in discrete time, and then go to the
continuous time limit.

Tomas Björk, 2017 88
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Discrete time portfolios

We trade at discrete points in time t = 0, 1, 2, . . ..

Price vector process:

Sn = (S1
n, · · · , SN

n ), n = 0, 1, 2, . . .

Portfolio process:

hn = (h1
n, · · · , hN

n ), n = 0, 1, 2, . . .

Interpretation: At time n we buy the portfolio hn at
the price Sn, and keep it until time n + 1.

Value process:

Vn =
N∑

i=1

hi
nSi

n = hnSn

Tomas Björk, 2017 89
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The self financing condition

• At time n−1 we buy the portfolio hn−1 at the price
Sn−1.

• At time n this portfolio is worth hn−1Sn.

• At time n we buy the new portfolio hn at the price
Sn.

• The cost of this new portfolio is hnSn.

• The self financing condition is the budget
constraint

hn−1Sn = hnSn

Tomas Björk, 2017 90
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The self financing condition

Recall:
Vn = hnSn

Definition: For any sequence x1, x2, . . . we define the
sequence ∆xn by

∆xn = xn − xn−1

Problem: Derive an expression for ∆Vn for a self
financing portfolio.

Lemma: For any pair of sequences x1, x2, . . . and
y1, y2, . . . we have the relation

∆(xy)n = xn−1∆yn + yn∆xn

Proof: Do it yourself.

Tomas Björk, 2017 91
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Recall
Vn = hnSn

From the Lemma we have

∆Vn = ∆(hS)n = hn−1∆Sn + Sn∆hn

Recall the self financing condition

hn−1Sn = hnSn

which we can write as

Sn∆hn = 0

Inserting this into the expression for ∆Vn gives us.

Proposition: The dynamics of a self financing portfolio
are given by

∆Vn = hn−1∆Sn

Note the forward increments!

Tomas Björk, 2017 92










































































































Portfolios in continuous time

Price process:

Si
t = price at t, of asset No i.

Portfolio:
ht = (h1

t , · · · , hN
t )

Value process

Vt =
N∑

i=1

hi
tS

i
t

From the self financing condition in discrete time

∆Vn = hn−1∆Sn

we are led to the following definition.

Definition: The portfolio h is self financing if and only
if

dVt =
N∑

i=1

hi
tdSi

t

Tomas Björk, 2017 93
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Relative weights

Definition:

ωi
t = relative portfolio weight on asset No i.

We have

ωi
t =

hi
tS

i
t

Vt

Insert this into the self financing condition

dVt =
N∑

i=1

hi
tdSi

t

We obtain

Portfolio dynamics:

dVt = Vt

N∑

i=1

ωi
t
dSi

t

Si
t

Interpret!

Tomas Björk, 2017 94
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Appendix C:
The original Black-Scholes PDE

argument

Consider the following portfolio.

• Short one unit of the derivative, with pricing
function f(t, s).

• Hold x units of the underlying S.

The portfolio value is given by

V = −f(t, ST ) + xSt

The object is to choose x such that the portfolio is
risk free for an infinitesimal interval of length dt.

We have dV = −df + xdS and from Itô we obtain

dV = −
{

∂f

∂t
+ µS

∂f

∂s
+

1

2
S2σ2∂2f

∂s2

}
dt

− σS
∂f

∂s
dW + xµSdt + xσSdW

Tomas Björk, 2017 95
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dV =

{
xµS − ∂f

∂t
− µS

∂f

∂s
− 1

2
S2σ2∂

2f

∂s2

}
dt

+ σS

{
x − ∂f

∂s

}
dW

We obtain a risk free portfolio if we choose x as

x =
∂f

∂s

and then we have, after simplification,

dV =

{
−∂f

∂t
− 1

2
S2σ2∂

2f

∂s2

}
dt

Using V = −f +xS and x as above, the return dV/V
is thus given by

dV

V
=

−∂f
∂t −

1
2S

2σ2∂2f
∂s2

−f + S∂f
∂s

dt

Tomas Björk, 2017 96
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We had
dV

V
=

−∂f
∂t −

1
2S

2σ2∂2f
∂s2

−f + S∂f
∂s

dt

This portfolio is risk free, so absence of arbitrage
implies that

−∂f
∂t −

1
2S

2σ2∂2f
∂s2

−f + S∂f
∂s

= r

Simplifying this expression gives us the Black-Scholes
PDE.

∂f

∂t
+ rs

∂f

∂s
+

1

2
σ2s2∂2f

∂s2
− rf = 0,

f(T, s) = Φ(s).

Tomas Björk, 2017 97
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Continuous Time Finance

Completeness and Hedging

(Ch 8-9)

Tomas Björk
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Problems around Standard Black-Scholes

• We assumed that the derivative was traded. How
do we price OTC products?

• Why is the option price independent of the expected
rate of return α of the underlying stock?

• Suppose that we have sold a call option. Then we
face financial risk, so how do we hedge against that
risk?

All this has to do with completeness.
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Definition:
We say that a T -claim X can be replicated,
alternatively that it is reachable or hedgeable, if
there exists a self financing portfolio h such that

V h
T = X, P − a.s.

In this case we say that h is a hedge against X.
Alternatively, h is called a replicating or hedging
portfolio. If every contingent claim is reachable we say
that the market is complete

Basic Idea: If X can be replicated by a portfolio h
then the arbitrage free price for X is given by

Πt [X] = V h
t .
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Trading Strategy

Consider a replicable claim X which we want to sell at
t = 0..

• Compute the price Π0 [X] and sell X at a slightly
(well) higher price.

• Buy the hedging portfolio and invest the surplus in
the bank.

• Wait until expiration date T .

• The liabilities stemming from X is exactly matched
by V h

T , and we have our surplus in the bank.

Tomas Björk, 2017 101








































































































Similar Consider the following
argument
for t o

Suppose you are able to do that



Completeness of Black-Scholes

Theorem: The Black-Scholes model is complete.

Proof. Fix a claim X = Φ (ST ). We want to find
processes V , uB and uS such that

dVt = Vt

{
uB

t
dBt

Bt
+ uS

t
dSt

St

}

VT = Φ(ST ).

i.e.

dVt = Vt

{
uB

t r + uS
t α
}

dt + Vtu
S
t σdWt,

VT = Φ(ST ).
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Heuristics:
Let us assume that X is replicated by h = (uB, uS)
with value process V .

Ansatz:
Vt = F (t, St)

Ito gives us

dV =

{
Ft + αSFs +

1

2
σ2S2Fss

}
dt + σSFsdW,

Write this as

dV = V

{
Ft + αSFs + 1

2σ
2S2Fss

V

}

dt + V
SFs

V
σdW.

Compare with

dV = V
{
uBr + uSα

}
dt + V uSσdW
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Define uS by

uS
t =

StFs(t, St)

F (t, St)
,

This gives us the eqn

dV = V

{
Ft + 1

2σ
2S2Fss

rF
r + uSα

}

dt + V uSσdW.

Compare with

dV = V
{
uBr + uSα

}
dt + V uSσdW

Natural choice for uB is given by

uB =
Ft + 1

2σ
2S2Fss

rF
,
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The relation uB + uS = 1 gives us the Black-Scholes
PDE

Ft + rSFs +
1

2
σ2S2Fss − rF = 0.

The condition
VT = Φ (ST )

gives us the boundary condition

F (T, s) = Φ(s)

Moral: The model is complete and we have explicit
formulas for the replicating portfolio.
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Main Result
Theorem: Define F as the solution to the boundary
value problem





Ft + rsFs +

1

2
σ2s2Fss − rF = 0,

F (T, s) = Φ(s).

Then X can be replicated by the relative portfolio

uB
t =

F (t, St) − StFs(t, St)

F (t, St)
,

uS
t =

StFs(t, St)

F (t, St)
.

The corresponding absolute portfolio is given by

hB
t =

F (t, St) − StFs(t, St)

Bt
,

hS
t = Fs(t, St),

and the value process V h is given by

V h
t = F (t, St).
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Notes

• Completeness explains unique price - the claim is
superfluous!

• Replicating the claim P − a.s. ⇐⇒ Replicating the
claim Q − a.s. for any Q ∼ P . Thus the price only
depends on the support of P .

• Thus (Girsanov) it will not depend on the drift α of
the state equation.

• The completeness theorem is a nice theoretical
result, but the replicating portfolio is continuously
rebalanced. Thus we are facing very high
transaction costs.
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Completeness vs No Arbitrage

Question:
When is a model arbitrage free and/or complete?

Answer:
Count the number of risky assets, and the number of
random sources.

R = number of random sources

N = number of risky assets

Intuition:
If N is large, compared to R, you have lots of
possibilities of forming clever portfolios. Thus lots
of chances of making arbitrage profits. Also many
chances of replicating a given claim.
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Meta-Theorem

Generically, the following hold.

• The market is arbitrage free if and only if

N ≤ R

• The market is complete if and only if

N ≥ R

Example:
The Black-Scholes model. R=N=1. Arbitrage free
and complete.
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Parity Relations

Let Φ and Ψ be contract functions for the T -claims
Z = Φ(ST ) and Y = Ψ(ST ). Then for any real
numbers α and β we have the following price relation.

Πt [αΦ + βΨ] = αΠt [Φ] + βΠt [Ψ] .

Proof. Linearity of mathematical expectation.

Consider the following “basic” contract functions.

ΦS(x) = x,

ΦB(x) ≡ 1,

ΦC,K(x) = max [x − K, 0] .

Prices:

Πt [ΦS] = St,

Πt [ΦB] = e−r(T−t),

Πt [ΦC,K] = c(t, St; K,T ).
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If we have

Φ = αΦS + βΦB +
n∑

i=1

γiΦC,Ki,

then

Πt [Φ] = αΠt [ΦS] + βΠt [ΦB] +
n∑

i=1

γiΠt [ΦC,Ki]

We may replicate the claim Φ using a portfolio
consisting of basic contracts that is constant over
time, i.e. a buy-and hold portfolio:

• α shares of the underlying stock,

• β zero coupon T -bonds with face value $1,

• γi European call options with strike price Ki, all
maturing at T .
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Put-Call Parity

Consider a European put contract

ΦP,K(s) = max [K − s, 0]

It is easy to see (draw a figure) that

ΦP,K(x) = ΦC,K(x) − s + K

= ΦP,K(x) − ΦS(x) + ΦB(x)

We immediately get

Put-call parity:

p(t, s;K) = c(t, s;K) − s + Ker(T−t)

Thus you can construct a synthetic put option, using
a buy-and-hold portfolio.
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Delta Hedging

Consider a fixed claim

X = Φ(ST )

with pricing function

F (t, s).

Setup:
We are at time t, and have a short (interpret!) position
in the contract.

Goal:
Offset the risk in the derivative by buying (or selling)
the (highly correlated) underlying.

Definition:
A position in the underlying is a delta hedge against
the derivative if the portfolio (underlying + derivative)
is immune against small changes in the underlying
price.
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Formal Analysis

−1 = number of units of the derivative product

x = number of units of the underlying

s = today’s stock price

t = today’s date

Value of the portfolio:

V = −1 · F (t, s) + x · s

A delta hedge is characterized by the property that

∂V

∂s
= 0.

We obtain

−∂F

∂s
+ x = 0

Solve for x!
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Result:
We should have

x̂ =
∂F

∂s
shares of the underlying in the delta hedged portfolio.

Definition:
For any contract, its “delta” is defined by

∆ =
∂F

∂s
.

Result:
We should have

x̂ = ∆

shares of the underlying in the delta hedged portfolio.

Warning:
The delta hedge must be rebalanced over time. (why?)
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Black Scholes

For a European Call in the Black-Scholes model we
have

∆ = N [d1]

NB This is not a trivial result!

From put call parity it follows (how?) that ∆ for a
European Put is given by

∆ = N [d1] − 1

Check signs and interpret!
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Rebalanced Delta Hedge

• Sell one call option a time t = 0 at the B-S price F .

• Compute ∆ and by ∆ shares. (Use the income
from the sale of the option, and borrow money if
necessary.)

• Wait one day (week, minute, second..). The stock
price has now changed.

• Compute the new value of ∆, and borrow money in
order to adjust your stock holdings.

• Repeat this procedure until t = T . Then the value
of your portfolio (B+S) will match the value of the
option almost exactly.
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• Lack of perfection comes from discrete, instead of
continuous, trading.

• You have created a “synthetic” option.
(Replicating portfolio).

Formal result:
The relative weights in the replicating portfolio are

uS =
S · ∆

F
,

uB =
F − S · ∆

F
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Portfolio Delta

Assume that you have a portfolio consisting of
derivatives

Φi(STi), i = 1, · · · , n
all written on the same underlying stock S.

Fi(t, s) = pricing function for i:th derivative

∆i =
∂Fi

∂s
hi = units of i:th derivative

Portfolio value:

Π =
n∑

i=1

hiFi

Portfolio delta:

∆Π =
n∑

i=1

hi∆i
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Gamma

A problem with discrete delta-hedging is.

• As time goes by S will change.

• This will cause ∆ = ∂F
∂s to change.

• Thus you are sitting with the wrong value of delta.

Moral:

• If delta is sensitive to changes in S, then you have
to rebalance often.

• If delta is insensitive to changes in S you do not
need to rebalance so often.
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Definition:
Let Π be the value of a derivative (or portfolio).
Gamma (Γ) is defined as

Γ =
∂∆

∂s

i.e.

Γ =
∂2Π

∂s2

Gamma is a measure of the sensitivity of ∆ to changes
in S.

Result: For a European Call in a Black-Scholes model,
Γ can be calculated as

Γ =
N ′[d1]

Sσ
√

T − t

Important fact:
For a position in the underlying stock itself we have

Γ = 0
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Gamma Neutrality

A portfolio Π is said to be gamma neutral if its
gamma equals zero, i.e.

ΓΠ = 0

• Since Γ = 0 for a stock you can not gamma-hedge
using only stocks. item Typically you use some
derivative to obtain gamma neutrality.
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General procedure

Given a portfolio Π with underlying S. Consider two
derivatives with pricing functions F and G.

xF = number of units of F

xG = number of units of G

Problem:
Choose xF and xG such that the entire portfolio is
delta- and gamma-neutral.

Value of hedged portfolio:

V = Π + xF · F + xG · G
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Value of hedged portfolio:

V = Π + xF · F + xG · G

We get the equations

∂V

∂s
= 0,

∂2V

∂s2
= 0.

i.e.

∆Π + xF∆F + xG∆G = 0,

ΓΠ + xFΓF + xGΓG = 0

Solve for xF and xG!
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Particular Case

• In many cases the original portfolio Π is already
delta neutral.

• Then it is natural to use a derivative to obtain
gamma-neutrality.

• This will destroy the delta-neutrality.

• Therefore we use the underlying stock (with zero
gamma!) to delta hedge in the end.
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Formally:
V = Π + xF · F + xS · S

∆Π + xF∆F + xS∆S = 0,

ΓΠ + xFΓF + xSΓS = 0

We have

∆Π = 0,

∆S = 1

ΓS = 0.

i.e.

∆Π + xF∆F + xS = 0,

ΓΠ + xFΓF = 0

xF = −ΓΠ

ΓF

xS =
∆FΓΠ

ΓF
− ∆Π
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Further Greeks

Θ =
∂Π

∂t
,

V =
∂Π

∂σ
,

ρ =
∂Π

∂r

V is pronounced “Vega”.

NB!

• A delta hedge is a hedge against the movements in
the underlying stock, given a fixed model.

• A Vega-hedge is not a hedge against movements of
the underlying asset. It is a hedge against a change
of the model itself.
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Continuous Time Finance

The Martingale Approach

I: Mathematics

(Ch 10-12)

Tomas Björk
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Introduction

In order to understand and to apply the martingale
approach to derivative pricing and hedging we will
need to some basic concepts and results from measure
theory. These will be introduced below in an informal
manner - for full details see the textbook.

Many propositions below will be proved but we will
also present a couple of central results without proofs,
and these must then be considered as dogmatic truths.
You are of course not expected to know the proofs of
such results (this is outside the scope of this course)
but you are supposed to be able to use the results in
an operational manner.
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Contents

1. Events and sigma-algebras

2. Conditional expectations

3. Changing measures

4. The Martingale Representation Theorem

5. The Girsanov Theorem
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1.

Events and sigma-algebras
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Events and sigma-algebras

Consider a probability measure P on a sample space
Ω. An event is simply a subset A ⊆ Ω and P (A) is
the probability that the event A occurs.

For technical reasons, a probability measure can only
be defined for a certain “nice” class F of events, so for
A ∈ F we are allowed to write P (A) as the probability
for the event A.

For technical reasons the class F must be a sigma-
algebra, which means that F is closed under the usual
set theoretic operations like complements, countable
intersections and countable unions.

Interpretation: We can view a σ-algebra F as
formalizing the idea of information. More precisely: A
σ-algebra F is a collection of events, and if we assume
that we have access to the information contained in F,
this means that for every A ∈ F we know exactly if A
has occured or not.
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Borel sets

Definition: The Borel algebra B is the smallest
sigma-algebra on R which contains all intervals. A set
B in B is called a Borel set.

Remark: There is no constructive definition of B, but
almost all subsets of R that you will ever see will in
fact be Borel sets, so the reader can without danger
think about a Borel set as “an arbitrary subset of R”.
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Random variables

An F-measurable random variable X is a a mapping

X : Ω → R

such that {X ∈ B} = {ω ∈ Ω : X(ω) ∈ B} belongs
to F for all Borel sets B. This guarantees that we are
allowed to write P (X ∈ B). Instad of writing “X is
F-measurable” we will often write X ∈ F.

This means that if X ∈ F then the value of X is
completely determined by the information contained in
F.

If we have another σ-algebra G with G ⊆ F then we
interpret this as “G contains less information than F”.
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2.

Conditional Expectation
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Conditional Expectation

If X ∈ F and if G ⊆ F then we write E [X| G] for
the conditional expectation of X given the information
contained in G. Sometimes we use the notation EG [X].

The following proposition contains everything that we
will need to know about conditional expectations within
this course.
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Main Results

Proposition 1: Assume that X ∈ F, and that G ⊆ F .
Then the following hold.

• The random variable E [X| G] is completely determined by
the information in G so we have

E [X| G] ∈ G

• If we have Y ∈ G then Y is completely determined by G so
we have

E [XY | G] = Y E [X| G]

In particular we have

E [Y | G] = Y

• If H ⊆ G then we have the “law of iterated expectations”

E [E [X| G]|H] = E [X|H]

• In particular we have

E [X] = E [E [X| G]]
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3.

Changing Measures
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Changing Measures

Consider a probability measure P on (Ω,F), and
assume that L ∈ F is a random variable with the
properties that

L ≥ 0

and
EP [L] = 1.

For every event A ∈ F we now define the real number
Q(A) by the prescription

Q(A) = EP [L · IA]

where the random variable IA is the indicator for A,
i.e.

IA =

{
1 if A occurs

0 if Ac occurs
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Recall that
Q(A) = EP [L · IA]

We now see that Q(A) ≥ 0 for all A, and that

Q(Ω) = EP [L · IΩ] = EP [L · 1] = 1

We also see that if A ∩ B = ∅ then

Q(A ∪ B) = EP [L · IA∪B] = EP [L · (IA + IB)]

= EP [L · IA] + EP [L · IB]

= Q(A) + Q(B)

Furthermore we see that

P (A) = 0 ⇒ Q(A) = 0

We have thus more or less proved the following
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Proposition 2: If L ∈ F is a nonnegative random
variable with EP [L] = 1 and Q is defined by

Q(A) = EP [L · IA]

then Q will be a probability measure on F with the
property that

P (A) = 0 ⇒ Q(A) = 0.

I turns out that the property above is a very important
one, so we give it a name.
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Absolute Continuity

Definition: Given two probability measures P and Q
on F we say that Q is absolutely continuous w.r.t.
P on F if, for all A ∈ F , we have

P (A) = 0 ⇒ Q(A) = 0

We write this as
Q << P.

If Q << P and P << Q then we say that P and Q
are equivalent and write

Q ∼ P
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Equivalent measures

It is easy to see that P and Q are equivalent if and
only if

P (A) = 0 ⇔ Q(A) = 0

or, equivalently,

P (A) = 1 ⇔ Q(A) = 1

Two equivalent measures thus agree on all certain
events and on all impossible events, but can disagree
on all other events.

Simple examples:

• All non degenerate Gaussian distributions on R are
equivalent.

• If P is Gaussian on R and Q is exponential then
Q << P but not the other way around.
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Absolute Continuity ct’d

We have seen that if we are given P and define Q by

Q(A) = EP [L · IA]

for L ≥ 0 with EP [L] = 1, then Q is a probability
measure and Q << P . .

A natural question is now if all measures Q << P
are obtained in this way. The answer is yes, and the
precise (quite deep) result is as follows. The proof is
difficult and therefore omitted.
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The Radon Nikodym Theorem

Consider two probability measures P and Q on (Ω,F),
and assume that Q << P on F . Then there exists a
unique random variable L with the following properties

1. Q(A) = EP [L · IA] , ∀A ∈ F

2. L ≥ 0, P − a.s.

3. EP [L] = 1,

4. L ∈ F

The random variable L is denoted as

L =
dQ

dP
, on F

and it is called the Radon-Nikodym derivative of Q
w.r.t. P on F , or the likelihood ratio between Q and
P on F .
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A simple example

The Radon-Nikodym derivative L is intuitively the local
scale factor between P and Q. If the sample space Ω
is finite so Ω = {ω1, . . . ,ωn} then P is determined by
the probabilities p1, . . . , pn where

pi = P (ωi) i = 1, . . . , n

Now consider a measure Q with probabilities

qi = Q(ωi) i = 1, . . . , n

If Q << P this simply says that

pi = 0 ⇒ qi = 0

and it is easy to see that the Radon-Nikodym derivative
L = dQ/dP is given by

L(ωi) =
qi

pi
i = 1, . . . , n
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If pi = 0 then we also have qi = 0 and we can define
the ratio qi/pi arbitrarily.

If p1, . . . , pn as well as q1, . . . , qn are all positive, then
we see that Q ∼ P and in fact

dP

dQ
=

1

L
=

(
dQ

dP

)−1

as could be expected.
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Computing expected values

A main use of Radon-Nikodym derivatives is for the
computation of expected values.

Suppose therefore that Q << P on F and that X is
a random variable with X ∈ F . With L = dQ/dP on
F then have the following result.

Proposition 3: With notation as above we have

EQ [X] = EP [L · X]

Proof: We only give a proof for the simple example
above where Ω = {ω1, . . . ,ωn}. We then have

EQ [X] =
n∑

i=1

X(ωi)qi =
n∑

i=1

X(ωi)
qi

pi
pi

=
n∑

i=1

X(ωi)L(ωi)pi = EP [X · L]
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The Abstract Bayes’ Formula

We can also use Radon-Nikodym derivatives in order to
compute conditional expectations. The result, known
as the abstract Bayes’ Formula, is as follows.

Theorem 4: Consider two measures P and Q with
Q << P on F and with

LF =
dQ

dP
on F

Assume that G ⊆ F and let X be a random variable
with X ∈ F . Then the following holds

EQ [X| G] =
EP

[
LFX

∣∣G
]

EP [LF | G]
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Dependence of the σ-algebra

Suppose that we have Q << P on F with

LF =
dQ

dP
on F

Now consider smaller σ-algebra G ⊆ F . Our problem
is to find the R-N derivative

LG =
dQ

dP
on G

We recall that LG is characterized by the following
properties

1. Q(A) = EP
[
LG · IA

]
∀A ∈ G

2. LG ≥ 0

3. EP
[
LG] = 1

4. LG ∈ G
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A natural guess would perhaps be that LG = LF , so
let us check if LF satisfies points 1-4 above.

By assumption we have

Q(A) = EP
[
LF · IA

]
∀A ∈ F

Since G ⊆ F we then have

Q(A) = EP
[
LF · IA

]
∀A ∈ G

so point 1 above is certainly satisfied by LF . It is
also clear that LF satisfies points 2 and 3. It thus
seems that LF is also a natural candidate for the R-N
derivative LG, but the problem is that we do not in
general have LF ∈ G.

This problem can, however, be fixed. By iterated
expectations we have, for all A ∈ G,

EP
[
LF · IA

]
= EP

[
EP

[
LF · IA

∣∣G
]]
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Since A ∈ G we have

EP
[
LF · IA

∣∣G
]

= EP
[
LF∣∣G

]
IA

Let us now define LG by

LG = EP
[
LF∣∣G

]

We then obviously have LG ∈ G and

Q(A) = EP
[
LG · IA

]
∀A ∈ G

It is easy to see that also points 2-3 are satisfied so we
have proved the following result.
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A formula for LG

Proposition 5: If Q << P on F and G ⊆ F then,
with notation as above, we have

LG = EP
[
LF∣∣G

]
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The likelihood process on a filtered space

We now consider the case when we have a probability
measure P on some space Ω and that instead of just
one σ-algebra F we have a filtration, i.e. an increasing
family of σ-algebras {Ft}t≥0.

The interpretation is as usual that Ft is the information
available to us at time t, and that we have Fs ⊆ Ft

for s ≤ t.

Now assume that we also have another measure Q,
and that for some fixed T , we have Q << P on FT .
We define the random variable LT by

LT =
dQ

dP
on FT

Since Q << P on FT we also have Q << P on Ft

for all t ≤ T and we define

Lt =
dQ

dP
on Ft 0 ≤ t ≤ T

For every t we have Lt ∈ Ft, so L is an adapted
process, known as the likelihood process.
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The L process is a P martingale

We recall that

Lt =
dQ

dP
on Ft 0 ≤ t ≤ T

Since Fs ⊆ Ft for s ≤ t we can use Proposition 5 and
deduce that

Ls = EP [Lt| Fs] s ≤ t ≤ T

and we have thus proved the following result.

Proposition: Given the assumptions above, the
likelihood process L is a P -martingale.
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Where are we heading?

We are now going to perform measure transformations
on Wiener spaces, where P will correspond to the
objective measure and Q will be the risk neutral
measure.

For this we need define the proper likelihood process L
and, since L is a P -martingale, we have the following
natural questions.

• What does a martingale look like in a Wiener driven
framework?

• Suppose that we have a P -Wiener process W and
then change measure from P to Q. What are the
properties of W under the new measure Q?

These questions are handled by the Martingale
Representation Theorem, and the Girsanov Theorem
respectively.
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4.

The Martingale Representation Theorem
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Intuition

Suppose that we have a Wiener process W under
the measure P . We recall that if h is adapted (and
integrable enough) and if the process X is defined by

Xt = x0 +

∫ t

0
hsdWs

then X is a a martingale. We now have the following
natural question:

Question: Assume that X is an arbitrary martingale.
Does it then follow that X has the form

Xt = x0 +

∫ t

0
hsdWs

for some adapted process h?

In other words: Are all martingales stochastic integrals
w.r.t. W?
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Answer

It is immediately clear that all martingales can not be
written as stochastic integrals w.r.t. W . Consider for
example the process X defined by

Xt =

{
0 for 0 ≤ t < 1

Z for t ≥ 1

where Z is an random variable, independent of W ,
with E [Z] = 0.

X is then a martingale (why?) but it is clear (how?)
that it cannot be written as

Xt = x0 +

∫ t

0
hsdWs

for any process h.
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Intuition

The intuitive reason why we cannot write

Xt = x0 +

∫ t

0
hsdWs

in the example above is of course that the random
variable Z “has nothing to do with” the Wiener process
W . In order to exclude examples like this, we thus need
an assumption which guarantees that our probability
space only contains the Wiener process W and nothing
else.

This idea is formalized by assuming that the filtration
{Ft}t≥0 is the one generated by the Wiener
process W .
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The Martingale Representation Theorem

Theorem. Let W be a P -Wiener process and assume
that the filtation is the internal one i.e.

Ft = FW
t = σ {Ws; 0 ≤ s ≤ t}

Then, for every (P,Ft)-martingale X, there exists a
real number x and an adapted process h such that

Xt = x +

∫ t

0
hsdWs,

i.e.
dXt = htdWt.

Proof: Hard. This is very deep result.
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Note

For a given martingale X, the Representation Theorem
above guarantees the existence of a process h such that

Xt = x +

∫ t

0
hsdWs,

The Theorem does not, however, tell us how to find
or construct the process h.
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5.

The Girsanov Theorem
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Setup

Let W be a P -Wiener process and fix a time horizon
T . Suppose that we want to change measure from P
to Q on FT . For this we need a P -martingale L with
L0 = 1 to use as a likelihood process, and a natural
way of constructing this is to choose a process g and
then define L by

{
dLt = gtdWt

L0 = 1

This definition does not guarantee that L ≥ 0, so we
make a small adjustment. We choose a process ϕ and
define L by

{
dLt = LtϕtdWt

L0 = 1

The process L will again be a martingale and we easily
obtain

Lt = e
R t
0 ϕsdWs−1

2

R t
0 ϕ2

sds
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Thus we are guaranteed that L ≥ 0. We now change
measure form P to Q by setting

dQ = LtdP, on Ft, 0 ≤ t ≤ T

The main problem is to find out what the properties
of W are, under the new measure Q. This problem is
resolved by the Girsanov Theorem.
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The Girsanov Theorem

Let W be a P -Wiener process. Fix a time horizon T .

Theorem: Choose an adapted process ϕ, and define
the process L by

{
dLt = LtϕtdWt

L0 = 1

Assume that EP [LT ] = 1, and define a new mesure Q
on FT by

dQ = LtdP, on Ft, 0 ≤ t ≤ T

Then Q << P and the process WQ, defined by

WQ
t = Wt −

∫ t

0
ϕsds

is Q-Wiener. We can also write this as

dWt = ϕtdt + dWQ
t
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Changing the drift in an SDE

The single most common use of the Girsanov Theorem
is as follows.

Suppose that we have a process X with P dynamics

dXt = µtdt + σtdWt

where µ and σ are adapted and W is P -Wiener.

We now do a Girsanov Transformation as above, and
the question is what the Q-dynamics look like.

From the Girsanov Theorem we have

dWt = ϕtdt + dWQ
t

and substituting this into the P -dynamics we obtain
the Q dynamics as

dXt = {µt + σtϕt} dt + σtdWQ
t

Moral: The drift changes but the diffusion is
unaffected.
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The Converse Girsanov Theorem

Let W be a P -Wiener process. Fix a time horizon T .

Theorem. Assume that:

• Q << P on FT , with likelihood process

Lt =
dQ

dP
, on Ft 0,≤ t ≤ T

• The filtation is the internal one .i.e.

Ft = σ {Ws; 0 ≤ s ≤ t}

Then there exists a process ϕ such that

{
dLt = LtϕtdWt

L0 = 1
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Continuous Time Finance

The Martingale Approach

II: Pricing and Hedging

(Ch 10-12)

Tomas Björk
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Financial Markets

Price Processes:

St =
[
S0

t , ..., SN
t

]

Example: (Black-Scholes, S0 := B, S1 := S)

dSt = αStdt + σStdWt,

dBt = rBtdt.

Portfolio:
ht =

[
h0

t , ..., h
N
t

]

hi
t = number of units of asset i at time t.

Value Process:

V h
t =

N∑

i=0

hi
tS

i
t = htSt
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Self Financing Portfolios

Definition: (intuitive)
A portfolio is self-financing if there is no exogenous
infusion or withdrawal of money. “The purchase of a
new asset must be financed by the sale of an old one.”

Definition: (mathematical)
A portfolio is self-financing if the value process
satisfies

dVt =
N∑

i=0

hi
tdSi

t

Major insight:
If the price process S is a martingale, and if h is
self-financing, then V is a martingale.

NB! This simple observation is in fact the basis of the
following theory.
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Arbitrage

The portfolio u is an arbitrage portfolio if

• The portfolio strategy is self financing.

• V0 = 0.

• VT ≥ 0, P − a.s.

• P (VT > 0) > 0

Main Question: When is the market free of arbitrage?
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First Attempt

Proposition: If S0
t , · · · , SN

t are P -martingales, then
the market is free of arbitrage.

Proof:
Assume that V is an arbitrage strategy. Since

dVt =
N∑

i=0

hi
tdSi

t,

V is a P -martingale, so

V0 = EP [VT ] > 0.

This contradicts V0 = 0.

True, but useless.
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Example: (Black-Scholes)

dSt = αStdt + σStdWt,

dBt = rBtdt.

(We would have to assume that α = r = 0)

We now try to improve on this result.
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Choose S0 as numeraire

Definition:
The normalized price vector Z is given by

Zt =
St

S0
t

=
[
1, Z1

t , ..., ZN
t

]

The normalized value process V Z is given by

V Z
t =

N∑

0

hi
tZ

i
t.

Idea:
The arbitrage and self financing concepts should be
independent of the accounting unit.
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Invariance of numeraire

Proposition: One can show (see the book) that

• S-arbitrage ⇐⇒ Z-arbitrage.

• S-self-financing ⇐⇒ Z-self-financing.

Insight:

• If h self-financing then

dV Z
t =

N∑

1

hi
tdZ

i
t

• Thus, if the normalized price process Z is a P -
martingale, then V Z is a martingale.
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Second Attempt

Proposition: If Z0
t , · · · , ZN

t are P -martingales, then
the market is free of arbitrage.

True, but still fairly useless.

Example: (Black-Scholes)

dSt = αStdt + σStdWt,

dBt = rBtdt.

dZ1
t = (α − r)Z1

t dt + σZ1
t dWt,

dZ0
t = 0dt.

We would have to assume “risk-neutrality”, i.e. that
α = r.
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Arbitrage

Recall that h is an arbitrage if

• h is self financing

• V0 = 0.

• VT ≥ 0, P − a.s.

• P (VT > 0) > 0

Major insight

This concept is invariant under an equivalent change
of measure!
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Martingale Measures

Definition: A probability measure Q is called an
equivalent martingale measure (EMM) if and only
if it has the following properties.

• Q and P are equivalent, i.e.

Q ∼ P

• The normalized price processes

Zi
t =

Si
t

S0
t

, i = 0, . . . , N

are Q-martingales.

Wan now state the main result of arbitrage theory.
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First Fundamental Theorem

Theorem: The market is arbitrage free

iff

there exists an equivalent martingale measure.
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Comments

• It is very easy to prove that existence of EMM
imples no arbitrage (see below).

• The other imnplication is technically very hard.

• For discrete time and finite sample space Ω the hard
part follows easily from the separation theorem for
convex sets.

• For discrete time and more general sample space we
need the Hahn-Banach Theorem.

• For continuous time the proof becomes technically
very hard, mainly due to topological problems. See
the textbook.
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Proof that EMM implies no arbitrage

Assume that there exists an EMM denoted by Q.
Assume that P (VT ≥ 0) = 1 and P (VT > 0) > 0.
Then, since P ∼ Q we also have Q(VT ≥ 0) = 1 and
Q(VT > 0) > 0.

Recall:

dV Z
t =

N∑

1

hi
tdZ

i
t

Q is a martingale measure

⇓

V Z is a Q-martingale

⇓

V0 = V Z
0 = EQ

[
V Z

T

]
> 0

⇓

No arbitrage

Tomas Björk, 2017 182








































































































Start of lecture bat
Go bank to p 180 NA EMM

existenceof an
arbitragopportunity

INote Et

a proofiii
Ito theory

I
contradicts
VosO on p 172

BE

A All these statements also true

for V3 instead of VT



Choice of Numeraire

The numeraire price S0
t can be chosen arbitrarily. The

most common choice is however that we choose S0 as
the bank account, i.e.

S0
t = Bt

where
dBt = rtBtdt

Here r is the (possibly stochastic) short rate and we
have

Bt = e
R t
0 rsds
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Example: The Black-Scholes Model

dSt = αStdt + σStdWt,

dBt = rBtdt.

Look for martingale measure. We set Z = S/B.

dZt = Zt(α − r)dt + ZtσdWt,

Girsanov transformation on [0, T ]:

{
dLt = LtϕtdWt,

L0 = 1.

dQ = LTdP, on FT

Girsanov:
dWt = ϕtdt + dWQ

t ,

where WQ is a Q-Wiener process.
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The Q-dynamics for Z are given by

dZt = Zt [α − r + σϕt] dt + ZtσdWQ
t .

Unique martingale measure Q, with Girsanov kernel
given by

ϕt =
r − α

σ
.

Q-dynamics of S:

dSt = rStdt + σStdWQ
t .

Conclusion: The Black-Scholes model is free of
arbitrage.
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Pricing

We consider a market Bt, S1
t , . . . , SN

t .

Definition:
A contingent claim with delivery time T , is a random
variable

X ∈ FT .

“At t = T the amount X is paid to the holder of the
claim”.

Example: (European Call Option)

X = max [ST − K, 0]

Let X be a contingent T -claim.

Problem: How do we find an arbitrage free price
process Πt [X] for X?
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Solution

The extended market

Bt, S
1
t , . . . , SN

t , Πt [X]

must be arbitrage free, so there must exist a martingale
measure Q for (St,Πt [X]). In particular

Πt [X]

Bt

must be a Q-martingale, i.e.

Πt [X]

Bt
= EQ

[
ΠT [X]

BT

∣∣∣∣Ft

]

Since we obviously (why?) have

ΠT [X] = X

we have proved the main pricing formula.
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Risk Neutral Valuation

Theorem: For a T -claim X, the arbitrage free price is
given by the formula

Πt [X] = EQ
[
e−

R T
t rsds × X

∣∣∣Ft

]
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Example: The Black-Scholes Model

Q-dynamics:

dSt = rStdt + σStdWQ
t .

Simple claim:
X = Φ(ST ),

Πt [X] = e−r(T−t)EQ [Φ(ST )| Ft]

Kolmogorov ⇒

Πt [X] = F (t, St)

where F (t, s) solves the Black-Scholes equation:






∂F
∂t + rs∂F

∂s + 1
2σ

2s2∂2F
∂s2 − rF = 0,

F (T, s) = Φ(s).
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Problem

Recall the valuation formula

Πt [X] = EQ
[
e−

R T
t rsds × X

∣∣∣Ft

]

What if there are several different martingale measures
Q?

This is connected with the completeness of the
market.
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Hedging

Def: A portfolio is a hedge against X (“replicates
X”) if

• h is self financing

• VT = X, P − a.s.

Def: The market is complete if every X can be
hedged.

Pricing Formula:
If h replicates X, then a natural way of pricing X is

Πt [X] = V h
t

When can we hedge?
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Existence of hedge

3

Existence of stochastic integral
representation
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Fix T -claim X.

If h is a hedge for X then

• V Z
T = X

BT

• h is self financing, i.e.

dV Z
t =

K∑

1

hi
tdZ

i
t

Thus V Z is a Q-martingale.

V Z
t = EQ

[
X

BT

∣∣∣∣Ft

]
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Lemma:
Fix T -claim X. Define martingale M by

Mt = EQ

[
X

BT

∣∣∣∣Ft

]

Suppose that there exist predictable processes
h1, · · · , hN such that

Mt = x +
N∑

i=1

∫ t

0
hi

sdZ
i
s,

Then X can be replicated.
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Proof

We guess that

Mt = V Z
t = hB

t · 1 +
N∑

i=1

hi
tZ

i
t

Define: hB by

hB
t = Mt −

N∑

i=1

hi
tZ

i
t.

We have Mt = V Z
t , and we get

dV Z
t = dMt =

N∑

i=1

hi
tdZti,

so the portfolio is self financing. Furthermore:

V Z
T = MT = EQ

[
X

BT

∣∣∣∣FT

]
=

X

BT
.
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Second Fundamental Theorem

The second most important result in arbitrage theory
is the following.

Theorem:

The market is complete

iff

the martingale measure Q is unique.

Proof: It is obvious (why?) that if the market
is complete, then Q must be unique. The other
implication is very hard to prove. It basically relies on
duality arguments from functional analysis.
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Black-Scholes Model

Q-dynamics

dSt = rStdt + σStdWQ
t ,

dZt = ZtσdWQ
t

Mt = EQ
[
e−rTX

∣∣Ft

]
,

Representation theorem for Wiener processes
⇓

there exists g such that

Mt = M(0) +

∫ t

0
gsdWQ

s .

Thus

Mt = M0 +

∫ t

0
h1

sdZs,

with h1
t = gt

σZt
.
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Result:
X can be replicated using the portfolio defined by

h1
t = gt/σZt,

hB
t = Mt − h1

tZt.

Moral: The Black Scholes model is complete.
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Special Case: Simple Claims

Assume X is of the form X = Φ(ST )

Mt = EQ
[
e−rTΦ(ST )

∣∣Ft

]
,

Kolmogorov backward equation ⇒ Mt = f(t, St)

{
∂f
∂t + rs∂f

∂s + 1
2σ

2s2∂2f
∂s2 = 0,

f(T, s) = e−rTΦ(s).

Itô ⇒
dMt = σSt

∂f

∂s
dWQ

t ,

so

gt = σSt ·
∂f

∂s
,

Replicating portfolio h:

hB
t = f − St

∂f

∂s
,

h1
t = Bt

∂f

∂s
.

Interpretation: f(t, St) = V Z
t .
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Define F (t, s) by

F (t, s) = ertf(t, s)

so F (t, St) = Vt. Then





hB

t =
F (t,St)−St

∂F
∂s (t,St)

Bt
,

h1
t = ∂F

∂s (t, St)

where F solves the Black-Scholes equation

{
∂F
∂t + rs∂F

∂s + 1
2σ

2s2∂2F
∂s2 − rF = 0,

F (T, s) = Φ(s).
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Main Results

• The market is arbitrage free ⇔ There exists a
martingale measure Q

• The market is complete ⇔ Q is unique.

• Every X must be priced by the formula

Πt [X] = EQ
[
e−

R T
t rsds × X

∣∣∣Ft

]

for some choice of Q.

• In a non-complete market, different choices of Q
will produce different prices for X.

• For a hedgeable claim X, all choices of Q will
produce the same price for X:

Πt [X] = Vt = EQ
[
e−

R T
t rsds × X

∣∣∣Ft

]
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Completeness vs No Arbitrage
Rule of Thumb

Question:
When is a model arbitrage free and/or complete?

Answer:
Count the number of risky assets, and the number of
random sources.

R = number of random sources

N = number of risky assets

Intuition:
If N is large, compared to R, you have lots of
possibilities of forming clever portfolios. Thus lots
of chances of making arbitrage profits. Also many
chances of replicating a given claim.
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Rule of thumb

Generically, the following hold.

• The market is arbitrage free if and only if

N ≤ R

• The market is complete if and only if

N ≥ R

Example:
The Black-Scholes model.

dSt = αStdt + σStdWt,

dBt = rBtdt.

For B-S we have N = R = 1. Thus the Black-Scholes
model is arbitrage free and complete.
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Stochastic Discount Factors

Given a model under P . For every EMM Q we define
the corresponding Stochastic Discount Factor, or
SDF, by

Dt = e−
R t
0 rsdsLt,

where

Lt =
dQ

dP
, on Ft

There is thus a one-to-one correspondence between
EMMs and SDFs.

The risk neutral valuation formula for a T -claim X can
now be expressed under P instead of under Q.

Proposition: With notation as above we have

Πt [X] =
1

Dt
EP [DTX| Ft]

Proof: Bayes’ formula.
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Martingale Property of S · D

Proposition: If S is an arbitrary price process, then
the process

StDt

is a P -martingale.

Proof: Bayes’ formula.
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Continuous Time Finance

Dividends,

Forwards, Futures, and Futures Options

Ch 16 & 26

Tomas Björk
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1. Dividends

2. Forward and futures contracts

3. Futures options
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1. Dividends
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Dividends

Black-Scholes model:

dSt = αStdt + σStdWt,

dBt = rBtdt.

New feature:
The underlying stock pays dividends.

Dt = The cumulative dividends over

the interval [0, t]

Interpretation:
Over the interval [t, t+dt] you obtain the amount dDt

Two cases

• Discrete dividends (realistic but messy).

• Continuous dividends (unrealistic but easy to
handle).
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Portfolios and Dividends

Consider a market with N assets.

Si
t = price at t, of asset No i

Di
t = cumulative dividends for Si over

the interval [0, t]

hi
t = number of units of asset i

Vt = market value of the portfolio h at t

Assumption: We assume that D has continuous
trajctories.

Definition: The value process V is defined by

Vt =
N∑

i=1

hi
tS

i
t
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Self financing portfolios

Recall:

Vt =
N∑

i=1

hi
tS

i
t

Definition: The strategy h is self financing if

dVt =
N∑

i=1

hi
tdGi

t

where the gain process Gi is defined by

dGi
t = dSi

t + dDi
t

Interpret!

Note: The definitions above rely on the assumption
that D is continuous. In the case of a discontinuous
D, the definitions are more complicated.
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Relative weights

ui
t = the relative share of the portfolio value, which is

invested in asset No i.

ui
t =

hi
tS

i
t

Vt

dVt =
N∑

i=1

hi
tdGi

t

Substitute!

dVt = Vt

N∑

i=1

ui
t

dGi
t

Si
t
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Continuous Dividend Yield

Definition: The stock S pays a continuous dividend
yield of q, if D has the form

dDt = qStdt

Problem:
How does the dividend affect the price of a European
Call? (compared to a non-dividend stock).

Answer:
The price is lower. (why?)
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Black-Scholes with Cont. Dividend Yield

dSt = αStdt + σStdWt,

dDt = qStdt

Gain process:

dGt = (α + q)Stdt + σStdWt

Consider a fixed claim

X = Φ(ST )

and assume that

Πt [X] = F (t, St)
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Standard Procedure

• Assume that the derivative price is of the form

Πt [X] = F (t, St).

• Form a portfolio based on underlying S and
derivative F , with portfolio dynamics

dVt = Vt

{
uS

t · dGt

St
+ uF

t · dF

F

}

• Choose uS and uF such that the dW -term is wiped
out. This gives us

dVt = Vt · ktdt

• Absence of arbitrage implies

kt = r

• This relation will say something about F .
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Value dynamics:

dV = V ·
{

uSdG

S
+ uF dF

F

}
,

dG = S(α + q)dt + σSdW.

From Itô we obtain

dF = αFFdt + σFFdW,

where

αF =
1

F

{
∂F

∂t
+ αS

∂F

∂s
+

1

2
σ2S2∂

2F

∂s2

}
,

σF =
1

F
· σS

∂F

∂s
.

Collecting terms gives us

dV = V ·
{
uS(α + q) + uFαF

}
dt

+ V ·
{
uSσ + uFσF

}
dW,
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Define uS and uF by the system

uSσ + uFσF = 0,

uS + uF = 1.
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Solution

uS =
σF

σF − σ
,

uF =
−σ

σF − σ
,

Value dynamics

dV = V ·
{
uS(α + q) + uFαF

}
dt.

Absence of arbitrage implies

uS(α + q) + uFαF = r,

We get

∂F

∂t
+ (r − q)S

∂F

∂s
+

1

2
σ2S2∂

2F

∂s2
− rF = 0.
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Pricing PDE

Proposition: The pricing function F is given as the
solution to the PDE






∂F

∂t
+ (r − q)s

∂F

∂s
+

1

2
σ2s2∂

2F

∂s2
− rF = 0,

F (T, s) = Φ(s).

We can now apply Feynman-Kac to the PDE in order
to obtain a risk neutral valuation formula.
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Risk Neutral Valuation

The pricing function has the representation

F (t, s) = e−r(T−t)EQ
t,s [Φ(ST )] ,

where the Q-dynamics of S are given by

dSt = (r − q)Stdt + σStdWQ
t .

Question: Which object is a martingale under the
meausre Q?
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Martingale Property

Proposition: Under the martingale measure Q the
normalized gain process

GZ
t = e−rtSt +

∫ t

0
e−rudDu

is a Q-martingale.

Proof: Exercise.

Note: The result above holds in great generality.

Interpretation:
In a risk neutral world, today’s stock price should be
the expected value of all future discounted earnings
which arise from holding the stock.

S0 = EQ

[∫ t

0
e−rudDu + e−rtSt

]
,

Tomas Björk, 2017 221








































































































Therm compared

to previous case

Show dG e to dw no at term

seep228

these include dividends

é Est
the

from Proposition upon noticing G So
f



Pricing formula

Pricing formula for claims of the type

Z = Φ(ST )

We are standing at time t, with dividend yield q.
Today’s stock price is s.

• Suppose that you have the pricing function

F 0(t, s)

for a non dividend stock.

• Denote the pricing function for the dividend paying
stock by

F q(t, s)

Proposition: With notation as above we have

F q(t, s) = F 0
(
t, se−q(T−t)

)
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Moral

Use your old formulas, but replace today’s stock price
s with se−q(T−t).
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European Call on Dividend-Paying-Stock

F q(t, s) = se−q(T−t)N [d1] − e−r(T−t)KN [d2] .

d1 =
1

σ
√

T − t

{
ln
( s

K

)
+

(
r − q +

1

2
σ2

)
(T − t)

}

d2 = d1 − σ
√

T − t.
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Martingale Analysis

Basic task: We have a general model for stock price S
and cumulative dividends D, under P . How do we find
a martingale measure Q, and exactly which objects will
be martingales under Q?

Main Idea: We attack this situation by reducing it
to the well known case of a market without dividends.
Then we apply standard techniques.
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The Reduction Technique

• Consider the self financing portfolio where you keep
1 unit of the stock and invest all dividends in the
bank. Denote the portfolio value by V .

• This portfolio can be viewed as a traded asset
without dividends.

• Now apply the First Fundamental Theorem to the
market (B, V ) instead of the original market (B, S).

• Thus there exists a martingale measure Q such that
Πt
Bt

is a Q martingale for all traded assets (underlying
and derivatives) without dividends.

• In particular the process

Vt

Bt

is a Q martingale.
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The V Process

Let ht denote the number of units in the bank account,
where h0 = 0. V is then characterized by

Vt = 1 · St + htBt (1)

dVt = dSt + dDt + htdBt (2)

From (1) we obtain

dVt = dSt + htdBt + Btdht

Comparing this with (2) gives us

Btdht = dDt

Integrating this gives us

ht =

∫ t

0

1

Bs
dDs
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We thus have

Vt = St + Bt

∫ t

0

1

Bs
dDs (3)

and the first fundamental theorem gives us the
following result.

Proposition: For a market with dividends, the
martingale measure Q is characterized by the fact
that the normalized gain process

GZ
t =

St

Bt
+

∫ t

0

1

Bs
dDs

is a Q martingale.

Quiz: Could you have guessed the formula (3) for V ?
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Continuous Dividend Yield

Model under P

dSt = αStdt + σStdWt,

dDt = qStdt

We recall

GZ
t =

St

Bt
+

∫ t

0

1

Bs
dDs

Easy calculation gives us

dGZ
t = Zt (α − r + q) dt + ZtσdWt

where Z = S/B.

Girsanov transformation dQ = LdP , where

dLt = LtϕtdWt

We have
dWt = ϕtdt + dWQ

t

Insert this into dGZ
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The Q dynamics for GZ are

dGZ
t = Zt (α − r + q + σϕt) dt + ZtσdWQ

t

Martingale condition

α − r + q + σϕt = 0

Q-dynamics of S

dSt = St (α + σϕ) dt + StσdWQ
t

Using the martingale condition this gives us the Q-
dynamics of S as

dSt = St (r − q) dt + StσdWQ
t
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Risk Neutral Valuation

Theorem: For a T -claim X, the price process Πt [X]
is given by

Πt [X] = e−r(T−t)EQ [X| Ft] ,

where the Q-dynamics of S are given by

dSt = (r − q)Stdt + σStdWQ
t .
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2. Forward and Futures Contracts
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Forward Contracts

A forward contract on the T -claim X, contracted
at t, is defined by the following payment scheme.

• The holder of the forward contract receives, at time
T , the stochastic amount X from the underwriter.

• The holder of the contract pays, at time T , the
forward price f(t; T, X) to the underwriter.

• The forward price f(t; T, X) is determined at time
t.

• The forward price f(t; T, X) is determined in such
a way that the price of the forward contract equals
zero, at the time t when the contract is made.
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General Risk Neutral Formula

Suppose we have a bank account B with dynamics

dBt = rtBtdt, B0 = 1

with a (possibly stochastic) short rate rt. Then

Bt = e
R t
0 rsds

and we have the following risk neutral valuation for a
T -claim X

Πt [X] = EQ
[
e−

R T
t rsds · X

∣∣∣Ft

]

Setting X = 1 we have the price, at time t, of a zero
coupon bond maturing at T as

p(t, T ) = EQ
[
e−

R T
t rsds

∣∣∣Ft

]
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Forward Price Formula

Theorem: The forward price of the claim X is given
by

f(t, T ) =
1

p(t, T )
EQ

[
e−

R T
t rsds · X

∣∣∣Ft

]

where p(t, T ) denotes the price at time t of a zero
coupon bond maturing at time T .

In particular, if the short rate r is deterministic we have

f(t, T ) = EQ [X| Ft]
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Proof

The net cash flow at maturity is X − f(t, T ). If the
value of this at time t equals zero we obtain

Πt [X] = Πt [f(t, T )]

We have

Πt [X] = EQ
[
e−

R T
t rsds · X

∣∣∣Ft

]

and, since f(t, T ) is known at t, we obviously (why?)
have

Πt [f(t, T )] = p(t, T )f(t, T ).

This proves the main result. If r is deterministic then
p(t, T ) = e−r(T−t) which gives us the second formula.
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Futures Contracts

A futures contract on the T -claim X, is a financial
asset with the following properties.

(i) At every point of time t with 0 ≤ t ≤ T , there exists
in the market a quoted object F (t; T, X), known as
the futures price for X at t, for delivery at T .

(ii) At the time T of delivery, the holder of the contract
pays F (T ; T, X) and receives the claim X.

(iii) During an arbitrary time interval (s, t] the holder
of the contract receives the amount F (t; T, X) −
F (s; T, X).

(iv) The spot price, at any time t prior to delivery, for
buying or selling the futures contract, is by definition
equal to zero.
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Futures Price Formula

From the definition it is clear that a futures contract
is a price-dividend pair (S, D) with

S ≡ 0, dDt = dF (t, T )

From general theory, the normalized gains process

GZ
t =

St

Bt
+

∫ t

0

1

Bs
dDs

is a Q-martingale.

Since S ≡ 0 and dDt = dF (t, T ) this implies that

1

Bt
dF (t, T )

is a martingale increment, which implies (why?) that
dF (t, T ) is a martingale increment. Thus F is a
Q-martingale and we have

F (t, T ) = EQ [F (T, T )| Ft] = EQ [X| Ft]
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Theorem: The futures price process is given by

F (t, T ) = EQ [X| Ft] .

Corollary. If the short rate is deterministic, then the
futures and forward prices coincide.
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3. Futures Options
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Futures Options

We denote the futures price process, at time t with
delivery time at T by

F (t, T ).

When T is fixed we sometimes suppress it and write
Ft, i.e. Ft = F (t, T )

Definition:
A European futures call option, with strike price K and
exercise date T , on a futures contract with delivery date
T1 will, if exercised at T , pay to the holder:

• The amount F (T, T1) − K in cash.

• A long postition in the underlying futures contract.

NB! The long position above can immediately be
closed at no cost.
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Institutional fact:
The exercise date T of the futures option is typcally
very close to the date of delivery of the underlying T1

futures contract.
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Why do Futures Options exist?

• On many markets (such as commodity markets)
the futures market is much more liquid than the
underlying market.

• Futures options are typically settled in cash. This
relieves you from handling the underlying (tons of
copper, hundreds of pigs, etc.).

• The market place for futures and futures options is
often the same. This facilitates hedging etc.
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Pricing Futures Options – Black-76

We consider a futures contract with delivery date T1

and use the notation Ft = F (t, T1). We assume the
following dynamics for F .

dFt = µFtdt + σFtdWt

Now suppose we want to price a derivative with exercise
date T with the T1-futures price F as underlying, i.e.
a claim of the form

Φ(FT )

This turns out to be quite easy.
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From risk neutral valuation we know that the price
process Πt [Φ] is of the form

Πt [Φ] = f(t, Ft)

where f is given by

f(t, F ) = e−r(T−t)EQ
t,F [Φ(FT )]

so it only remains to find the Q-dynamics for F .

We now recall

Proposition: The futures price process Ft is a Q-
martingale.

Thus the Q-dynamics of F are given by

dFt = σFtdWQ
t
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We thus have

f(t, F ) = e−r(T−t)EQ
t,F [Φ(FT )]

with Q-dynamics

dFt = σFtdWQ
t

Now recall the formula for a stock with continuous
dividend yield q.

f(t, s) = e−r(T−t)EQ
t,s [Φ(ST )]

with Q-dynamics

dSt = (r − q)St + σStdWQ
t

Note: If we set q = r the formulas are identical!
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Pricing Formulas

Let f0(t, s) be the pricing function for the contract
Φ(ST ) for the case when S is a stock without dividends.
Let f(t, F ) be the pricing formula for the claim Φ(FT ).

Proposition: With notation as above we have

f(t, F ) = f0(t, Fe−r(T−t))

Moral: Reset today’s futures price F to Fe−r(T−t)

and use your formulas for stock options.
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Black-76 Formula

The price of a futures option with exercise date T and
exercise price K is given by

c = e−r(T−t) {FN [d1] − KN [d2]} .

d1 =
1

σ
√

T − t

{
ln

(
F

K

)
+

1

2
σ2(T − t)

}
,

d2 = d1 − σ
√

T − t.
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Continuous Time Finance

Currency Derivatives

Ch 17

Tomas Björk
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Pure Currency Contracts

Consider two markets, domestic (England) and foreign
(USA).

rd = domestic short rate

rf = foreign short rate

X = exchange rate

NB! The exchange rate X is quoted as

units of the domestic currency

unit of the foreign currency
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Simple Model (Garman-Kohlhagen)

The P -dynamics are given as:

dXt = Xtαdt + XtσdWt,

dBd
t = rdBd

t dt,

dBf
t = rfBf

t dt,

Main Problem:
Find arbitrage free price for currency derivative, Z, of
the form

Z = Φ(XT )

Typical example: European Call on X.

Z = max [XT − K, 0]
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Naive idea

For the European Call, use the standard Black-Scholes
formula, with S replaced by X and r replaced by rd.

Is this OK?
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NO!

WHY?
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Main Idea

• When you buy stock you just keep the asset until
you sell it.

• When you buy dollars, these are put into a bank
account, giving the interest rf .

Moral:
Buying a currency is like buying a dividend-paying
stock with dividend yield q = rf .
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Technique

• Transform all objects into domestically traded
asset prices.

• Use standard techniques on the transformed model.
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Transformed Market

1. Investing foreign currency in the foreign bank gives
value dynamics in foreign currency according to

dBf
t = rfBf

t dt.

2. Bf units of the foreign currency is worth X · Bf in
the domestic currency.

3. Trading in the foreign currency is equivalent to
trading in a domestic market with the domestic
price process

B̃f
t = Bf

t · Xt

4. Study the domestic market consisting of

B̃f , Bd
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Market dynamics

dXt = Xtαdt + XtσdW

B̃f
t = Bf

t · Xt

Using Itô we have domestic market dynamics

dB̃f
t = B̃f

t

(
α + rf

)
dt + B̃f

t σdWt

dBd
t = rdBd

t dt

Standard results gives us Q-dynamics for domestically
traded asset prices:

dB̃f
t = B̃f

t rddt + B̃f
t σdWQ

t

dBd
t = rdBd

t dt

Itô gives us Q-dynamics for Xt = B̃f
t /Bf

t :

dXt = Xt(r
d − rf)dt + XtσdWQ

t
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Risk neutral Valuation

Theorem: The arbitrage free price Πt [Φ] is given by
Πt [Φ] = F (t, Xt) where

F (t, x) = e−rd(T−t)EQ
t,x [Φ(XT )]

The Q-dynamics of X are given by

dXt = Xt(r
d − rf)dt + XtσdWQ

t
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Pricing PDE

Theorem:The pricing function F solves the boundary
value problem

∂F

∂t
+ x(rd − rf)

∂F

∂x
+

1

2
x2σ2∂2F

∂x2
− rdF = 0,

F (T, x) = Φ(x)
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Currency vs Equity Derivatives

Proposition: Introduce the notation:

• F 0(t, x) = the pricing function for the claim Z =
Φ(XT ), where we interpret X as the price of an
ordinary stock without dividends.

• F (t, x) = the pricing function of the same claim
when X is interpreted as an exchange rate.

Then the following holds

F (t, x) = F0

(
t, xe−rf(T−t)

)
.
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Currency Option Formula

The price of a European currency call is given by

F (t, x) = xe−rf(T−t)N [d1] − e−rd(T−t)KN [d2] ,

where

d1 =
1

σ
√

T − t

{
ln
( x

K

)
+

(
rd − rf +

1

2
σ2

X

)
(T − t)

}

d2 = d1(t, x) − σ
√

T − t
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Upon remaining the constants this is

the same formula as on p 224 for
dividends

End of lecture Bb



Martingale Analysis

Qd = domestic martingale measure

Qf = foreign martingale measure

Lt =
dQf

dQd
, Ld

t =
dQd

dP
, Lf

t =
dQf

dP

P -dynamics of X

dXt = Xtαtdt + XtσtdWt

where α and σ are arbitrary adapted processes and W
is P -Wiener.

Problem: How are Qd and Qf related?
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Main Idea

Fix an arbitrary foreign T -claim Z.

• Compute foreign price and change to domestic
currency. The price at t = 0 will be

Π0 [Z] = X0E
Qf
[
e−

R T
0 rf

s dsZ
]

This can be written as

Π0 [Z] = X0E
Qd
[
LTe−

R T
0 rf

s dsZ
]

• Change into domestic currency at T and then
compute arbitrage free price. This gives us

Π0 [Z] = EQd
[
e−

R T
0 rd

sdsXT · Z
]

• These expressions must be equal for all choices of
Z ∈ FT .
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We thus obtain

EQd
[
e−

R T
0 rd

sdsXT · Z
]

= X0E
Qd
[
LTe−

R T
0 rf

s dsZ
]

for all T -claims Z. This implies the following result.

Theorem: The exchange rate X is given by

Xt = X0e
R t
0 (rd

s−rf
s )dsLt

alternatively by

Xt = X0
Df

t

Dd
t

where Dd
t is the domestic stochastic discount factor

etc.

Proof: The last part follows from

L =
dQf

dQd
=

dQf

dP

/
dQd

dP
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Qd-Dynamics of X

In particular, since L is a Qd-martingale the Qd

dynamics of L are of the form

dLt = LtϕtdW d
t

where W d is Qd-Wiener. From

Xt = X0e
R t
0 (rd

s−rf
s )dsLt

the Qd-dynamics of X follows as

dXt = (rd
t − rf

t )Xtdt + XtϕtdW d
t

so the Girsanov kernel ϕ equals the exchange rate
volatility σ and we have the general Qd dynamics.

Theorem: The Qd dynamics of X are of the form

dXt = (rd
t − rf

t )Xtdt + XtσtdW d
t
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Market Prices of Risk

Recall
Dd

t = e−
R t
0 rd

sdsLd
t

We also have
dLd

t = Ld
tϕ

d
tdWt

where −ϕd
t = λd is the domestic market price of risk

and similar for ϕf etc. From

Xt = X0
Df

t

Dd
t

we now easily obtain

dXt = Xtαtdt + Xt

(
λd

t − λf
t

)
dWt,

where we do not care about the exact shape of α. We
thus have

Theorem: The exchange rate volatility is given by

σt = λd
t − λf

t
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Siegel’s Paradox

Assume that the domestic and the foreign markets are
risk neutral and assume constant short rates. We now
have the following surprising (?) argument.

A: Let us consider a T claim of 1 dollar. The arbitrage
free dollar value at t = 0 is of course

e−rfT

so the Euro value at at t = 0 is given by

X0e
−rfT .

The 1-dollar claim is, however, identical to a T -claim
of XT euros. Given domestic risk neutrality, the Euro
value at t = 0 is then

e−rdTEP [XT ] .

We thus have

X0e
−rfT = e−rdTEP [XT ]
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Siegel’s Paradox ct’d

B: We now consider a T -claim of one Euro and
compute the dollar value of this claim. The Euro
value at t = 0 is of course

e−rdT

so the dollar value is

1

X0
e−rdT .

The 1-Euro claim is identical to a T -claim of X−1
T

Euros so, by foreign risk neutrality, we obtain the
dollar price as

e−rfTEP

[
1

XT

]

which gives us

1

X0
e−rdT = e−rfTEP

[
1

XT

]
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Siegel’s Paradox ct’d

Recall our earlier results

X0e
−rfT = e−rdTEP [XT ]

1

X0
e−rdT = e−rfTEP

[
1

XT

]

Combining these gives us

EP

[
1

XT

]
=

1

EP [XT ]

which, by Jensen’s inequality, is impossible unless XT

is deterministic. This is sometimes referred to as (one
formulation of) “Siegel’s paradox.”

It thus seems that Americans cannot be risk neutral at
the same time as Europeans.

What is going on?
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Formal analysis of Siegel’s Paradox

Question: Can we assume that both the domestic and
the foreign markets are risk neutral?

Answer: Generally no.

Proof: The assumption would be equivalent to
assuming the P = Qd = Qf i.e.

λd
t = λf

t = 0

However, we know that

σt = λd
t − λf

t

so we would need to have σt = 0 i.e. a non-stochastic
exchange rate.
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Moral

The previous slide gave us the mathematical result, but
the intuitive question remains why Americans cannot
be risk neutral at the same time as Europeans.

The solution is roughly as follows.

• Risk neutrality (or risk aversion) is always defined
in terms of a given numeraire.

• It is not an attitude towards risk as such.

• You can therefore not be risk neutral w.r.t two
different numeraires at the same time unless the
ratio between them is deterministic.

• In particular we cannot have risk neutrality w.r.t.
Dollars and Euros at the same time.
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Continuous Time Finance
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Ch 26
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Recap of General Theory

Consider a market with asset prices

S0
t , S1

t , . . . , SN
t

Theorem: The market is arbitrage free

iff

there exists an EMM, i.e. a measure Q such that

• Q and P are equivalent, i.e.

Q ∼ P

• The normalized price processes

S0
t

S0
t

,
S1

t

S0
t

, . . . ,
SN

t

S0
t

are Q-martingales.
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Recap continued

Recall the normalized market

(
Z0

t , Z1
t , . . . ZN

t

)
=

(
S0

t

S0
t

,
S1

t

S0
t

. . . ,
SN

t

S0
t

)

• We obviously have

Z0
t ≡ 1

• Thus Z0 is a risk free asset in the normalized
economy.

• Z0 is a bank account in the normalized economy.

• In the normalized economy the short rate is zero.
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Dependence on numeraire

• The EMM Q will obviously depend on the choice
of numeraire, so we should really write Q0 to
emphasize that we are using S0 as numeraire.

• So far we have only considered the case when the
numeraire asset is the bank account, i.e. when
S0

t = Bt. In this case, the martingale measure
QB is referred to as “the risk neutral martingale
measure”.

• Henceforth the notation Q (without upper case
index) will only be used for the risk neutral
martingale measure, i.e. Q = QB.

• We will now consider the case of a general
numeraire.
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General change of numeraire.

• Consider a financial market, including a bank
account B.

• Assume that the market is using a fixed risk neutral
measure Q as pricing measure.

• Choose a fixed asset S as numeraire, and denote
the corresponding martingale measure by QS.

Problems:

• Determine QS, i.e. determine

Lt =
dQS

dQ
, on Ft

• Develop pricing formulas for contingent claims using
QS instead of Q.
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Constructing QS

Fix a T -claim X. From general theory we know that

Π0 [X] = EQ

[
X

BT

]

Since QS is a martingale measure for the numeraire S,
the normalized process

Πt [X]

St

is a QS-martingale. We thus have

Π0 [X]

S0
= ES

[
ΠT [X]

ST

]
= ES

[
X

ST

]
= EQ

[
LT

X

ST

]

From this we obtain

Π0 [X] = EQ

[
LT

X · S0

ST

]
,
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For all X ∈ FT we thus have

EQ

[
X

BT

]
= EQ

[
LT

X · S0

ST

]

Recall the following basic result from probability theory.

Proposition: Consider a probability space (Ω,F, P )
and assume that

E [Y · X] = E [Z · X] , for all Z ∈ F.

Then we have

Y = Z, P − a.s.

From this result we conclude that

1

BT
= LT

S0

ST
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Main result

Proposition: The likelihood process

Lt =
dQS

dQ
, on Ft

is given by

Lt =
St

Bt
· 1

S0
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Easy exercises

1. Convince yourself that L is a Q-martingale.

2. Assume that a process At has the property that
At/Bt is a Q martingale. Show that this implies
that At/St is a QS-martingale. Interpret the result.
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Pricing

Theorem: For every T -claim X we have the pricing
formula

Πt [X] = StE
S

[
X

ST

∣∣∣∣Ft

]

Proof: Follows directly from the QS-martingale
property of Πt [X] /St.

Note 1: We observe St directly on the market.

Note 2: The pricing formula above is particularly
useful when X is of the form

X = ST · Y

In this case we obtain

Πt [X] = StE
S [Y | Ft]
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Important example

Consider a claim of the form

X = Φ
[
S0

T , S1
T

]

We assume that Φ is linearly homogeneous, i.e.

Φ(λx, λy) = λΦ(x, y), for all λ > 0

Using Q0 we obtain

Πt [X] = S0
t E0

[
Φ
[
S0

T , S1
T

]

S0
T

∣∣∣∣∣
Ft

]

Πt [X] = Πt [X] = S0
t E0

[
Φ

(
1,

S1
T

S0
T

)∣∣∣∣Ft

]
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Important example cnt’d

Proposition: For a claim of the form

X = Φ
[
S0

T , S1
T

]
,

where Φ is homogeneous, we have

Πt [X] = S0
t E0 [ϕ (ZT )| Ft]

where

ϕ (z) = Φ [1, z] , Zt =
S1

t

S0
t
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Exchange option

Consider an exchange option, i.e. a claim X given by

X = max
[
S1

T − S0
T , 0

]

Since Φ(x, y) = max [x − y, 0] is homogeneous we
obtain

Πt [X] = S0
t E0 [max [ZT − 1, 0]| Ft]

• This is a European Call on Z with strike price K.

• Zero interest rate.

• Piece of cake!

• If S0 and S1 are both GBM, then so is Z, and the
price will be given by the Black-Scholes formula.
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Identifying the Girsanov Transformation

Assume the Q-dynamics of S are known as

dSt = rtStdt + StvtdWQ
t

Lt =
St

S0Bt

From this we immediately have

dLt = LtvtdWQ
t .

and we can summarize.

Theorem: The Girsanov kernel is given by the
numeraire volatility vt, i.e.

dLt = LtvtdWQ
t .
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Recap on zero coupon bonds

Recall: A zero coupon T -bond is a contract which
gives you the claim

X ≡ 1

at time T .

The price process Πt [1] is denoted by p(t, T ).

Allowing a stochastic short rate rt we have

dBt = rtBtdt.

This gives us

Bt = e
R t
0 rsds,

and using standard risk neutral valuation we have

p(t, T ) = EQ
[
e−

R T
t rsds

∣∣∣Ft

]

Note:
p(T, T ) = 1
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The forward measure QT

• Consider a fixed T .

• Choose the bond price process p(t, T ) as numeraire.

• The corresponding martingale measure is denoted
by QT and referred to as “the T -forward measure”.

For any T claim X we obtain

Πt [X] = p(t, T )EQT
[

ΠT [X]

p(T, T )

∣∣∣∣Ft

]

We have

ΠT [X] = X, p(T, T ) = 1

Theorem: For any T -claim X we have

Πt [X] = p(t, T )EQT
[X| Ft]

Tomas Björk, 2017 287








































































































Special choice of numéraire leads to

ayam
variable

better than TEN Be IF hffiter

and To plot EO expectations



A general option pricing formula

European call on asset S with strike price K and maturity T .

X = max [ST − K, 0]

Write X as

X = (ST − K) · I {ST ≥ K} = ST I {ST ≥ K}− KI {ST ≥ K}

Use QS on the first term and QT on the second.

Π0 [X] = S0 · QS [ST ≥ K] − K · p(0, T ) · QT [ST ≥ K]
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Continuous Time Finance

Incomplete Markets

Ch 15

Tomas Björk

Tomas Björk, 2017 289








































































































Start of lecture 10 a

Recall In a complete market every
claim can be hedged and

thus has a uniqueprice

Metatheoren N R not sufficiently
manyrisky assets in

incomplete markets

what else

Typical examples



Derivatives on Non Financial Underlying

Recall: The Black-Scholes theory assumes that the
market for the underlying asset has (among other
things) the following properties.

• The underlying is a liquidly traded asset.

• Shortselling allowed.

• Portfolios can be carried forward in time.

There exists a large market for derivatives, where the
underlying does not satisfy these assumptions.

Examples:

• Weather derivatives.

• Derivatives on electric energy.

• CAT-bonds.
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Typical Contracts

Weather derivatives:
“Heating degree days”. Payoff at maturity T is
given by

Z = max {XT − 30, 0}
where XT is the (mean) temperature at some place.

Electricity option:
The right (but not the obligation) to buy, at time
T , at a predetermined price K, a constant flow of
energy over a predetermined time interval.

CAT bond:
A bond for which the payment of coupons and
nominal value is contingent on some (well specified)
natural disaster to take place.
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Problems

Weather derivatives:
The temperature is not the price of a traded asset.

Electricity derivatives:
Electric energy cannot easily be stored.

CAT-bonds:
Natural disasters are not traded assets.

We will treat all these problems within a factor model.
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Typical Factor Model Setup

Given:

• An underlying factor process X, which is not the
price process of a traded asset, with dynamics under
the objective probability measure P as

dXt = µ (t,Xt) dt + σ (t,Xt) dWt.

• A risk free asset with dynamics

dBt = rBtdt,

Problem:
Find arbitrage free price Πt [Z] of a derivative of the
form

Z = Φ(XT )
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Concrete Examples

Assume that Xt is the temperature at time t at the
village of Peniche (Portugal).

Heating degree days:

Φ(XT ) = 100 · max {XT − 30, 0}

Holiday Insurance:

Φ(XT ) =






1000, if XT < 20

0, if XT ≥ 20
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Question

Is the price Πt [Φ] uniquely determined by the P -
dynamics of X, and the requirement of an arbitrage
free derivatives market?
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NO!!

WHY?
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Stock Price Model ∼ Factor Model

Black-Scholes:

dSt = µStdt + σStdWt,

dBt = rBtdt.

Factor Model:

dXt = µ(t, Xt)dt + σ(t, Xt)dWt,

dBt = rBtdt.

What is the difference?
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Answer

• X is not the price of a traded asset!

• We can not form a portfolio based on X.
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1. Rule of thumb:

N = 0, (no risky asset)
R = 1, (one source of randomness, W )

We have N < R. The exogenously given market,
consisting only of B, is incomplete.

2. Replicating portfolios:
We can only invest money in the bank, and then sit
down passively and wait.

We do not have enough underlying assets in order
to price X-derivatives.
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• There is not a unique price for a particular
derivative.

• In order to avoid arbitrage, different derivatives
have to satisfy internal consistency relations.

• If we take one “benchmark” derivative as given,
then all other derivatives can be priced in terms of
the market price of the benchmark.

We consider two given claims Φ(XT ) and Γ(XT ). We
assume they are traded with prices

Πt [Φ] = f(t, Xt)

Πt [Γ] = g(t, Xt)
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Program:

• Form portfolio based on Φ and Γ. Use Itô on f and
g to get portfolio dynamics.

dV = V

{
uf df

f
+ ugdg

g

}

• Choose portfolio weights such that the dW− term
vanishes. Then we have

dV = V · kdt,

(“synthetic bank” with k as the short rate)

• Absence of arbitrage implies

k = r

• Read off the relation k = r!
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From Itô:
df = fµfdt + fσfdW,

where {
µf =

ft+µfx+1
2σ2fxx

f ,

σf = σfx
f .

Portfolio dynamics

dV = V

{
uf df

f
+ ugdg

g

}
.

Reshuffling terms gives us

dV = V ·
{
ufµf + ugµg

}
dt+V ·

{
ufσf + ugσg

}
dW.

Let the portfolio weights solve the system

{
uf + ug = 1,

ufσf + ugσg = 0.
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uf = − σg

σf − σg
,

ug =
σf

σf − σg
,

Portfolio dynamics

dV = V ·
{
ufµf + ugµg

}
dt.

i.e.

dV = V ·
{

µgσf − µfσg

σf − σg

}
dt.

Absence of arbitrage requires

µgσf − µfσg

σf − σg
= r

which can be written as

µg − r

σg
=

µf − r

σf
.
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Odw



µg − r

σg
=

µf − r

σf
.

Note!
The quotient does not depend upon the particular
choice of contract.
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Result

Assume that the market for X-derivatives is free of
arbitrage. Then there exists a universal process λ,
such that

µf(t) − r

σf(t)
= λ(t, Xt),

holds for all t and for every choice of contract f .

NB: The same λ for all choices of f .

λ = Risk premium per unit of volatility
= “Market Price of Risk” (cf. CAPM).
= Sharpe Ratio

Slogan:
“On an arbitrage free market all X-derivatives have
the same market price of risk.”

The relation
µf − r

σf
= λ

is actually a PDE!
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Pricing Equation





ft + {µ − λσ} fx +

1

2
σ2fxx − rf = 0

f(T, x) = Φ(x),

P -dynamics:

dX = µ(t, X)dt + σ(t, X)dW.

Can we solve the PDE?
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No!!

Why??
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Answer

Recall the PDE





ft + {µ − λσ} fx +

1

2
σ2fxx − rf = 0

f(T, x) = Φ(x),

• In order to solve the PDE we need to know λ.

• λ is not given exogenously.

• λ is not determined endogenously.
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Question:

Who determines λ?
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Answer:

THE MARKET!
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Interpreting λ

Recall that the f dynamics are

df = fµfdt + fσfdWt

and λ is defined as

µf(t) − r

σf(t)
= λ(t, Xt),

• λ measures the aggregate risk aversion in the
market.

• If λ is big then the market is highly risk averse.

• If λ is zero then the market is risk netural.

• If you make an assumption about λ, then you
implicitly make an assumption about the aggregate
risk aversion of the market.
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Moral

• Since the market is incomplete the requirement of
an arbitrage free market will not lead to unique
prices for X-derivatives.

• Prices on derivatives are determined by two main
factors.

1. Partly by the requirement of an arbitrage free
derivative market. All pricing functions satisfies
the same PDE.

2. Partly by supply and demand on the market.
These are in turn determined by attitude towards
risk, liquidity consideration and other factors. All
these are aggregated into the particular λ used
(implicitly) by the market.
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Risk Neutral Valuation

We recall the PDE





ft + {µ − λσ} fx +

1

2
σ2fxx − rf = 0

f(T, x) = Φ(x),

Using Feynman-Kac we obtain a risk neutral valuation
formula.
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Risk Neutral Valuation

f(t, x) = e−r(T−t)EQ
t,x [Φ(XT )]

Q-dynamics:

dXt = {µ − λσ} dt + σdWQ
t

• Price = expected value of future payments

• The expectation should not be taken under the
“objective” probabilities P , but under the “risk
adjusted” probabilities Q.
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Interpretation of the risk adjusted
probabilities

• The risk adjusted probabilities can be interpreted as
probabilities in a (fictuous) risk neutral world.

• When we compute prices, we can calculate as if
we live in a risk neutral world.

• This does not mean that we live in, or think that
we live in, a risk neutral world.

• The formulas above hold regardless of the attitude
towards risk of the investor, as long as he/she prefers
more to less.
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Diversification argument about λ

• If the risk factor is idiosyncratic and diversifiable,
then one can argue that the factor should not be
priced by the market. Compare with APT.

• Mathematically this means that λ = 0, i.e. P = Q,
i.e. the risk neutral distribution coincides with
the objective distribution.

• We thus have the “actuarial pricing formula”

f(t, x) = e−r(T−t)EP
t,x [Φ(XT )]

where we use the objective probabiliy measure P .
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Modeling Issues
Temperature:

A standard model is given by

dXt = {m(t) − bXt} dt + σdWt,

where m is the mean temperature capturing
seasonal variations. This often works reasonably
well.

Electricity:
A (naive) model for the spot electricity price is

dSt = St {m(t) − a lnSt} dt + σStdWt

This implies lognormal prices (why?). Electricty
prices are however very far from lognormal, because
of “spikes” in the prices. Complicated.

CAT bonds:
Here we have to use the theory of point processes
and the theory of extremal statistics to model
natural disasters. Complicated.
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Martingale Analysis

Model: Under P we have

dXt = µ (t,Xt) dt + σ (t,Xt) dWt,

dBt = rBtdt,

We look for martingale measures. Since B is the only
traded asset we need to find Q ∼ P such that

Bt

Bt
= 1

is a Q martingale.

Result: In this model, every Q ∼ P is a martingale
measure.

Girsanov
dLt = LtϕtdWt
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P -dynamics

dXt = µ (t,Xt) dt + σ (t,Xt) dWt,

dLt = LtϕtdWt

dQ = LtdP on Ft

Girsanov:
dWt = ϕtdt + dWQ

t

Martingale pricing:

F (t, x) = e−r(T−t)EQ [Z| Ft]

Q-dynamics of X:

dXt = {µ (t,Xt) + σ (t, Xt) ϕt} dt + σ (t,Xt) dWQ
t ,

Result: We have λt = −ϕt, i.e,. the Girsanov kernel
ϕ equals minus the market price of risk.
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Several Risk Factors

We recall the dynamics of the f -derivative

df = fµfdt + fσfdWt

and the Market Price of Risk

µf − r

σf
= λ, i.e. µf − r = λσf .

In a multifactor model of the type

dXt = µ (t,Xt) dt +
n∑

i=1

σi (t,Xt) dW i
t ,

it follows from Girsanov that for every risk factor W i

there will exist a market price of risk λi = −ϕi such
that

µf − r =
n∑

i=1

λiσi

Compare with CAPM.
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Continuous Time Finance

Stochastic Control Theory

Ch 19

Tomas Björk

Tomas Björk, 2017 321








































































































e

Start of lecture mat

Theoryof stochastic control

financial application
in lecture 12 optimal
investment and consumption



Contents

1. Dynamic programming.

2. Investment theory.
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1. Dynamic Programming

• The basic idea.

• Deriving the HJB equation.

• The verification theorem.

• The linear quadratic regulator.
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Problem Formulation

max
u

E

[∫ T

0
F (t, Xt, ut)dt + Φ(XT )

]

subject to

dXt = µ (t,Xt, ut) dt + σ (t,Xt, ut) dWt

X0 = x0,

ut ∈ U(t, Xt), ∀t.

We will only consider feedback control laws, i.e.
controls of the form

ut = u(t, Xt)

Terminology:

X = state variable

u = control variable

U = control constraint

Note: No state space constraints.
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Main idea

• Embedd the problem above in a family of problems
indexed by starting point in time and space.

• Tie all these problems together by a PDE: the
Hamilton Jacobi Bellman equation.

• The control problem is reduced to the problem of
solving the deterministic HJB equation.
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Some notation

• For any fixed vector u ∈ Rk, the functions µu, σu

and Cu are defined by

µu(t, x) = µ(t, x, u),

σu(t, x) = σ(t, x, u),

Cu(t, x) = σ(t, x, u)σ(t, x, u)′.

• For any control law u, the functions µu, σu, Cu(t, x)
and F u(t, x) are defined by

µu(t, x) = µ(t, x,u(t, x)),

σu(t, x) = σ(t, x,u(t, x)),

Cu(t, x) = σ(t, x,u(t, x))σ(t, x,u(t, x))′,

F u(t, x) = F (t, x,u(t, x)).
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More notation

• For any fixed vector u ∈ Rk, the partial differential
operator Au is defined by

Au =
n∑

i=1

µu
i (t, x)

∂

∂xi
+

1

2

n∑

i,j=1

Cu
ij(t, x)

∂2

∂xi∂xj
.

• For any control law u, the partial differential
operator Au is defined by

Au =
n∑

i=1

µu

i (t, x)
∂

∂xi
+

1

2

n∑

i,j=1

Cu

ij(t, x)
∂2

∂xi∂xj
.

• For any control law u, the process Xu is the solution
of the SDE

dXu

t = µ (t, Xu

t ,ut) dt + σ (t, Xu

t ,ut) dWt,

where
ut = u(t, Xu

t )
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Embedding the problem

For every fixed (t, x) the control problem Pt,x is defined
as the problem to maximize

Et,x

[∫ T

t
F (s, Xu

s , us)ds + Φ (Xu

T )

]

,

given the dynamics

dXu

s = µ (s,Xu

s ,us) ds + σ (s,Xu

s ,us) dWs,

Xt = x,

and the constraints

u(s, y) ∈ U, ∀(s, y) ∈ [t, T ] × Rn.

The original problem was P0,x0.
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The optimal value function

• The value function

J : R+ × Rn × U → R

is defined by

J (t, x,u) = E

[∫ T

t
F (s, Xu

s ,us)ds + Φ (Xu

T )

]

given the dynamics above.

• The optimal value function

V : R+ × Rn → R

is defined by

V (t, x) = sup
u∈U

J (t, x,u).

• We want to derive a PDE for V .
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Assumptions

We assume:

• There exists an optimal control law û.

• The optimal value function V is regular in the sense
that V ∈ C1,2.

• A number of limiting procedures in the following
arguments can be justified.
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Bellman Optimality Principle

Theorem: If a control law û is optimal for the time
interval [t, T ] then it is also optimal for all smaller
intervals [s, T ] where s ≥ t.

Proof: Exercise.
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Basic strategy

To derive the PDE do as follows:

• Fix (t, x) ∈ (0, T ) × Rn.

• Choose a real number h (interpreted as a “small”
time increment).

• Choose an arbitrary control law u on the time inerval
[t, t + h].

Now define the control law u% by

u%(s, y) =

{
u(s, y), (s, y) ∈ [t, t + h] × Rn

û(s, y), (s, y) ∈ (t + h, T ] × Rn.

In other words, if we use u% then we use the arbitrary
control u during the time interval [t, t + h], and then
we switch to the optimal control law during the rest of
the time period.
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Basic idea

The whole idea of DynP boils down to the following
procedure.

• Given the point (t, x) above, we consider the
following two strategies over the time interval [t, T ]:

I: Use the optimal law û.

II: Use the control law u% defined above.

• Compute the expected utilities obtained by the
respective strategies.

• Using the obvious fact that û is least as good
as u%, and letting h tend to zero, we obtain our
fundamental PDE.
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Strategy values

Expected utility for û:

J (t, x, û) = V (t, x)

Expected utility for u%:

• The expected utility for [t, t + h) is given by

Et,x

[∫ t+h

t
F (s, Xu

s ,us) ds

]

.

• Conditional expected utility over [t + h, T ], given
(t, x):

Et,x

[
V (t + h,Xu

t+h)
]
.

• Total expected utility for Strategy II is

Et,x

[∫ t+h

t
F (s,Xu

s ,us) ds + V (t + h,Xu

t+h)

]

.
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Comparing strategies

We have trivially

V (t, x) ≥ Et,x

[∫ t+h

t
F (s, Xu

s ,us) ds + V (t + h,Xu

t+h)

]

.

Remark
We have equality above if and only if the control law
u is the optimal law û.

Now use Itô to obtain

V (t + h,Xu

t+h) = V (t, x)

+

∫ t+h

t

{
∂V

∂t
(s, Xu

s ) + AuV (s, Xu

s )

}
ds

+

∫ t+h

t
∇xV (s, Xu

s )σudWs,

and plug into the formula above.
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We obtain

Et,x

[∫ t+h

t

{
F (s, Xu

s ,us) +
∂V

∂t
(s, Xu

s ) + AuV (s, Xu

s )

}
ds

]

≤ 0.

Going to the limit:
Divide by h, move h within the expectation and let h tend to zero.
We get

F (t, x, u) +
∂V

∂t
(t, x) + AuV (t, x) ≤ 0,
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Recall

F (t, x, u) +
∂V

∂t
(t, x) + AuV (t, x) ≤ 0,

This holds for all u = u(t, x), with equality if and only
if u = û.

We thus obtain the HJB equation

∂V

∂t
(t, x) + sup

u∈U
{F (t, x, u) + AuV (t, x)} = 0.
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The HJB equation

Theorem:
Under suitable regularity assumptions the follwing hold:

I: V satisfies the Hamilton–Jacobi–Bellman equation

∂V

∂t
(t, x) + sup

u∈U
{F (t, x, u) + AuV (t, x)} = 0,

V (T, x) = Φ(x),

II: For each (t, x) ∈ [0, T ] × Rn the supremum in the
HJB equation above is attained by u = û(t, x), i.e. by
the optimal control.
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Logic and problem

Note: We have shown that if V is the optimal value
function, and if V is regular enough, then V satisfies
the HJB equation. The HJB eqn is thus derived
as a necessary condition, and requires strong ad hoc

regularity assumptions, alternatively the use of viscosity
solutions techniques.

Problem: Suppose we have solved the HJB equation.
Have we then found the optimal value function and
the optimal control law? In other words, is HJB a
sufficient condition for optimality.

Answer: Yes! This follows from the Verification
Theorem.
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The Verification Theorem

Suppose that we have two functions H(t, x) and g(t, x), such
that

• H is sufficiently integrable, and solves the HJB equation
8

>

<

>

:

∂H

∂t
(t, x) + sup

u∈U
{F (t, x, u) + AuH(t, x)} = 0,

H(T, x) = Φ(x),

• For each fixed (t, x), the supremum in the expression

sup
u∈U

{F (t, x, u) + AuH(t, x)}

is attained by the choice u = g(t, x).

Then the following hold.

1. The optimal value function V to the control problem is given
by

V (t, x) = H(t, x).

2. There exists an optimal control law û, and in fact

û(t, x) = g(t, x)

.
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Handling the HJB equation

1. Consider the HJB equation for V .

2. Fix (t, x) ∈ [0, T ] × Rn and solve, the static optimization
problem

max
u∈U

[F (t, x, u) + AuV (t, x)] .

Here u is the only variable, whereas t and x are fixed
parameters. The functions F , µ, σ and V are considered as
given.

3. The optimal û, will depend on t and x, and on the function
V and its partial derivatives. We thus write û as

û = û (t, x; V ) . (4)

4. The function û (t, x; V ) is our candidate for the optimal
control law, but since we do not know V this description is
incomplete. Therefore we substitute the expression for û into
the PDE , giving us the highly nonlinear (why?) PDE

∂V

∂t
(t, x) + F û(t, x) + Aû (t, x) V (t, x) = 0,

V (T, x) = Φ(x).

5. Now we solve the PDE above! Then we put the solution V
into expression (4). Using the verification theorem we can
identify V as the optimal value function, and û as the optimal
control law.
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Making an Ansatz

• The hard work of dynamic programming consists in
solving the highly nonlinear HJB equation

• There are no general analytic methods available
for this, so the number of known optimal control
problems with an analytic solution is very small
indeed.

• In an actual case one usually tries to guess a
solution, i.e. we typically make a parameterized
Ansatz for V then use the PDE in order to identify
the parameters.

• Hint: V often inherits some structural properties
from the boundary function Φ as well as from the
instantaneous utility function F .

• Most of the known solved control problems have,
to some extent, been “rigged” in order to be
analytically solvable.
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The Linear Quadratic Regulator

min
u∈R

E

[∫ T

0

{
QX2

t + Ru2
t

}
dt + HX2

T

]

,

with dynamics

dXt = {AXt + But} dt + CdWt.

We want to control a vehicle in such a way that it stays
close to the origin (the terms Qx2 and Hx2) while at
the same time keeping the “energy” Ru2 small.

Here Xt ∈ R and ut ∈ R, and we impose no control
constraints on u.

The real numbers Q, R, H , A, B and C are assumed
to be known. We assume that R is strictly positive.
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Handling the Problem

The HJB equation becomes






∂V

∂t
(t, x) + infu∈R

{
Qx2 + Ru2 + Vx(t, x) [Ax + Bu]

}

+ 1
2

∂2V
∂x2 (t, x)C2 = 0,

V (T, x) = Hx2.

For each fixed choice of (t, x) we now have to solve the static unconstrained
optimization problem to minimize

Qx2 + Ru2 + Vx(t, x) [Ax + Bu] .
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The problem was:

min
u

Qx2 + Ru2 + Vx(t, x) [Ax + Bu] .

Since R > 0 we set the u-derivative to zero and obtain

2Ru = −VxB,

which gives us the optimal u as

û = −1

2

B

R
Vx.

Note: This is our candidate of optimal control law,
but it depends on the unkown function V .

We now make an educated guess about the structure
of V .
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From the boundary function Hx2 and the term Qx2 in
the cost function we make the Ansatz

V (t, x) = P (t)x2 + q(t),

where P (t) and q(t) are deterministic functions.

With this trial solution we have,

∂V

∂t
(t, x) = Ṗ x2 + q̇,

Vx(t, x) = 2Px,

Vxx(t, x) = 2P

û = −B

R
Px.

Inserting these expressions into the HJB equation we
get

x2

{
Ṗ + Q − B2

R
P 2 + 2AP

}

+q̇PC2 = 0.
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We thus get the following ODE for P

{
Ṗ = B2

R P 2 − 2AP − Q,

P (T ) = H.

and we can integrate directly for q:

{
q̇ = −C2P,

q(T ) = 0.

The is ODE for P is a Riccati equation. The equation
for q can then be integrated directly.

Final Result for LQ:

V (t, x) = P (t)x2 +

∫ T

t
C2P (s)ds,

û(t, x) = −B

R
P (t)x.

Tomas Björk, 2017 347








































































































In

m
i once you have P

note that P is
metility

verify

this is a

linear feedback law

End of lecture 116

 



2. Investment Theory

• Problem formulation.

• An extension of HJB.

• The simplest consumption-investment problem.

• The Merton fund separation results.
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Recap of Basic Facts

We consider a market with n assets.

Si
t = price of asset No i,

hi
t = units of asset No i in portfolio

wi
t = portfolio weight on asset No i

Xt = portfolio value

ct = consumption rate

We have the relations

Xt =
n∑

i=1

hi
tS

i
t, wi

t =
hi

tS
i
t

Xt
,

n∑

i=1

wi
t = 1.

Basic equation:
Dynamics of self financing portfolio in terms of relative
weights

dXt = Xt

n∑

i=1

wi
t

dSi
t

Si
t

− ctdt
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Simplest model

Assume a scalar risky asset and a constant short rate.

dSt = αStdt + σStdWt

dBt = rBtdt

We want to maximize expected utility of consumption
over time

max
w0,w1,c

E

[∫ T

0
F (t, ct)dt

]

Dynamics

dXt = Xt

[
w0

t r + w1
tα
]
dt − ctdt + w1

t σXtdWt,

Constraints

ct ≥ 0, ∀t ≥ 0,

w0
t + w1

t = 1, ∀t ≥ 0.
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What are the problems?

• We can obtain unlimited utility by simply consuming
arbitrary large amounts.

• The wealth will go negative, but there is nothing in
the problem formulations which prohibits this.

• We would like to impose a constratin of type Xt ≥ 0
but this is a state constraint and DynP does not
allow this.

Good News:
DynP can be generalized to handle (some) problems
of this kind.
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Generalized problem

Let D be a nice open subset of [0, T ]×Rn and consider
the following problem.

max
u∈U

E

[∫ τ

0
F (s, Xu

s ,us)ds + Φ (τ,Xu

τ )

]
.

Dynamics:

dXt = µ (t, Xt, ut) dt + σ (t,Xt, ut) dWt,

X0 = x0,

The stopping time τ is defined by

τ = inf {t ≥ 0 |(t, Xt) ∈ ∂D} ∧ T.
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Generalized HJB

Theorem: Given enough regularity the follwing hold.

1. The optimal value function satisfies






∂V

∂t
(t, x) + sup

u∈U
{F (t, x, u) + AuV (t, x)} = 0, ∀(t, x) ∈ D

V (t, x) = Φ(t, x), ∀(t, x) ∈ ∂D.

2. We have an obvious verification theorem.
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Reformulated problem

max
c≥0, w∈R

E

[∫ τ

0
F (t, ct)dt + Φ(XT )

]

The “ruin time” τ is defined by

τ = inf {t ≥ 0 |Xt = 0} ∧ T.

Notation:

w1 = w,

w0 = 1 − w

Thus no constraint on w.

Dynamics

dXt = wt [α − r] Xtdt + (rXt − ct) dt + wσXtdWt,
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HJB Equation

∂V

∂t
+ sup

c≥0,w∈R

(

F (t, c) + wx(α − r)
∂V

∂x
+ (rx − c)

∂V

∂x
+

1

2
x2w2σ2∂2V

∂x2

)

= 0,

V (T, x) = 0,

V (t, 0) = 0.

We now specialize (why?) to
F (t, c) = e−δtcγ,

and for simplicity we assume that
Φ = 0,

so we have to maximize

e−δtcγ + wx(α − r)
∂V

∂x
+ (rx − c)

∂V

∂x
+

1

2
x2w2σ2∂2V

∂x2
,
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Analysis of the HJB Equation

In the embedded static problem we maximize, over c
and w,

e−δtcγ + wx(α − r)Vx + (rx − c)Vx +
1

2
x2w2σ2Vxx,

First order conditions:

γcγ−1 = eδtVx,

w =
−Vx

x · Vxx
· α − r

σ2
,

Ansatz:
V (t, x) = e−δth(t)xγ,

Because of the boundary conditions, we must demand
that

h(T ) = 0. (5)
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Given a V of this form we have (using · to denote the
time derivative)

Vt = e−δtḣxγ − δe−δthxγ,

Vx = γe−δthxγ−1,

Vxx = γ(γ − 1)e−δthxγ−2.

giving us

ŵ(t, x) =
α − r

σ2(1 − γ)
,

ĉ(t, x) = xh(t)−1/(1−γ).

Plug all this into HJB!
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After rearrangements we obtain

xγ
{

ḣ(t) + Ah(t) + Bh(t)−γ/(1−γ)
}

= 0,

where the constants A and B are given by

A =
γ(α − r)2

σ2(1 − γ)
+ rγ − 1

2

γ(α − r)2

σ2(1 − γ)
− δ

B = 1 − γ.

If this equation is to hold for all x and all t, then we
see that h must solve the ODE

ḣ(t) + Ah(t) + Bh(t)−γ/(1−γ) = 0,

h(T ) = 0.

An equation of this kind is known as a Bernoulli
equation, and it can be solved explicitly.

We are done.
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Merton’s Mutal Fund Theorems

1. The case with no risk free asset

We consider n risky assets with dynamics

dSi = Siαidt + SiσidW, i = 1, . . . , n

where W is Wiener in Rk. On vector form:

dS = D(S)αdt + D(S)σdW.

where

α =




α1
...

αn



 σ =




− σ1 −

...
− σn −





D(S) is the diagonal matrix

D(S) = diag[S1, . . . , Sn].
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Formal problem

max
c,w

E

[∫ τ

0
F (t, ct)dt

]

given the dynamics

dX = Xw′αdt − cdt + Xw′σdW.

and constraints

e′w = 1, c ≥ 0.

Assumptions:

• The vector α and the matrix σ are constant and
deterministic.

• The volatility matrix σ has full rank so σσ′ is positive
definite and invertible.

Note: S does not turn up in the X-dynamics so V is
of the form

V (t, x, s) = V (t, x)
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The HJB equation is






Vt(t, x) + sup
e′w=1, c≥0

{F (t, c) + Ac,wV (t, x)} = 0,

V (T, x) = 0,

V (t, 0) = 0.

where

Ac,wV = xw′αVx − cVx +
1

2
x2w′Σw Vxx,

The matrix Σ is given by

Σ = σσ′.
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The HJB equation is
8

>

>

>

>

<

>

>

>

>

:

Vt + sup
w′e=1, c≥0



F (t, c) + (xw′α − c)Vx +
1

2
x2w′ΣwVxx

ff

= 0,

V (T, x) = 0,

V (t, 0) = 0.

where Σ = σσ′.

If we relax the constraint w′e = 1, the Lagrange function for the static
optimization problem is given by

L = F (t, c) + (xw′α − c)Vx +
1

2
x2w′ΣwVxx + λ (1 − w′e) .
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L = F (t, c) + (xw′α − c)Vx

+
1

2
x2w′ΣwVxx + λ (1 − w′e) .

The first order condition for c is

Fc = Vx.

The first order condition for w is

xα′Vx + x2Vxxw′Σ = λe′,

so we can solve for w in order to obtain

ŵ = Σ−1

[
λ

x2Vxx
e − xVx

x2Vxx
α

]
.

Using the relation e′w = 1 this gives λ as

λ =
x2Vxx + xVxe′Σ−1α

e′Σ−1e
,
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Inserting λ gives us, after some manipulation,

ŵ =
1

e′Σ−1e
Σ−1e +

Vx

xVxx
Σ−1

[
e′Σ−1α

e′Σ−1e
e − α

]
.

We can write this as

ŵ(t) = g + Y (t)h,

where the fixed vectors g and h are given by

g =
1

e′Σ−1e
Σ−1e,

h = Σ−1

[
e′Σ−1α

e′Σ−1e
e − α

]
,

whereas Y is given by

Y (t) =
Vx(t, X(t))

X(t)Vxx(t, X(t))
.

Tomas Björk, 2017 365








































































































the quotient
WQapenas

out

not

dependingon t

I



We had
ŵ(t) = g + Y (t)h,

Thus we see that the optimal portfolio is moving
stochastically along the one-dimensional “optimal
portfolio line”

g + sh,

in the (n − 1)-dimensional “portfolio hyperplane” ∆,
where

∆ = {w ∈ Rn |e′w = 1} .

If we fix two points on the optimal portfolio line, say
wa = g + ah and wb = g + bh, then any point w on
the line can be written as an affine combination of the
basis points wa and wb. An easy calculation shows
that if ws = g + sh then we can write

ws = µwa + (1 − µ)wb,

where

µ =
s − b

a − b
.
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Mutual Fund Theorem

There exists a family of mutual funds, given by
ws = g + sh, such that

1. For each fixed s the portfolio ws stays fixed over
time.

2. For fixed a, b with a 6= b the optimal portfolio ŵ(t)
is, obtained by allocating all resources between the
fixed funds wa and wb, i.e.

ŵ(t) = µa(t)wa + µb(t)wb,
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The case with a risk free asset

Again we consider the standard model

dS = D(S)αdt + D(S)σdW (t),

We also assume the risk free asset B with dynamics

dB = rBdt.

We denote B = S0 and consider portfolio weights
(w0, w1, . . . , wn)′ where

∑n
0 wi = 1. We then

eliminate w0 by the relation

w0 = 1 −
n∑

1

wi,

and use the letter w to denote the portfolio weight
vector for the risky assets only. Thus we use the
notation

w = (w1, . . . , wn)′,

Note: w ∈ Rn without constraints.
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HJB

We obtain

dX = X · w′(α − re)dt + (rX − c)dt + X · w′σdW,

where e = (1, 1, . . . , 1)′.

The HJB equation now becomes






Vt(t, x) + sup
c≥0,w∈Rn

{F (t, c) + Ac,wV (t, x)} = 0,

V (T, x) = 0,

V (t, 0) = 0,

where

AcV = xw′(α − re)Vx(t, x) + (rx − c)Vx(t, x)

+
1

2
x2w′ΣwVxx(t, x).
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First order conditions

We maximize

F (t, c) + xw′(α − re)Vx + (rx − c)Vx +
1

2
x2w′ΣwVxx

with c ≥ 0 and w ∈ Rn.

The first order conditions are

Fc = Vx,

ŵ = − Vx

xVxx
Σ−1(α − re),

with geometrically obvious economic interpretation.
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Mutual Fund Separation Theorem

1. The optimal portfolio consists of an allocation
between two fixed mutual funds w0 and wf .

2. The fund w0 consists only of the risk free asset.

3. The fund wf consists only of the risky assets, and
is given by

wf = Σ−1(α − re).
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Continuous Time Finance

The Martingale Approach to Optimal

Investment Theory

Ch 20

Tomas Björk
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Contents

• Decoupling the wealth profile from the portfolio
choice.

• Lagrange relaxation.

• Solving the general wealth problem.

• Example: Log utility.

• Example: The numeraire portfolio.
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Problem Formulation

Standard model with internal filtration

dSt = D(St)αtdt + D(St)σtdWt,

dBt = rBtdt.

Assumptions:

• Drift and diffusion terms are allowed to be arbitrary
adapted processes.

• The market is complete.

• We have a given initial wealth x0

Problem:
max
h∈H

EP [Φ(XT )]

where
H = {self financing portfolios}

given the initial wealth X0 = x0.
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Some observations

• In a complete market, there is a unique martingale
measure Q.

• Every claim Z satisfying the budget constraint

e−rTEQ [Z] = x0,

is attainable by an h ∈ H and vice versa.

• We can thus write our problem as

max
Z

EP [Φ(Z)]

subject to the constraint

e−rTEQ [Z] = x0.

• We can forget the wealth dynamics!
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Basic Ideas

Our problem was

max
Z

EP [Φ(Z)]

subject to e−rTEQ [Z] = x0.

Idea I:

We can decouple the optimal portfolio problem into:

1. Finding the optimal wealth profile Ẑ.

2. Given Ẑ, find the replicating portfolio.

Idea II:

• Rewrite the constraint under the measure P .

• Use Lagrangian techniques to relax the constraint.
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Lagrange formulation

Problem:
max

Z
EP [Φ(Z)]

subject to
e−rTEP [LTZ] = x0.

Here L is the likelihood process, i.e.

Lt =
dQ

dP
, on Ft, 0 ≤ t ≤ T

The Lagrangian of the problem is

L = EP [Φ(Z)] + λ
{
x0 − e−rTEP [LTZ]

}

i.e.
L = EP

[
Φ(Z) − λe−rTLTZ

]
+ λx0
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The optimal wealth profile

Given enough convexity and regularity we now expect,
given the dual variable λ, to find the optimal Z by
maximizing

L = EP
[
Φ(Z) − λe−rTLTZ

]
+ λx0

over unconstrained Z, i.e. to maximize

∫

Ω

{
Φ(Z(ω)) − λe−rTLT (ω)Z(ω)

}
dP (ω)

This is a trivial problem!

We can simply maximize Z(ω) for each ω separately.

max
z

{
Φ(z) − λe−rTLTz

}
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The optimal wealth profile

Our problem:

max
z

{
Φ(z) − λe−rTLTz

}

First order condition

Φ′(z) = λe−rTLT

The optimal Z is thus given by

Ẑ = G
(
λe−rTLT

)

where
G(y) = [Φ′]

−1
(y).

The dual varaiable λ is determined by the constraint

e−rTEP
[
LT Ẑ

]
= x0.
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Example – log utility

Assume that
Φ(x) = ln(x)

Then

g(y) =
1

y
Thus

Ẑ = G
(
λe−rTLT

)
=

1

λ
erTL−1

T

Finally λ is determined by

e−rTEP
[
LT Ẑ

]
= x0.

i.e.

e−rTEP

[
LT

1

λ
erTL−1

T

]
= x0.

so λ = x−1
0 and

Ẑ = x0e
rTL−1

T
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The optimal wealth process

• We have computed the optimal terminal wealth
profile

Ẑ = X̂T = x0e
rTL−1

T

• What does the optimal wealth process X̂t look like?

We have (why?)

X̂t = e−r(T−t)EQ
[
X̂T

∣∣∣Ft

]

so we obtain

X̂t = x0e
rtEQ

[
L−1

T

∣∣Ft

]

But L−1 is a Q-martingale (why?) so we obtain

X̂t = x0e
rtL−1

t .
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The Optimal Portfolio

• We have computed the optimal wealth process.

• How do we compute the optimal portfolio?

Assume for simplicity that we have a standard Black-
Scholes model

dSt = µStdt + σStdWt,

dBt = rBtdt

Recall that
X̂t = x0e

rtL−1
t .
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Basic Program

1. Use Ito and the formula for X̂t to compute dX̂t like

dX̂t = X̂t( )dt + X̂tβtdWt

where we do not care about ( ).

2. Recall that

dX̂t = X̂t

{
(1 − ût)

dBt

Bt
+ ût

dSt

St

}

which we write as

dX̂t = X̂t { } dt + X̂tûtσdWt

3. We can identify û as

ût =
βt

σ

Tomas Björk, 2017 383








































































































XI Ko
ert LI

you
know Le

later

ft

Fortsome it portfoliowafflesdnt

seep
382

if we know Pe
see further down



We recall
X̂t = x0e

rtL−1
t .

We also recall that

dLt = LtϕdWt,

where
ϕ =

r − µ

σ
From this we have

dL−1
t = ϕ2L−1

t dt − L−1
t ϕdWt

and we obtain

X̂t = X̂t { } dt − X̂tϕdWt

Result: The optimal portfolio is given by

ût =
µ − r

σ2

Note that û is a “myopic” portfolio in the sense that
it does not depend on the time horizon T .
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A Digression: The Numeraire Portfolio

Standard approach:

• Choose a fixed numeraire (portfolio) N .

• Find the corresponding martingale measure, i.e. find QN s.t.

B

N
, and

S

N

are QN -martingales.

Alternative approach:

• Choose a fixed measure Q ∼ P .

• Find numeraire N such that Q = QN .

Special case:

• Set Q = P

• Find numeraire N such that QN = P i.e. such that

B

N
, and

S

N

are QN-martingales under the objective measure P .

• This N is called the numeraire portfolio.
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Log utility and the numeraire portfolio

Definition:
The growth optimal portfolio (GOP) is the portfolio
which is optimal for log utility (for arbitrary terminal
date T .

Theorem:
Assume that X is GOP. Then X is the numeraire
portfolio.

Proof:
We have to show that the process

Yt =
St

Xt

is a P martingale.

We have

St

Xt
= x−1

0 e−rtStLt

which is a P martingale, since x−1
0 e−rtSt is a Q

martingale.
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