Continuous Time Finance

Black-Scholes

(Ch 6-7)

Tomas Björk

-> Start of lecture 1, 2025 A

slides 42-97

Contents

- 1. Introduction.
- 2. Portfolio theory.
- 3. Deriving the Black-Scholes PDE
- 4. Risk neutral valuation
- 5. Appendices.

Tomas Björk, 2017

1.

Introduction

Tomas Björk, 2017

European Call Option

The holder of this paper has the right, not the obligation

to buy

1 ACME INC

on the date

June 30, 2017 (or any other future date)

at the price

\$100

Financial Derivative

• A financial asset which is defined in terms of some underlying asset.

• Future stochastic claim.

Examples

- European calls and puts
- American options
- Forward rate agreements
- Convertibles
- Futures
- Bond options
- Caps & Floors
- Interest rate swaps
- CDO:s
- CDS:s

Main problems

- What is a "reasonable" price for a derivative?
- How do you hedge yourself against a derivative.

Natural Answers

Consider a random cash payment \mathcal{Z} at time T.

What is a reasonable price $\Pi_0[\mathcal{Z}]$ at time 0?

Natural answers: (possibly incorrect)

1. Price = Discounted present value of future payouts.

$$\Pi_0\left[\mathcal{Z}\right]=\stackrel{e^{-rT}}{e^{-rT}}E\left[\mathcal{Z}\right]$$
 interest rate in [

2. The question is meaningless.

Both answers are incorrect!

- Given some assumptions we **can** really talk about "the correct price" of an option.
- The correct pricing formula is **not** the one on the previous slide.

Philosophy

- The derivative is **defined in terms of** underlying.
- The derivative can be priced in terms of underlying price.
- Consistent pricing.
- **Relative** pricing.

Before we can go on further we need some simple portfolio theory

2.

Portfolio Theory

Portfolios

We consider a market with N assets.

$$S_t^i = \text{price at } t, \text{ of asset No } i.$$

A portfolio strategy is an adapted vector process

$$h_t = (h_t^1, \cdots, h_t^N)$$

where

 h_t^i = number of units of asset i,

 V_t = market value of the portfolio

$$V_t = \sum_{i=1}^N h_t^i S_t^i$$

The portfolio is typically of the form

$$h_t = h(t, S_t)$$

i.e. today's portfolio is based on today's prices.

(Sometimes also on prices from Tomas Björk, 2017 the past)

Self financing portfolios

We want to study self financing portfolio strategies, i.e. portfolios where purchase of a "new" asset must be financed through sale of an "old" asset.

How is this formalized?

Definition:

The strategy h is **self financing** if

$$dV_t = \sum_{i=1}^{N} h_t^i dS_t^i$$

Interpret!

See Appendix B for details. $(P^{\circ}9^{\circ})$

and motivation from discrete time Accept this definition for the time being.

Relative weights

Definition:

 ω_t^i = relative portfolio weight on asset No i.

We have

when have
$$\omega_t^i = \frac{h_t^i S_t^i}{V_t}$$
 and then
$$h_t^i = w_t^i \frac{V_t}{S_t^i}$$
 Insert this into the self financing con

Insert this into the self financing condition

$$dV_t = \sum_{i=1}^{N} h_t^i dS_t^i$$

We obtain

Portfolio dynamics:

nics: equivalent to
$$dV_t = V_t \sum_{i=1}^N \omega_t^i \frac{dS_t^i}{S_t^i}, \quad \underbrace{\forall t}_{t} \stackrel{\text{index}}{S_t^t}$$

Interpret!

(also p. 94)

Deriving the Black-Scholes PDE

Back to Financial Derivatives

Consider the Black-Scholes model

$$dS_t = \mu S_t dt + \sigma S_t dW_t,$$

$$B_t = rB_t dt. \quad \text{bank account}$$
 usually $B_0=1$ (normalization)

We want to price a European call with strike price K and exercise time T. This is a stochastic claim on the future. The future pay-out (at T) is a stochastic variable, \mathcal{Z} , given by

$$\mathcal{Z} = \max[S_T - K, 0],$$

= $(S_T - K)^+$, in different votation.

More general:

$$\mathcal{Z} = \Phi(S_T)$$

for some contract function Φ .

Main problem: What is a "reasonable" price, $\Pi_t[\mathcal{Z}]$, for \mathcal{Z} at t?

Main Idea

- We demand **consistent** pricing between derivative and underlying.
- No mispricing between derivative and underlying.
- No arbitrage possibilities on the market (B, S, Π)

i.e., a viable market

Arbitrage

The portfolio ω is an **arbitrage** portfolio if

- The portfolio strategy is self financing.
- $V_0 = 0$.
- $V_T > 0$ with probability one.

(or, weaker, $P(V_{T} \ge 0) = 1$, and $P(V_{T} > 0) > 0$) See p. 172

Moral:

- Arbitrage = Free Lunch
- No arbitrage possibilities in an efficient market.

arbitrage possibility only in a market with "wrong" prices

Arbitrage test

Suppose that a portfolio ω is self financing whith dynamics

$$dV_t = kV_t dt$$

- No driving Wiener process
- Risk free rate of return.
- "Synthetic bank" with rate of return k.

If the market is free of arbitrage we must have:

$$k = r$$

Main Idea of Black-Scholes

- Since the derivative is defined in terms of the underlying, the derivative price should be highly correlated with the underlying price.
- We should be able to balance dervative against underlying in our portfolio, so as to cancel the randomness.
- ullet Thus we will obtain a riskless rate of return k on our portfolio.
- Absence of arbitrage must imply

$$k = r$$
 (or $k_{t} = r_{t}$)

-> End of lecture la <-

Two Approaches

The program above can be formally carried out in two slightly different ways:

- The way Black-Scholes did it in the original paper.
 This leads to some logical problems.
- A more conceptually satisfying way, first presented by Merton.

Here we use the Merton method. You will find the original BS method in Appendix C at the end of this lecture.

Formalized program a la Merton (outline)

Assume that the derivative price is of the form

$$\Pi_t\left[\mathcal{Z}\right] = f(t, S_t).$$

self financing

ullet Form a portfolio based on the underlying S and the derivative f, with portfolio dynamics

$$dV_t = V_t \left\{ \underbrace{\omega_t^S} \cdot \frac{dS_t}{S_t} + \underbrace{\omega_t^f} \cdot \frac{df}{f} \right\} \quad \text{fix the definition of the general case}$$

Choose ω^S and ω^f such that the dW-term is wiped out. This gives us

$$dV_t = V_t \cdot kdt$$

Absence of arbitrage implies

$$k = r$$

This relation will say something about f.

Back to Black-Scholes

$$dS_t = \mu S_t dt + \sigma S_t dW_t,$$

$$\Pi_t [\mathcal{Z}] = f(t, S_t)$$

Itô's formula gives us the f dynamics as

official gives us the
$$f$$
 dynamics as
$$df = \left\{ \frac{\partial f}{\partial t} + \mu S \frac{\partial f}{\partial s} + \frac{1}{2} S^2 \sigma^2 \frac{\partial^2 f}{\partial s^2} \right\} dt + \sigma S \frac{\partial f}{\partial s} dW$$

Write this as

$$df = \mu_f \cdot f dt + \sigma_f \cdot f dW$$

where

$$\mu_{f} = \frac{\frac{\partial f}{\partial t} + \mu S \frac{\partial f}{\partial s} + \frac{1}{2} S^{2} \sigma^{2} \frac{\partial^{2} f}{\partial s^{2}}}{f}$$

$$\sigma_{f} = \frac{\sigma S \frac{\partial f}{\partial s}}{f}$$

$$\sigma_{f} = \frac{\sigma f \frac{\partial f}{\partial s}}{f}$$

$$\sigma_{f} = \frac{\sigma f \frac{\partial f}{\partial s}}{f}$$

Recall from previous pages:
$$df = \mu_f \cdot f dt + \sigma_f \cdot f dW$$

$$dV = V \left\{ \omega^S \cdot \frac{dS}{S} + \omega^f \cdot \frac{df}{f} \right\}$$

$$= V \left\{ \omega^S (\mu dt + \sigma dW) + \omega^f (\mu_f dt + \sigma_f dW) \right\}$$

$$dV = V \left\{ \omega^S \mu + \omega^f \mu_f \right\} dt + V \left\{ \omega^S \sigma + \omega^f \sigma_f \right\} dW$$

Now we kill the dW-term!

Choose (ω^S, ω^f) such that

$$\omega^S \sigma + \omega^f \sigma_f = 0$$
$$\omega^S + \omega^f = 1$$

Linear system with solution (if you don't divide by zero!)

$$\omega^{S} = \frac{\sigma_{f}}{\sigma_{f} - \sigma}, \quad \omega^{f} = \frac{-\sigma}{\sigma_{f} - \sigma}$$

Plug into dV!

We obtain

$$dV = V \left\{ \omega^S \mu + \omega^f \mu_f \right\} dt$$

This is a risk free "synthetic bank" with short rate

$$\left\{\omega^S \mu + \omega^f \mu_F\right\}$$

Absence of arbitrage implies

$$\left\{\omega^S \mu + \omega^f \mu_f\right\} = r$$

Plug in the expressions for ω^S , ω^f , μ_f and simplify. This will give us the following result.

that involve partial derivatives Ser pp. 64, 65

you do the computations!

Black-Schole's PDE

The price is given by

$$\Pi_t \left[\mathcal{Z} \right] = f \left(t, S_t \right)$$

where the pricing function f satisfies the PDE (partial differential equation)

$$\begin{cases} \frac{\partial f}{\partial t}(t,s) + rs\frac{\partial f}{\partial s}(t,s) + \frac{1}{2}\sigma^2 s^2 \frac{\partial^2 f}{\partial s^2}(t,s) - rf(t,s) &= 0\\ f(T,s) &= \Phi(s) \end{cases}$$

Therem!

There is a unique solution to the PDE so there is a unique arbitrage free price process for the contract.

Black-Scholes' PDE ct'd

$$\begin{cases} \frac{\partial f}{\partial t} + rs \frac{\partial f}{\partial s} + \frac{1}{2}\sigma^2 s^2 \frac{\partial^2 f}{\partial s^2} - rf & = & 0\\ f(T, s) & = & \Phi(s) \end{cases}$$

 The price of all derivative contracts have to satisfy the same PDE

$$\frac{\partial f}{\partial t} + rs \frac{\partial f}{\partial s} + \frac{1}{2}\sigma^2 s^2 \frac{\partial^2 f}{\partial s^2} - rf = 0$$

otherwise there will be an arbitrage opportunity.

• The only difference between different contracts is in the boundary value condition

$$f(T,s) = \Phi(s)$$

Data needed

- The contract function Φ .
- Today's date *t*.
- Today's stock price S.
- Short rate r.
- Volatility σ .

Note: The pricing formula does **not** involve the mean rate of return μ !

miracle??

Black-Scholes Basic Assumptions

Assumptions:

- The stock price is Geometric Brownian Motion
- Continuous trading.
- Frictionless efficient market.
- Short positions are allowed.
- Constant volatility σ .
- Constant short rate r.
- Flat yield curve.

Black-Scholes' Formula **European Call**

T=date of expiration, t=today's date, K=strike price, r=short rate, s=today's stock price, σ =volatility.

$$f(t,s) = sN[d_1] - e^{-r(T-t)}KN[d_2].$$

 $N[\cdot]$ =cdf for N(0,1)-distribution.

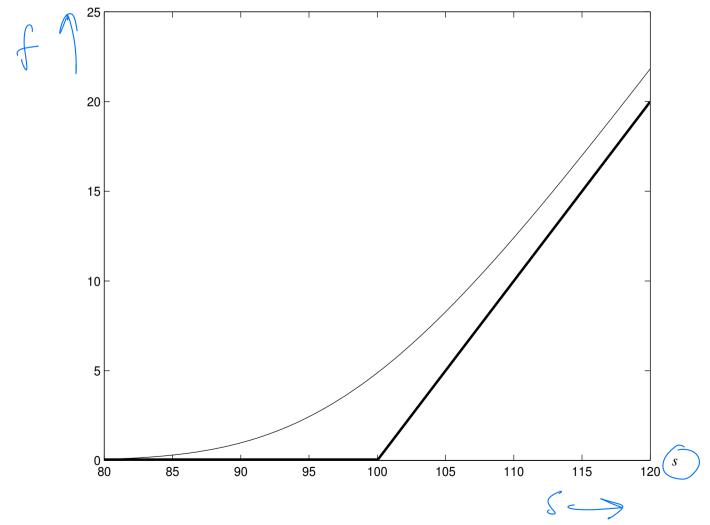
$$d_1 = \frac{1}{\sigma\sqrt{T-t}} \left\{ \ln\left(\frac{s}{K}\right) + \left(r + \frac{1}{2}\sigma^2\right) (T-t) \right\},\,$$

$$d_2=d_1-\sigma\sqrt{T-t}.$$
 Comes out If the blue for the Aime Tomas Björk, 2017 being; but this FDE (diecles) the Blade-Scholes PDE (diecles) But, see also p. 77

Black-Scholes

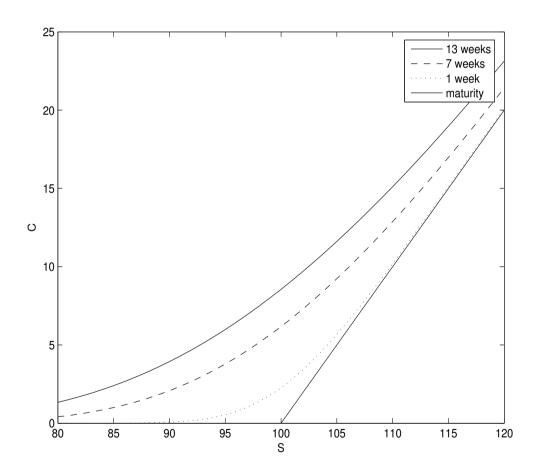
European Call,

$$K = 100, \quad \sigma = 20\%, \quad r = 7\%, \quad T - t = 1/4$$

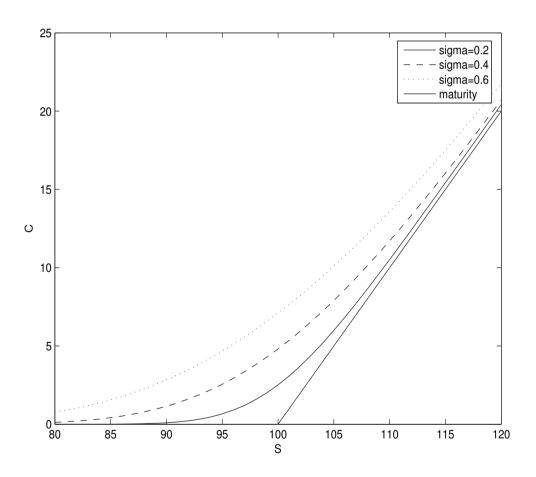


Tomas Björk, 2017

Dependence on Time to Maturity



Dependence on Volatility



4.

Risk Neutral Valuation

Risk neutral valuation

Appplying Feynman-Kac to the Black-Scholes PDE we obtain

 $\Pi[t;X] = e^{-r(T-t)} E_{t,s}^{Q}[X],$ conditional expectation at time t, with $S_{t}=S$, under the measure Q.

Qdynamics:

$$\begin{cases} dS_t = rS_t dt + \sigma S_t dW_t^Q, \\ dB_t = rB_t dt. \end{cases}$$

- Price = Expected discounted value of future payments.
- The expectation shall **not** be taken under the "objective" probability measure P, but under the "risk adjusted" measure ("martingale measure") Q.

Note: $P \sim Q$ (Girsanov), equivalence of the two probability measures on \mathcal{F}_{T} . Tomas Björk, 2017 See later)

Concrete formulas

$$\label{eq:definition} \Pi\left[0;\Phi\right] = e^{-rT} \int_{-\infty}^{\infty} \Phi(se^z) f(z) dz$$

$$f(z) = \frac{1}{\sqrt{2\pi T}} \exp\left\{-\frac{\left[z - \left(r - \frac{1}{2}\sigma^2\right)T\right]^2}{2\sigma^2T}\right\}$$

$$denoted of N((r-1)^T), of T)$$

$$variance$$
Note: $S_{t} = S_0 e \times p((r-1)^T) + \sigma W_t^2$

$$For the European with strike E we get (see p.87)
$$T(0, \Phi) = e^{-rT} \int_{-\infty}^{\infty} (se^2 - E)^t f(2) d2$$

$$= e^{-rT} \int_{-\infty}^{\infty} se^2 f(2) d2 + \frac{1}{2} \int_{-\infty}^{\infty} se^2 f(2) d2$$

$$- e^{-rT} \int_{-\infty}^{\infty} se^2 f(2) d2 + \frac{1}{2} \int_{-\infty}^{\infty} se^2 f(2) d2$$
Tomas Björk, 2017
$$- e^{-rT} \int_{-\infty}^{\infty} se^2 f(2) d2 + \frac{1}{2} \int_{-\infty}^{\infty} se^2 f(2) d2$$$$

Interpretation of the risk adjusted measure

- **Assume** a risk neutral world.
- Then the following must hold

$$s = S_0 = e^{-rt} E[S_t]$$

In our model this means that

$$dS_t = rS_t dt + \sigma S_t dW_t^Q$$

• The risk adjusted probabilities can be intrepreted as probabilities in a fictuous risk neutral economy.

Moral

- When we compute prices, we can compute **as if** we live in a risk neutral world.
- This does **not** mean that we live (or think that we live) in a risk neutral world.
- The formulas above hold regardless of the investor's attitude to risk, as long as he/she prefers more to less.
- The valuation formulas are therefore called "preference free valuation formulas".

Tomas Björk, 2017 79

Quick mentioning of this in Properties of Q Lecture 5

•
$$P \sim Q$$
 (Girsamov)

• For the price pricess π of any traded asset, derivative or underlying, the process

$$Z_t = \frac{\pi_t}{B_t}$$

is a Q-martingale. (details later)

• Under Q, the price pricess π of any traded asset, derivative or underlying, has (r) as its local rate of return:

$$d\pi_t = \widehat{r}\pi_t dt + \widehat{\sigma}_{\pi}\pi_t dW_t^Q$$

• The volatility of π is the same under Q as under P.

-> end of lecture 16 [or after next selle] < Tomas Björk, 2017

A Preview of Martingale Measures

[More on this on pp 179 etc.]

Consider a market, under an objective probability measure P, with underlying assets

$$B, S^1, \dots, S^N$$

Definition: A probability measure Q is called a martingale measure if

- \bullet $P \sim Q$
- For every *i*, the process

$$Z_t^i = \frac{S_t^i}{B_t}$$

is a Q-martingale.

Theorem: The market is arbitrage free **iff** there exists a martingale measure.

1st fundamental theorem of asset pricing Tomas Björk, 2017

end of lecture 1be

-> Start of lecture 2 (or wife p.81)

5.

Appendices

Appendix A: Black-Scholes vs Binomial

Consider a binomial model for an option with a fixed time to maturity T and a fixed strike price K.

- ullet Build a binomial model with n periods for each n=1,2,....
- Use the standard formulas for scaling the jumps:

$$u = e^{\sigma\sqrt{\Delta t}} \quad d = e^{-\sigma\sqrt{\Delta t}} \quad \Delta t = T/n, \quad T > 0,$$

- For a large n, the stock price at time T will then be a product of a large number of i.i.d. random variables.
- More precisely

$$S_T = S_0 Z_1 Z_2 \cdots Z_n,$$

where n is the number of periods in the binomial model and $Z_i=u,d$. The sumber of u

and d's matters only not the order >
Tomas Björk, 2017 books like Successes/failures 83
in Binomial models

Recall (this is the Cox-Ross Rubiustein model) $S_T = S_0 Z_1 Z_2 \cdots Z_n,$

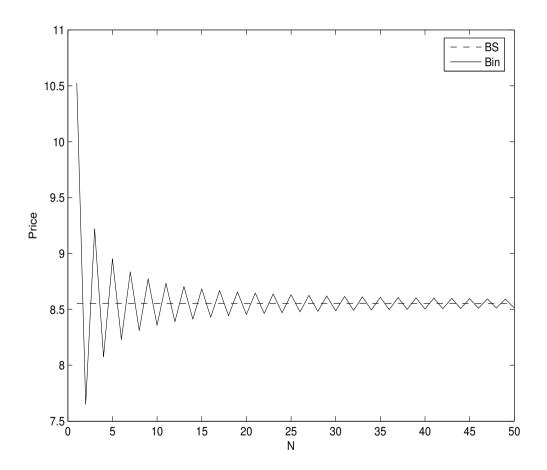
- The stock **price** at time T will be a **product** of a large number of i.i.d. random variables.
- The **return** will be a large **sum** of i.i.d. variables.

 Wy St = log Sot Ziel log Zi
- The Central Limit Theorem will kick in. details omitted
- In the limit, returns will be normally distributed.
- Stock **prices** will be **lognormally** distributed.
- We are in the Black-Scholes model.
- The binomial price will converge to the Black-Scholes price.

 Converge to the Black-Scholes price.

 **Conver

Binomial convergence to Black-Scholes



Binomial \sim Black-Scholes

The intuition from the Binomial model carries over to Black-Scholes.

- The B-S model is "just" a binomial model where we rebalance the portfolio infinitely often.
- The B-S model is thus complete. (notion comes
- Completeness explains the unique prices for options in the B-S model.
- The B-S price for a derivative is the limit of the binomial price when the number of periods is very large.

These statements are actually theorems.

Take them for granted.

Remark: Binomial models have been used in practice (even in Excel)

Appendix B: Portfolio theory

(this is a copy of page 53)

We consider a market with N assets.

$$S_t^i = \text{price at } t, \text{ of asset No } i.$$

A portfolio strategy is an adapted vector process

$$h_t = (h_t^1, \cdots, h_t^N)$$

where

 $h_{\scriptscriptstyle +}^i = \text{number of units of asset } i,$

 $V_t = \text{market value of the portfolio}$

$$V_t = \sum_{i=1}^N h_t^i S_t^i$$

The portfolio is typically of the form

$$h_t = h(t, S_t)$$

i.e. today's portfolio is based on today's prices.

Self financing portfolios

We want to study **self financing** portfolio strategies, i.e. portfolios where

- There is now external infusion and/or withdrawal of money to/from the portfolio.
- Purchase of a "new" asset must be financed through sale of an "old" asset.

How is this formalized?

Problem: Derive an expression for dV_t for a self financing portfolio.

2 on p.54

We analyze in discrete time, and then go to the continuous time limit.

Discrete time portfolios

We trade at discrete points in time $t = 0, 1, 2, \ldots$

Price vector process:

$$S_n = (S_n^1, \dots, S_n^N), \quad n = 0, 1, 2, \dots$$

Portfolio process:

$$h_n = (h_n^1, \dots, h_n^N), \quad n = 0, 1, 2, \dots$$

Interpretation: At time n we buy the portfolio h_n at the price S_n , and keep it until time n+1.

Value process:

$$V_n = \sum_{i=1}^N h_n^i S_n^i = \underbrace{h_n S_n}_{\text{inner}}$$
 product notation

The self financing condition

• At time n-1 we buy the portfolio h_{n-1} at the price S_{n-1} .

- At time n we buy the new portfolio h_n at the price S_n .
- The cost of this new portfolio is $h_n S_n$.
- The <u>self financing</u> condition is the **budget** constraint

$$h_{n-1}S_n \stackrel{\not\cong}{=} h_n S_n$$

The self financing condition

Recall:

$$V_n = h_n S_n$$

Definition: For any sequence x_1, x_2, \ldots we define the sequence Δx_n by

$$\Delta x_n = x_n - x_{n-1}$$

Derive an expression for ΔV_n for a self **Problem:** financing portfolio.

Lemma: For any pair of sequences x_1, x_2, \ldots and y_1, y_2, \ldots we have the relation

$$\Delta(xy)_n = x_{n-1}\Delta y_n + y_n\Delta x_n$$

$$Abel' 5 \text{ Summation formula:}$$

$$Proof: Do it yourself.$$

$$\text{Tomas Björk, 2017}$$

$$\text{Tomas Björk, 2017}$$

91

Recall

$$V_n = h_n S_n$$

From the Lemma we have

$$\Delta V_n = \Delta (hS)_n = h_{n-1} \Delta S_n + S_n \Delta h_n$$

Recall the self financing condition

$$h_{n-1}S_n = h_n S_n$$

which we can write as

$$S_n \Delta h_n = 0$$

Inserting this into the expression for ΔV_n gives us.

Proposition: The dynamics of a self financing portfolio are given by

$$\Delta V_n = h_{n-1} \Delta S_n$$

Note the forward increments!

Tomas Björk, 2017 92

Portfolios in continuous time

Price process:

 $S_t^i = \text{price at } t, \text{ of asset No } i.$

Portfolio:

$$h_t = (h_t^1, \cdots, h_t^N)$$

Value process

$$V_t = \sum_{i=1}^{N} h_t^i S_t^i$$

From the self financing condition in discrete time

$$\Delta V_n = h_{n-1} \Delta S_n$$

we are led to the following definition. (by analogy)

Definition: The portfolio h is self financing if and only

$$dV_t = \sum_{i=1}^N h_t^i dS_t^i$$
 where the state of the s

Definition:

 $\omega_t^i = \text{relative portfolio weight on asset No } i.$

We have

$$\omega_t^i = \frac{h_t^i S_t^i}{V_t}$$

Insert this into the self financing condition

$$dV_t = \sum_{i=1}^{N} h_t^i dS_t^i$$

We obtain

Portfolio dynamics:

$$dV_t = V_t \sum_{i=1}^{N} \omega_t^i \frac{dS_t^i}{S_t^i}$$

Interpret!

recall model: ds= mst dx + rs, dwx.

Appendix C: The original Black-Scholes PDE argument

Consider the following portfolio.

DOTTOW

- Short one unit of the derivative, with pricing function f(t,s): you have -1 as a quantity
- Hold x units of the underlying S. (or x) that the t)

The portfolio value is given by

$$V = -f(t, S_T) + xS_t$$
 ($x_t = x$)

Short hand votation

The object is to choose x_t such that the portfolio is

risk free for an infinitesimal interval of length dt. We have dV = -df + x dS and from Itô we obtain

have
$$dV = -df + x_{\ell}dS$$
 and from Itô we obtain
$$dV = -\left\{\frac{\partial f}{\partial t} + \mu S \frac{\partial f}{\partial s} + \frac{1}{2}S^2\sigma^2\frac{\partial^2 f}{\partial s^2}\right\}dt$$

$$- \sigma S \frac{\partial f}{\partial s}dW + x\mu Sdt + x\sigma SdW$$
Right 2017

Rearrange:

$$dV = \left\{ x\mu S - \frac{\partial f}{\partial t} - \mu S \frac{\partial f}{\partial s} - \frac{1}{2} S^2 \sigma^2 \frac{\partial^2 f}{\partial s^2} \right\} dt$$
$$+ \sigma S \left\{ x - \frac{\partial f}{\partial s} \right\} dW$$

We obtain a risk free portfolio if we choose \boldsymbol{x} as

$$x = \frac{\partial f}{\partial s}$$
 (the good x)

and then we have, after simplification, (in serting thin)

$$dV = \left\{ -\frac{\partial f}{\partial t} - \frac{1}{2}S^2\sigma^2 \frac{\partial^2 f}{\partial s^2} \right\} dt$$

Using V=-f+xS and x as above, the return dV/V is thus given by

$$\frac{dV}{V} = \frac{-\frac{\partial f}{\partial t} - \frac{1}{2}S^2\sigma^2\frac{\partial^2 f}{\partial s^2}}{-f + S\frac{\partial f}{\partial s}}dt$$

Remark: not clear what the "logical problems"

of page 62 are.

We had (previous page)
$$\frac{dV}{V} = \frac{-\frac{\partial f}{\partial t} - \frac{1}{2}S^2\sigma^2\frac{\partial^2 f}{\partial s^2}}{-f + S\frac{\partial f}{\partial s}}dt$$

This portfolio is risk free, so absence of arbitrage implies that

$$\frac{-\frac{\partial f}{\partial t} - \frac{1}{2}S^2\sigma^2\frac{\partial^2 f}{\partial s^2}}{-f + S\frac{\partial f}{\partial s}} = r \qquad \text{(see p.60)}$$

Simplifying this expression gives us the Black-Scholes PDE.

$$\frac{\partial f}{\partial t} + rs \frac{\partial f}{\partial s} + \frac{1}{2}\sigma^2 s^2 \frac{\partial^2 f}{\partial s^2} - rf = 0,$$

$$f(T, s) = \Phi(s).$$

Tomas Björk, 2017

97

gend of lecture 2a &

Continuous Time Finance

Completeness and Hedging

(Ch 8-9)

Tomas Björk

Problems around Standard Black-Scholes

"over the counter"

- We assumed that the derivative was traded. How do we price OTC products?
- Why is the option price independent of the expected —rate of return α of the underlying stock?

previously, we used in instead of or as notation

 Suppose that we have sold a call option. Then we face financial risk, so how do we hedge against that risk?

All this has to do with completeness.

) dSt= x St dk + T & dWt

[The contents of this page will return on p. 41.]

Definition:

We say that a T-claim X can be **replicated**, alternatively that it is reachable or hedgeable, if there exists a self financing portfolio h such that

$$V_T^h = X, \quad P - a.s.$$

In this case we say that h is a **hedge** against X. Alternatively, h is called a **replicating** or **hedging** portfolio. If every contingent claim is reachable we say that the market is complete

Basic Idea: If X can be replicated by a portfolio hthen the arbitrage free price for X is given by

$$\Pi_t [X] = V_t^h.$$

(law of one price for reachable claim)

(If $\pi_{t}(x) \leq V_{t}$, you sell the portfolio, by the claim and put the surplus aside. At time T claim and put the surplus and buy the portfolio Tomas Björk, 2017 you sell the claim and buy the portfolio back: not cost is zero.]

100

Similar Consider the following congunant for t=0

Trading Strategy

Consider a replicable claim X which we want to sell at t = 0...

- ullet Compute the price $\Pi_0\left[X\right]$ and sell X at a slightly (well) higher price. [Suppose you are able to do that]
- Buy the hedging portfolio and invest the surplus in the bank.
- Wait until expiration date T.
- The liabilities stemming from X is exactly matched by V_T^h , and we have our surplus in the bank.

Completeness of Black-Scholes

Theorem: The Black-Scholes model is complete.

Proof. Fix a claim $X = \Phi(S_T)$. We want to find processes V, u^B and u^S such that $V_t = V_t \left\{ u_t^B \frac{dB_t}{B_t} + u_t^S \frac{dS_t}{S_t} \right\}$

$$\frac{\partial V_t}{\partial V_t} = V_t \left\{ u_t^B \frac{dB_t}{B_t} + u_t^S \frac{dS_t}{S_t} \right\}$$

$$V_T = \Phi(S_T).$$

i.e. (recall dB=1Btdt, dSt= &Stdt+TStdWt)

$$dV_t = V_t \left\{ u_t^B r + u_t^S \alpha \right\} dt + V_t u_t^S \sigma dW_t,$$

$$V_T = \Phi(S_T).$$

Heuristics:

Let us **assume** that X is replicated by \mathcal{H}_{Ξ} (u^B, u^S) with value process V. Ansatz: (reasonable, based on K= \$\int_{\text{LG}}\) and X in Marker)

$$V_t = F(t, S_t)$$
 for F to be found

Ito gives us

$$dV = \left\{ F_t + \alpha S F_s + \frac{1}{2} \sigma^2 S^2 F_{ss} \right\} dt + \sigma S F_s dW,$$

Write this as

$$dV = V \left\{ \frac{F_t + \alpha S F_s + \frac{1}{2} \sigma^2 S^2 F_{ss}}{V} \right\} dt + V \frac{\widehat{SF_s}}{V} \sigma dW.$$
 Compare with
$$dV = V \left\{ u^B r + u^S \alpha \right\} dt + V u^S \sigma dW$$

$$[dN] \text{ and } dt, \text{ terms should winder}]$$

Define u^S by (time index t and ξ_t explicitly written)

$$u_t^S = \frac{S_t F_s(t, S_t)}{F(t, S_t)},$$

This gives us the eqn (*) on (*) on (*)

$$dV = V \left\{ \frac{F_t + \frac{1}{2}\sigma^2 S^2 F_{ss}}{rF} r + u^S \alpha \right\} dt + V u^S \sigma dW.$$

Again Compare with

$$dV = V \left\{ u^B r + u^S \alpha \right\} dt + V u^S \sigma dW$$

Natural choice for u^B is given by (match the at terms)

$$u^B = \frac{F_t + \frac{1}{2}\sigma^2 S^2 F_{ss}}{rF},$$

with UB and Us & p.104

The relation $u^B + u^S = 1$ gives us the Black-Scholes PDE

$$F_t + rSF_s + \frac{1}{2}\sigma^2 S^2 F_{ss} - rF = 0.$$

The condition

$$V_T = \Phi(S_T)$$

gives us the boundary condition

$$F(T,s) = \Phi(s)$$

even

Moral: The model is complete and we have explicit formulas for the replicating portfolio.

they B and us of p. 104

Main Result

Theorem: Define F as the solution to the boundary value problem

$$\begin{cases} F_t + rsF_s + \frac{1}{2}\sigma^2 s^2 F_{ss} - rF & = 0, \\ F(T,s) & = \Phi(s). \end{cases}$$

Then X can be replicated by the relative portfolio

$$u_t^B = rac{F(t,S_t) - S_t F_s(t,S_t)}{F(t,S_t)},$$
 we have the position $u_t^S = rac{S_t F_s(t,S_t)}{F(t,S_t)}.$

The corresponding absolute portfolio is given by

$$h_t^S = \frac{F(t,S_t) - S_t F_s(t,S_t)}{B_t},$$

$$h_t^S = F_s(t,S_t),$$

and the value process V^h is given by

$$V_t^h = F(t,S_t). \label{eq:Vhat}$$
 (See also book lemma 8-4), Tomas Björk, 2017

Notes

es we the pole

- Completeness explains unique price the claim is superfluous! wathing "new" compared to Sand & in the market
- Replicating the claim $P-a.s. \iff$ Replicating the claim Q-a.s. for any $Q\sim P.$ Thus the price only depends on the support of P.
- Thus (Girsanov) it will not depend on the drift $\stackrel{\checkmark}{\alpha}$ of the state equation.
- The completeness theorem is a nice theoretical result, but the replicating portfolio is continuously rebalanced. Thus we are facing very high transaction costs.

o Proof only given for claims of the type $\mathbb{P}(S_T)$ and under the first result for general result forms Björk, 2017

Tomas Björk, 2017

Can be hedged

107

Completeness vs No Arbitrage

Question:

When is a model arbitrage free and/or complete?

Answer:

Count the number of risky assets, and the number of random sources.

R = number of random sources

N = number of risky assets

Intuition:

If N is large, compared to R, you have lots of possibilities of forming clever portfolios. Thus lots of chances of making arbitrage profits. Also many chances of replicating a given claim.

Tomas Björk, 2017 108

Meta-Theorem

Compare to some An=6, note AER stewhen (unique) solution? men (if you
enerically, the following hold.

ignore "rank"

ignore

ignore Generically, the following hold.

The market is arbitrage free if and only if

$$N \leq R$$

The market is complete if and only if

$$N \ge R$$

Example:

The Black-Scholes model. R=N=1. Arbitrage free and complete.

-> End of lecture 26 e

-> Start of lecture 3 4

Parity Relations

Let Φ and Ψ be contract functions for the T-claims $Z = \Phi(S_T)$ and $Y = \Psi(S_T)$. Then for any real numbers α and β we have the following price relation.

$$\Pi_t \left[\alpha \Phi + \beta \Psi \right] = \alpha \Pi_t \left[\Phi \right] + \beta \Pi_t \left[\Psi \right].$$

Proof. Linearity of mathematical expectation.

We are the control of use a way we are functions.

Or use a way we are functions.

Consider the following "basic" contract functions.

$$\Phi_S(x) = x$$
, think of x as a $\Phi_B(x) \equiv 1$, value of S_T) $\Phi_{C,K}(x) = \max[x - K, 0]$.

Prices:

$$\Pi_t \left[\Phi_S \right] = S_t,$$
 $\Pi_t \left[\Phi_B \right] = e^{-r(T-t)},$
 $\Pi_t \left[\Phi_{C,K} \right] = c(t, S_t; K, T).$

Tomas Björk, 2017

just notation to express that the price of the call 10 depends on t, St, K,T (and more)

If we have for more gitions with strike Ki

$$\Phi = \alpha \Phi_S + \beta \Phi_B + \sum_{i=1}^n \gamma_i \Phi_{C,K_i},$$

then

$$\Pi_t \left[\Phi \right] = \alpha \Pi_t \left[\Phi_S \right] + \beta \Pi_t \left[\Phi_B \right] + \sum_{i=1}^n \gamma_i \Pi_t \left[\Phi_{C, K_i} \right]$$

We may replicate the claim Φ using a portfolio consisting of basic contracts that is constant over time, i.e. a buy-and hold portfolio: the a,B, Xi.

- \bullet α shares of the underlying stock,
- β zero coupon T-bonds with face value \$1,
- ullet γ_i European call options with strike price K_i , all pay Heat time T is \$1; Value at time tet: (vii \$)¹¹¹ maturing at T.

Put-Call Parity

Consider a European put contract

$$\Phi_{P,K}(s) = \max\left[K - s, 0\right]$$

It is easy to see (draw a figure) that

$$\Phi_{P,K}(x) = \Phi_{C,K}(x) - s + K$$

$$= \Phi_{K,K}(x) - \Phi_{S}(x) + \Phi_{B}(x)$$

We immediately get

Put-call parity:

$$p(t,s;K) = c(t,s;K) - s + Ke^{r(T-t)}$$

Thus you can construct a synthetic put option, using a buy-and-hold portfolio. (with a call option)

Tomas Björk, 2017 (See Prop. g.3 in the bode).

name has to do with the "Errecks", see yel claim

Consider a fixed claim

$$X = \Phi(S_T)$$

with pricing function

F(t,s). (of $F(t,S_t)$ with $S_t=S$)

buy/sell

Setup:

We are at time t, and have a short (interpret!) position ("debt" in the contract) in the contract.

Goal:

Offset the risk in the derivative by buying (or selling) the (highly correlated) underlying, find how much to

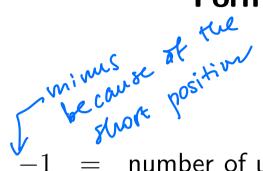
Definition:

Definition:

A position in the underlying is a **delta hedge** against the derivative if the portfolio (underlying + derivative) is immune against small changes in the underlying price. calls for differentiation,

Tomas Björk, 2017 derivatives in the sense of Calculus

Formal Analysis



- -1 = number of units of the derivative product
 - x = number of units of the underlying
 - $s = \mathsf{today's} \; \mathsf{stock} \; \mathsf{price}$
 - t = today's date , $S_t = S$

Value of the portfolio:

$$V = -1 \cdot F(t, s) + x \cdot s$$

A delta hedge is characterized by the property that

$$\frac{\partial V}{\partial s} = 0. \quad \text{(in sensitive to dranges in s)}$$

We obtain

$$-\frac{\partial F}{\partial s} + x = 0$$

Solve for x!

Result:

We should have

$$\hat{x} = \frac{\partial F}{\partial s}$$

shares of the underlying in the delta hedged portfolio.

Definition:

For any contract, its "delta" is defined by

$$\Delta = \frac{\partial F}{\partial s}. \quad (\text{Fermions})$$

Result:

We should have

$$\hat{x} = \Delta$$

shares of the underlying in the delta hedged portfolio.

Warning:

The delta hedge must be rebalanced over time. (why?)

$$\left(\hat{\lambda}_{t} = A_{t} = \frac{OF}{DS}(t)S_{t}\right)$$
, time dependent)

Black Scholes

For a European Call in the Black-Scholes model we have

$$\Delta = N[d_1] = P(N(o,1) \leq d_1)$$

NB This is not a trivial result! But see p.71, Blade

Schools ase From put call parity it follows (how?) that Δ for a European Put is given by

$$\Delta = N[d_1] - 1$$

$$= -\beta \left(N(0,1) > d_1 \right) < 0$$

Check signs and interpret!

Rebalanced Delta Hedge

- Sell one call option at time t=0 at the B-S price F.
- Compute Δ and by Δ shares. (Use the income from the sale of the option, and borrow money if necessary.)
- Wait one day (week, minute, second..). The stock price has now changed.
- Compute the new value of Δ , and borrow money in order to adjust your stock holdings.
- Repeat this procedure until t=T. Then the value of your portfolio (B+S) will match the value of the option almost exactly.

- Lack of perfection comes from discrete, instead of continuous, trading.
- You have created a "synthetic" option. (Replicating portfolio).

Formal result:

The relative weights in the replicating portfolio are

$$u_S = rac{S \cdot \Delta}{F},$$
 $u_B = rac{F - S \cdot \Delta}{F}$ (See p. 106, with $\Delta = F_s(\mathcal{H}, \mathcal{S}_{\mathcal{H}})$

Portfolio Delta

Assume that you have a portfolio consisting of derivatives

$$\Phi_i(S_{T_i}), \quad i=1,\cdots,n$$

all written on the same underlying stock S.

$$F_i(t,s)=$$
 pricing function for i:th derivative $\left(S_{t},s\right)$
$$\Delta_i=\frac{\partial F_i}{\partial s}$$

$$h_i=$$
 units of i:th derivative

Portfolio value:

$$\Pi = \sum_{i=1}^{n} h_i F_i$$

Portfolio delta:

$$\Delta_{\Pi} = \sum_{i=1}^{n} h_i \Delta_i$$

Gamma

A problem with discrete delta-hedging is.

- As time goes by S will change.
- ullet This will cause $\Delta=rac{\partial F}{\partial s}$ to change, see page (15)
- Thus you are sitting with the wrong value of delta.

Moral:

- If delta is sensitive to changes in S, then you have to rebalance often.
- If delta is insensitive to changes in S you do not need to rebalance so often, or per haps not at all

Definition:

Let Π be the value of a derivative (or portfolio). **Gamma** (Γ) is defined as

$$\Gamma = \frac{\partial \Delta}{\partial s}$$

i.e.

$$\Gamma = \frac{\partial^2 \Pi}{\partial s^2} \,, \, \, \text{Tistle pricing function,} \label{eq:gamma}$$
 often F(t,s)

Gamma is a measure of the sensitivity of Δ to changes in S.

Result: For a European Call in a Black-Scholes model, Γ can be calculated as

$$\Gamma = \frac{N'[d_1]}{S\sigma\sqrt{T-t}} \quad \text{(Exercise 1)}$$

Important fact:

For a position in the underlying stock itself we have

$$\Gamma = 0$$
 (trivial,

Gamma Neutrality

A portfolio Π is said to be **gamma neutral** if its gamma equals zero, i.e.

$$\Gamma_{\Pi} = 0$$

• Since $\Gamma=0$ for a stock you can not gamma-hedge using only stocks. Typically you use some derivative to obtain gamma neutrality.

-> End of lecture 3a &

General procedure

Given a portfolio Π with underlying S. Consider two derivatives with pricing functions F and G.

 x_F = number of units of F

 x_G = number of units of G

Problem:

Choose x_F and x_G such that the entire portfolio is delta- and gamma-neutral.

Value of hedged portfolio:

$$V = \Pi + x_F \cdot F + x_G \cdot G$$

123

Value of hedged portfolio:

$$V = \Pi + x_F \cdot F + x_G \cdot G$$

We get the equations

$$\frac{\partial V}{\partial s} = 0,$$
 (alter neutral) $\frac{\partial^2 V}{\partial s^2} = 0.$ (gamma neutral)

$$\frac{\partial^2 V}{\partial s^2} = 0.$$

i.e.

$$\Delta_{\Pi} + x_F \Delta_F + x_G \Delta_G = 0,$$

$$\Gamma_{\Pi} + x_F \Gamma_F + x_G \Gamma_G = 0$$

Solve for x_F and $x_G!$ (linear system, has a unique solution?)

Tomas Björk, 2017

in general yes, if G is refficiently different from F

Particular Case

- In many cases the original portfolio Π is already delta neutral.
- Then it is natural to use a derivative to obtain gamma-neutrality.
- This will destroy the delta-neutrality. for the new portfolio
- Therefore we use the underlying stock (with zero gamma!) to delta hedge in the ends wext page

Formally:

$$V=\Pi+x_F\cdot F+x_S\cdot S$$
 for Γ

$$\Delta_{\Pi} + x_F \Delta_F + x_S \Delta_S = 0,$$

$$\Gamma_{\Pi} + x_F \Gamma_F + x_S \Gamma_S = 0$$

We have

$$\Delta_{\Pi}=0,$$
 (assumption was $\Delta_{S}=1$ $\Gamma_{S}=0.$

i.e.

$$\Delta_{\Pi} + x_F \Delta_F + x_S = 0,$$

$$\Gamma_{\Pi} + x_F \Gamma_F = 0$$

Solution is
$$\begin{cases} x_F &=& -\frac{\Gamma_\Pi}{\Gamma_F} \\ x_S &=& \frac{\Delta_F \Gamma_\Pi}{\Gamma_F} - \Delta_\Pi \end{cases}$$

Further Greeks

$$\Theta = \frac{\partial \Pi}{\partial t},$$

$$V = \frac{\partial \Pi}{\partial \sigma},$$

$$\rho = \frac{\partial \Pi}{\partial r}$$

V is pronounced "Vega".

NB!

- A delta hedge is a hedge against the movements in the underlying stock, given a **fixed model**.
- A Vega-hedge is not a hedge against movements of the underlying asset. It is a hedge against a **change** of the model itself: The a model parameter.

Continuous Time Finance

The Martingale Approach

I: Mathematics

(Ch 10-12)

Tomas Björk

a purely theoretical lecture

Introduction

Which you probably

but alreades

In order to understand and to apply the martingale approach to derivative pricing and hedging we will need to some basic concepts and results from measure theory. These will be introduced below in an informal manner - for full details see the textbook.

Many propositions below will be proved but we will also present a couple of central results without proofs, and these must then be considered as dogmatic truths. You are of course not expected to know the proofs of such results (this is outside the scope of this course) but you are supposed to be able to **use** the results in an operational manner.

They are working knowledge, part of your toolkit.

129

Contents

- 1. Events and sigma-algebras
- 2. Conditional expectations
- 3. Changing measures
- 4. The Martingale Representation Theorem
- 5. The Girsanov Theorem

Tomas Björk, 2017 130

1.

Events and sigma-algebras

Tomas Björk, 2017 131

Events and sigma-algebras

(book: Section A.2)

contains all

"relevand" outcomes

Consider a probability measure P on a sample space Ω . An **event** is simply a subset $A\subseteq \Omega$ and P(A) is the probability that the event A occurs.

For technical reasons, a probability measure can only be defined for a certain "nice" class $\mathcal F$ of events, so for $A\in\mathcal F$ we are allowed to write P(A) as the probability for the event A.

For technical reasons the class \mathcal{F} must be a **sigma-algebra**, which means that \mathcal{F} is closed under the usual set theoretic operations like complements, countable intersections and countable unions.

Interpretation: We can view a σ -algebra \mathcal{F} as formalizing the idea of information. More precisely: A σ -algebra \mathcal{F} is a collection of events, and if we assume that we have access to the information contained in \mathcal{F} , this means that for every $A \in \mathcal{F}$ we know exactly if A has occured or not.

Probability space is the triple (-D,F,P)
Tomas Biörk, 2017

132

Borel sets

Definition: The **Borel algebra** \mathcal{B} is the smallest sigma-algebra on R which contains all intervals. A set B in \mathcal{B} is called a **Borel set**.

Remark: There is no constructive definition of \mathcal{B} , but almost all subsets of R that you will ever see will in fact be Borel sets, so the reader can without danger think about a Borel set as "an arbitrary subset of R".

alternatively, contains all open sets, or contains all closed sets

contains all closed sets

(these are topological concepts)

Tomas Björk, 2017 133

Random variables

Section B-1

An \mathcal{F} -measurable random variable X is a mapping

$$X:\Omega\to R$$

such that $\{X \in B\} = \{\omega \in \Omega : X(\omega) \in B\}$ belongs to \mathcal{F} for all Borel sets B. This guarantees that we are allowed to write $P(X \in B)$. Instad of writing "X is \mathcal{F} -measurable" we will often write $X \in \mathcal{F}$.

This means that if $X \in \mathcal{F}$ then the value of X is completely determined by the information contained in \mathcal{F} .

If we have another σ -algebra \mathcal{G} with $\mathcal{G} \subseteq \mathcal{F}$ then we interpret this as " \mathcal{G} contains less information than \mathcal{F} ".

-> End of lecture 36 E

Start of Lecture 4a E

2.

Conditional Expectation (Section B.5)

Let $G \subset F$, $X \in \mathcal{R}^1$ (Q,F,P): $E[X] < \infty$, $X \in F$ Thm: "] ! X & L1 (2 (9) P) s.t. uniqueness: another X' satisfies P/ == =1. Such an I is a wellion of the conditional expectation of

X given g, we often write

E[x/g] instead of x

135

Conditional Expectation

If $X \in \mathcal{F}$ and if $\mathcal{G} \subseteq \mathcal{F}$ then we write $E[X|\mathcal{G}]$ for the conditional expectation of X given the information contained in \mathcal{G} . Sometimes we use the notation $E_{\mathcal{G}}[X]$.

The following proposition contains everything that we will need to know about conditional expectations within this course.

If Ex^2 , then for all $Y + L^2(x,y,P)$ one has $E(x-y)^2 = E(x-x)^2 + E(x-y)^2$

Think of Pythagorons and ordinary projections, you "see" in the picture x-2 1 2-4

Main Results

Proposition 1: Assume that $X \in \mathcal{F}$, and that $\mathcal{G} \subseteq \mathcal{F}$. Then the following hold.

• The random variable $E[X|\mathcal{G}]$ is completely determined by the information in \mathcal{G} so we have

$$E[X|\mathcal{G}] \in \mathcal{G}$$
 (by definition)

• If we have $Y \in \mathcal{G}$ then Y is completely determined by \mathcal{G} so we have

$$E[XY|\mathcal{G}] = YE[X|\mathcal{G}]$$

In particular we have

$$E\left[Y|\mathcal{G}\right] = Y$$

ullet If $\mathcal{H}\subseteq\mathcal{G}$ then we have the "law of iterated expectations"

$$E\left[E\left[X|\mathcal{G}\right]|\mathcal{H}\right] = E\left[X|\mathcal{H}\right]$$

(analogy with interated projections)

In particular we have

$$E[X] = E[E[X|\mathcal{G}]]$$

3.

Changing Measures

Tomas Björk, 2017 138

Changing Measures

Section B.6

Consider a probability measure P on (Ω, \mathcal{F}) , and assume that $L \in \mathcal{F}$ is a random variable with the properties that

$$L \ge 0$$

and

$$E^P[L] = 1.$$

For every event $A \in \mathcal{F}$ we now define the real number Q(A) by the prescription

$$Q(A) = E^P \left[L \cdot I_A \right]$$

where the random variable I_A is the indicator for A, i.e.

$$I_A = \begin{cases} 1 & \text{if} \quad A \text{ occurs} \\ 0 & \text{if} \quad A^c \text{ occurs} \end{cases}$$

Recall that

$$Q(A) = E^P \left[L \cdot I_A \right]$$

We now see that $Q(A) \geq 0$ for all A, and that

$$Q(\Omega) = E^{P} [L \cdot I_{\Omega}] = E^{P} [L \cdot 1] = 1$$

We also see that if $A \cap B = \emptyset$ then

$$Q(A \cup B) = E^{P} [L \cdot I_{A \cup B}] = E^{P} [L \cdot (I_A + I_B)]$$

$$= E^{P} [L \cdot I_A] + E^{P} [L \cdot I_B]$$

$$= Q(A) + Q(B)$$

(extends to finite disjoint unions)

Furthermore we see that

$$P(A) = 0 \quad \Rightarrow \quad Q(A) = 0$$

We have thus more or less proved the following

Proposition 2: If $L \in \mathcal{F}$ is a nonnegative random variable with $E^P[L] = 1$ and Q is defined by

$$Q(A) = E^P \left[L \cdot I_A \right]$$

then Q will be a probability measure on $\mathcal F$ with the property that

for which you need countable additivity (true!)
$$P(A) = 0 \implies Q(A) = 0.$$

I turns out that the property above is a very important one, so we give it a name.

Absolute Continuity

Definition: Given two probability measures P and Q on \mathcal{F} we say that Q is **absolutely continuous** w.r.t. P on \mathcal{F} if, for all $A \in \mathcal{F}$, we have

$$P(A) = 0 \quad \Rightarrow \quad Q(A) = 0$$

We write this as

$$Q << P$$
.

If Q << P and P << Q then we say that P and Q are **equivalent** and write

$$Q \sim P$$

(His does NOT mean Q=P)

Equivalent measures

$$P(A) = 0 \quad \Leftrightarrow \quad Q(A) = 0$$

It is easy to see that
$$P$$
 and Q are equivalent if and only if
$$P(A) = 0 \quad \Leftrightarrow \quad Q(A) = 0$$
 P(A) >0 $\Leftrightarrow \quad Q(A) = 0$ or, equivalently,
$$P(A) = 1 \quad \Leftrightarrow \quad Q(A) = 1$$
 (by at complements)

Two equivalent measures thus agree on all certain events and on all impossible events, but can disagree on all other events.

Simple examples:

- ullet All non degenerate Gaussian distributions on R are equivalent.
- ullet If P is Gaussian on R and Q is exponential then Q << P but <u>not</u> the other way around. (why?)

Absolute Continuity ct'd

We have seen that if we are given P and **define** Q by

$$Q(A) = E^P \left[L \cdot I_A \right] \qquad (4)$$

for $L \geq 0$ with $E^P[L] = 1$, then Q is a probability measure and Q << P. .

A natural question is now if **all** measures Q << P are obtained in this way. The answer is yes, and the precise (quite deep) result is as follows. The proof is difficult and therefore omitted.

that is, by Cormula LX) for some L.

Tomas Björk, 2017 144

-> End of lecture 4a <

The Radon Nikodym Theorem

Consider two probability measures P and Q on (Ω,\mathcal{F}) and assume that Q << P on \mathcal{F} . Then there exists a unique random variable L with the following properties

1.
$$Q(A) = E^P[L \cdot I_A], \quad \forall A \in \mathcal{F}$$

1. $Q(A)=E^P\left[L\cdot I_A\right], \quad \forall A\in\mathcal{F}$ for another L' satisfying L' one P(L=L')=1.

2.
$$L \ge 0$$
, $P - a.s$.

3.
$$E^{P}[L] = 1$$

4.
$$L \in \mathcal{F}$$

The random variable L is denoted as

$$L = \frac{dQ}{dP}, \quad \text{on } \mathcal{F}$$

and it is called the **Radon-Nikodym derivative** of Qw.r.t. P on \mathcal{F} , or the **likelihood ratio** between Q and P on \mathcal{F} .

A simple example

The Radon-Nikodym derivative L is intuitively the local scale factor between P and Q. If the sample space Ω is finite so $\Omega = \{\omega_1, \dots, \omega_n\}$ then P is determined by the probabilities p_1, \dots, p_n where

$$p_i = P(\omega_i) \quad i = 1, \dots, n$$

Now consider a measure Q with probabilities

$$q_i = Q(\omega_i) \quad i = 1, \dots, n$$

If Q << P this simply says that

$$p_i = 0 \quad \Rightarrow \quad q_i = 0$$

and it is easy to see that the Radon-Nikodym derivative $L=dQ/\widetilde{dP}$ is given by

$$L(\omega_i) = \frac{q_i}{p_i}$$
 $i = 1, \dots, n$ (if $\phi_i > 0$)

If $p_i = 0$ then we also have $q_i = 0$ and we can define the ratio q_i/p_i arbitrarily.

If p_1, \ldots, p_n as well as q_1, \ldots, q_n are all positive, then we see that $Q \sim P$ and in fact

$$\frac{dP}{dQ} = \frac{1}{L} = \left(\frac{dQ}{dP}\right)^{-1}$$

as could be expected.

Note on notation: Ex is often written as the Lebesque integral SXAP

Then Ep (LIA) = JLIA dP (4) But Q(A) = E [IA] = S I, dQ (2) Now divide formally by AP (and nucleiply):

da = da dP = L dP

and we understand (1) and (2) are equal.

mathematical

Computing expected values

A main use of Radon-Nikodym derivatives is for the computation of expected values.

Suppose therefore that Q << P on $\mathcal F$ and that X is a random variable with $X \in \mathcal F$. With L = dQ/dP on $\mathcal F$ then have the following result.

Proposition 3: With notation as above we have

$$E^Q[X] = E^P[L \cdot X],$$

$$\int x \, dR = \int lx \, dP \quad (\text{write } l = \frac{dQ}{dP} \quad \text{etc.} \quad)$$

Proof: We only give a proof for the simple example above where $\Omega = \{\omega_1, \dots, \omega_n\}$. We then have

$$E^{Q}[X] = \sum_{i=1}^{n} X(\omega_i) q_i = \sum_{i=1}^{n} X(\omega_i) \frac{q_i}{p_i} p_i$$
$$= \sum_{i=1}^{n} X(\omega_i) L(\omega_i) p_i = E^{P}[X \cdot L]$$

The Abstract Bayes' Formula

We can also use Radon-Nikodym derivatives in order to compute conditional expectations. The result, known as the abstract Bayes' Formula, is as follows.

Theorem 4: Consider two measures P and Q with Q << P on \mathcal{F} and with

$$L^{\mathcal{F}} = \frac{dQ}{dP} \quad \text{on } \mathcal{F}$$

Assume that $\mathcal{G} \subseteq \mathcal{F}$ and let X be a random variable with $X \in \mathcal{F}$. Then the following holds

$$E^{Q}\left[X|\mathcal{G}\right] = \frac{E^{P}\left[L^{\mathcal{F}}X|\mathcal{G}\right]}{E^{P}\left[L^{\mathcal{F}}|\mathcal{G}\right]}$$

uste the denominator,

different from EQX = EP[LX] ---
(See book Proposition B-41)

Dependence of the σ -algebra

Suppose that we have Q << P on $\mathcal F$ with

$$L^{\mathcal{F}} = \frac{dQ}{dP} \quad \text{on } \mathcal{F}$$

Now consider smaller σ -algebra $\mathcal{G}\subseteq\mathcal{F}$. Our problem is to find the R-N derivative

$$L^{\mathcal{G}} = \frac{dQ}{dP} \quad \text{on } \mathcal{G}$$

QKP ong!

We recall that $L^{\mathcal{G}}$ is characterized by the following properties

1.
$$Q(A) = E^P \left[L^{\mathcal{G}} \cdot I_A \right] \quad \forall A \in \mathcal{G}$$

2.
$$L^{\mathcal{G}} > 0$$

3.
$$E^P \left[L^{\mathcal{G}} \right] = 1$$

$$L^{\mathcal{G}} \in \mathcal{G}$$
 crucial?

A natural guess would perhaps be that $L^{\mathcal{G}}=L^{\mathcal{F}}$, so let us check if $L^{\mathcal{F}}$ satisfies points 1-4 above.

By assumption we have

$$Q(A) = E^P \left[L^{\mathcal{F}} \cdot I_A \right] \quad \forall A \in \mathcal{F}$$

Since $\mathcal{G}\subseteq\mathcal{F}$ we then have

$$Q(A) = E^{P} \left[L^{\mathcal{F}} \cdot I_{A} \right] \quad \forall A \in \mathcal{G}$$

so point 1 above is certainly satisfied by $L^{\mathcal{F}}$. It is also clear that $L^{\mathcal{F}}$ satisfies points 2 and 3. It thus seems that $L^{\mathcal{F}}$ is also a natural candidate for the R-N derivative $L^{\mathcal{G}}$, but the problem is that we do not in general have $L^{\mathcal{F}} \in \mathcal{G}$. So If \mathcal{F} in general.

This problem can, however, be fixed. By iterated expectations we have, for all $A \in \mathcal{G}$,

$$Q(A) = E^{P} \left[L^{\mathcal{F}} \cdot I_{A} \right] = E^{P} \left[E^{P} \left[L^{\mathcal{F}} \cdot I_{A} \middle| \mathcal{G} \right] \right]$$
Tomas Björk, 2017

Then gravious formula becomes $Q(A) = E^{p} \left[E^{p} \left[L^{f} \middle|_{F} \right] I_{A} \right]$

Since $A \in \mathcal{G}$ we have

$$E^{P}\left[L^{\mathcal{F}}\cdot I_{A}\middle|\mathcal{G}\right] = E^{P}\left[L^{\mathcal{F}}\middle|\mathcal{G}\right]I_{A}$$

Let us now define $L^{\mathcal{G}}$ by

$$L^{\mathcal{G}} = E^P \left[L^{\mathcal{F}} \middle| \mathcal{G} \right]$$

$$L^{\mathcal{G}} = E^P \left[L^{\mathcal{F}} \middle| \mathcal{G} \right]$$
 which will be conditionally with the obviously have $L^{\mathcal{G}} \in \mathcal{G}$ and which with $Q(A) = E^P \left[L^{\mathcal{G}} \cdot I_A \right] \quad \forall A \in \mathcal{G}$

$$Q(A) = E^P \left[L^{\mathcal{G}} \cdot I_A \right] \quad \forall A \in \mathcal{G}$$

It is easy to see that also points 2-3 are satisfied so we have proved the following result.

A formula for $L^{\mathcal{G}}$

Proposition 5: If Q << P on \mathcal{F} and $\mathcal{G} \subseteq \mathcal{F}$ then, with notation as above, we have

$$L^{\mathcal{G}} = E^{P} \left[L^{\mathcal{F}} \middle| \mathcal{G} \right]$$

the point was that we wanted

Lg to be g-measurable.

Another example is that Pand Q are two possible distributions of a random variable with densities for and for on R.

Then PNQ (seen as probability measures on F = B, Borel sets, and

$$\frac{dQ}{dP}(x) = \frac{f_2(x)}{f_P(x)}, \frac{dP}{dQ}(x) = \frac{f_P(x)}{f_Z(x)}.$$

Think of two wormal densities fp, for

Tomas Björk, 2017

Find of lecture 46 A

9 Start of lecture 5 a

The likelihood process on a filtered space

We now consider the case when we have a probability measure P on some space Ω and that instead of just one σ -algebra $\mathcal F$ we have a **filtration** i.e. an increasing family of σ -algebras $\{\mathcal{F}_t\}_{t>0}$.

The interpretation is as usual that \mathcal{F}_t is the information available to us at time t, and that we have $\mathcal{F}_s \subseteq \mathcal{F}_t$ for s < t.

Now assume that we also have another measure Q, and that for some fixed T, we have Q << P on \mathcal{F}_T . We define the random variable L_T by

$$L_T = \frac{dQ}{dP}$$
 on \mathcal{F}_T

Since Q << P on \mathcal{F}_T we also have Q << P on \mathcal{F}_t for all $t \leq T$ and we define

$$L_t = \frac{dQ}{dP} \quad \text{on } \mathcal{F}_t \quad 0 \leq t \leq T \quad \text{the part of the part of the$$

process, known as the likelihood process.

A grocen X is adapted (to a filtration [Ft]t>0) &f fro every to 154

Xt is Ft. measurable.

Tomas Björk, 2017

The L process is a P martingale

We recall that

$$L_t = \frac{dQ}{dP}$$
 on \mathcal{F}_t $0 \le t \le T$

Since $\mathcal{F}_s\subseteq\mathcal{F}_t$ for $s\leq t$ we can use Proposition 5 and deduce that

$$L_s = E^P \left[L_t | \mathcal{F}_s \right] \quad s \le t \le T$$

and we have thus proved the following result.

Proposition: Given the assumptions above, the likelihood process L is a P-martingale.

A procen X is a
$$(P, F_k)$$
-martingall if it [i] it is adapted (to a filtration $(F_k(Y_{>0})_1)$] (ii) $E[X_k]<\infty$, $\forall k \geq 0$, $\forall k \geq 0$, (iii) $E[X_k]=X_s$, $\forall k \geq 0$ — martingale property (iii) $E[X_k]=X_s$, $\forall k \geq 0$ — martingale property there $E=E^P$, expectation using P . 155

Where are we heading?

(and why do we have to know this?)

We are now going to perform measure transformations on Wiener spaces, where P will correspond to the objective measure and Q will be the risk neutral measure.

For this we need define the proper likelihood process Land, since L is a P-martingale, we have the following natural questions.

- What does a martingale look like in a Wiener driven framework? (like Blade. Scholes setting)
- ullet Suppose that we have a P-Wiener process W and then change measure from P to Q. What are the properties of W under the new measure Q?

These questions are handled by the Martingale Representation Theorem, and the Girsanov Theorem respectively.

Recall BS framework, with $dS = \mu Sdt + \sigma SdW (unseed)$ and $dS = (Sdt + \sigma SdW^2) (under a)$ Tomas Björk, 2017

We will see that PNQ on Fr (and then also on Fk, t=T)

The Martingale Representation Theorem

(Section 11.1)

Intuition

form general The through

Suppose that we have a Wiener process W under the measure P. We recall that if h is adapted (and integrable enough) and if the process X is defined by

$$X_t = x_0 + \int_0^t h_s dW_s$$

then X is a martingale. We now have the following natural question:

Question: Assume that X is an arbitrary martingale. Does it then follow that X has the form

$$X_t = x_0 + \int_0^t h_s dW_s$$

for some adapted process h?

In other words: Are **all** martingales stochastic integrals w.r.t. W?

Answer: No, but

It is immediately clear that all martingales can **not** be written as stochastic integrals w.r.t. W. Consider for example the process X defined by

$$X_t = \left\{ \begin{array}{ll} 0 & \text{for} & 0 \leq t < 1 \\ Z & \text{for} & t \geq 1 \end{array} \right.$$

where Z is an random variable, independent of W, with E[Z]=0. X is then a martingale (why?) but it is clear (how?) that it cannot be written as $X_t = x_0 + \int_0^t h_s dW_s$ Z should F which F which

$$X_t = x_0 + \int_0^t h_s dW_s$$

Intuition

The intuitive reason why we cannot write

$$X_t = x_0 + \int_0^t h_s dW_s$$

in the example above is of course that the random variable Z "has nothing to do with" the Wiener process W. In order to exclude examples like this, we thus need an assumption which guarantees that our probability space only contains the Wiener process W and nothing else.

This idea is formalized by assuming that the filtration $\{\mathcal{F}_t\}_{t\geq 0}$ is the one generated by the Wiener process W_\bullet

 $\mathcal{F}_{t} = \sigma(W_s, s \leq t).$

Note that the X of p-kg in NoT adapted to this

Tomas Björk, 2017

were the case with the example on p. 159

The Martingale Representation Theorem

Theorem. Let W be a P-Wiener process and assume that the filtation is the **internal** one i.e.

$$\mathcal{F}_t = \mathcal{F}_t^W = \sigma \left\{ W_s; \ 0 \le s \le t \right\}$$

Then, for every (P, \mathcal{F}_t) -martingale X, there exists a real number x and an adapted process h such that

$$X_{t} = x + \int_{0}^{t} h_{s} dW_{s},$$
$$dX_{t} = h_{t} dW_{t}.$$

i.e.

$$dX_t = h_t dW_t.$$

Proof: Hard. This is very deep result.

Crucial is that I is adapted to Huis special filtration

Note

For a given martingale X, the Representation Theorem above guarantees the existence of a process h such that

$$X_t = x + \int_0^t h_s dW_s,$$

The Theorem does **not**, however, tell us how to find or construct the process h.

The Girsanov Theorem

Sections 11.2, 11-3

Setup

Let W be a P-Wiener process and fix a time horizon T. Suppose that we want to change measure from P to Q on \mathcal{F}_T . For this we need a P-martingale L with $L_0=1$ to use as a likelihood process, and a natural way of constructing this is to choose a process g and then define L by

$$\begin{cases} dL_t &= g_t dW_t & \text{floget a martingale} \\ L_0 &= 1 \end{cases}$$

This definition does not guarantee that $L\geq 0$, so we make a small adjustment. We choose a process φ and define L by

$$\left\{ \begin{array}{ll} dL_t &=& L_t \varphi_t dW_t \\ L_0 &=& 1 \end{array} \right.$$

The process L will again be a martingale and we easily obtain

ODTAIN
$$L_t = e^{\int_0^t \varphi_s dW_s - \frac{1}{2} \int_0^t \varphi_s^2 ds}$$
 Apply the Its formula to Let to see that (**) holds: Tomas Björk, 2017
$$L_t = f(x_t), \text{ with } f(x) = e^{\chi}, \quad \chi_t = \int_0^t e^{\chi_t} dx,$$
 and
$$\left\{ d\chi_t \right\} = e^{\chi_t} dt$$

Thus we are guaranteed that $L \geq 0$. We now change measure form P to Q by setting

$$dQ = L_t dP$$
, on \mathcal{F}_t , $0 \le t \le T$

The main problem is to find out what the properties of \overline{W} are, under the new measure Q. This problem is resolved by the **Girsanov Theorem**.

The Girsanov Theorem

Let W be a P-Wiener process. Fix a time horizon T.

Theorem: Choose an adapted process φ , and define the process L by

$$\begin{cases} dL_t &= L_t \varphi_t dW_t \\ L_0 &= 1 \end{cases}$$
 Assume that $E^P[L_T]=1$, and define a new mesure Q

on \mathcal{F}_T by

$$dQ = L_t dP$$
, on \mathcal{F}_t , $0 \le t \le T$

Then Q << P and the process W^Q , defined by

$$W_t^Q = W_t - \int_0^t \varphi_s ds$$

is Q-Wiener. We can also write this as

$$dW_t = \varphi_t dt + dW_t^Q$$

Changing the drift in an SDE (Section 11.5)

The single most common use of the Girsanov Theorem is as follows. (selated to \$5 like models)

Suppose that we have a process X with P dynamics

$$dX_t = \mu_t dt + \sigma_t dW_t$$

where μ and σ are adapted and W is P-Wiener.

We now do a Girsanov Transformation as above, and the question is what the Q-dynamics look like.

From the Girsanov Theorem we have

$$dW_t = \varphi_t dt + dW_t^Q \qquad \left(\text{page 166} \right)$$

and substituting this into the P-dynamics we obtain the Q dynamics as

$$dX_t = \{\mu_t + \sigma_t \varphi_t\} dt + \sigma_t dW_t^Q$$

Moral: The drift changes but the diffusion is unaffected, meaning that we keep a having

Tomas Björk, 2017

the same of in front of the new Brownian motion We

The Converse Girsanov Theorem

Let W be a P-Wiener process. Fix a time horizon T.

Theorem. Assume that:

• Q << P on \mathcal{F}_T , with likelihood process

$$L_t = \frac{dQ}{dP}, \quad \text{on } \mathcal{F}_t \ 0, \le t \le T$$

• The filtation is the **internal** one .i.e.

$$\mathcal{F}_t = \sigma \left\{ W_s; \ 0 \le s \le t \right\}$$

Then there exists a process φ such that

$$\begin{cases} dL_t = L_t \varphi_t dW_t \\ L_0 = 1 \end{cases}$$

 $\begin{cases} dL_t = L_t \varphi_t dW_t \\ L_0 = 1 \end{cases}$ note (p.155) that promisingale,

Tomas Björk, 2017

168

-> Start of lecture 56 =

Continuous Time Finance

The Martingale Approach

II: Pricing and Hedging

(Ch 10-12)

Tomas Björk

Tomas Björk, 2017

Financial Markets (a recap)

Price Processes:

$$S_t = \left[S_t^0, ..., S_t^N\right]$$

Example: (Black-Scholes, $S^0 := B, \ S^1 := S$)

$$dS_t = \alpha S_t dt + \sigma S_t dW_t,$$

$$dB_t = rB_t dt.$$

Portfolio:

$$h_t = \left[h_t^0, ..., h_t^N \right]$$

 $h_t^i = \text{number of units of asset } i \text{ at time } t.$

Value Process:

$$V_t^h = \sum_{i=0}^N h_t^i S_t^i = h_t S_t \qquad \text{vector}$$
 or interpret an inner product
$$170$$

Self Financing Portfolios

Definition: (intuitive)

A portfolio is **self-financing** if there is no exogenous infusion or withdrawal of money. "The purchase of a new asset must be financed by the sale of an old one."

Definition: (mathematical)

A portfolio is self-financing if the value process satisfies

$$dV_t = \sum_{i=0}^{N} h_t^i dS_t^i$$

Major insight: (from general theory):

If the price process ${f S}$ is a **martingale**, and if h is self-financing, then V is a martingale. (weeks assumptions)

NB! This simple observation is in fact the basis of the Itô theory ine: DYF of choises

discrete

E(DYE/FE-1)= E(REDXE/FE-1)

E(DXE/FE-1)= RE E(DXE/FE-1)

NA.EFE-1

following theory.

Tomas Björk, 2017

Arbitrage

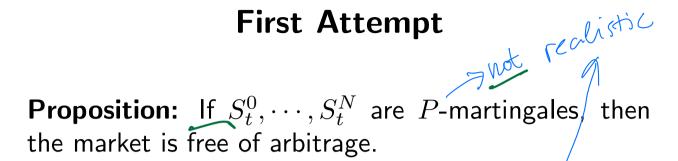
The portfolio \bullet is an **arbitrage** portfolio if $(\text{with } V=V^{\text{le}})$

- The portfolio strategy is self financing.
- $V_0 = 0$. $\begin{cases}
 V_T \ge 0, \ P a.s. \\
 P(V_T > 0) > 0
 \end{cases}$ we also that the arrive of $P(V_T > 0) > 0$

This implies Ep[V+]>0.

Main Question: When is the market free of arbitrage?

Remark: If the market is free of arbitrage, and h is a SF financing portfolio with $P(V_{7}>0)=1$, then $P(V_{7}>0)=0$, equivalently $P(V_{7}=0)=1$



Proof:

Assume that ** is an arbitrage strategy. Since

$$dV_t = \sum_{i=0}^{N} h_t^i dS_t^i,$$

V is a P-martingale, so

ale, so (because then expertation sense than expertation $V_0 = E^P[V_T] > 0$.

This contradicts $V_0 = 0$.

True, but useless: Next page

(but, as we'll see, there is a point in the argument)

Example: (Black-Scholes)

$$dS_t = \alpha S_t dt + \sigma S_t dW_t,$$

for Sand B martingales

$$dB_t = rB_t dt.$$

(We would have to assume that $\alpha=r=0$)

We now try to improve on this result.

Tomas Björk, 2017 174

Choose So as numeraire (look at "normalized" prices)

Definition:

The **normalized price vector** Z is given by

$$Z_t = \frac{S_t}{S_t^0} = \begin{bmatrix} 1, Z_t^1, ..., Z_t^N \end{bmatrix} \qquad \begin{array}{l} Z_t = 1 \text{ , } \forall t \leq \mathcal{T}\text{:} \\ \text{ containly a martingale} \end{array}$$

The normalized value process ${\cal V}^Z$ is given by

$$V_t^Z = \sum_{0}^{N} h_t^i Z_t^i.$$

Idea:

The arbitrage and self financing concepts should be independent of the accounting unit.

Invariance of numeraire

Proposition: One can show (see the book) that

- S-arbitrage $\iff Z$ -arbitrage.
- S-self-financing \iff Z-self-financing: 50 we can just talk if self-financing

av= hdsles
av= hdsles

Insight:

• If h self-financing then

$$dV_t^Z = \sum_1^N h_t^i dZ_t^i \qquad \left(\begin{array}{c} \text{note that we} \\ \text{don't need } \tilde{\ c} = 0 \end{array} \right)$$

• Thus, if the **normalized** price process Z is a P-martingale, then V^Z is a martingale, any select.

Second Attempt

the normalized processes

Proposition: If Z_t^0, \dots, Z_t^N are P-martingales, then the market is free of arbitrage.

True, but still fairly useless.

by orguneral as on p. 173

Example: (Black-Scholes)

$$dS_t = \alpha S_t dt + \sigma S_t dW_t$$

$$dB_t = rB_t dt.$$

 $aB_t = rB_t at.$ Use the quotient rule for differentiation of $z_t = \frac{S_t}{B_t}$

We would have to assume "risk-neutrality", i.e. that

$$\alpha = r$$
. to have 2° is a P-mantingale

But in principle, $x \neq r$. later we'll see what Tomas Björk, 2017 happens under Q.

Arbitrage

Recall that h is an arbitrage if p. 172

- h is self financing
- $V_0 = 0$.

• $V_T \ge 0$, P - a.s. $\begin{cases} V_T > 0 \\ V_T > 0 \end{cases} \quad \begin{cases} V_T > 0 \\ V_T > 0 \end{cases}$

Major insight

This concept is invariant under an equivalent change of measure!

$$P \sim Q$$
 iff $(P(A)=0 \Leftrightarrow Q(A)=1)$
 $P(A)=1 \Leftrightarrow Q(A)=1$
 $P(A)>0 \Leftrightarrow Q(A)>0$
 $Q(A)>0$
 $Q(A)>0$

Martingale Measures

Definition: A probability measure Q is called an **equivalent martingale measure** (EMM) if and only if it has the following properties.

ullet Q and P are equivalent, i.e.

$$Q \sim P$$

The normalized price processes

$$Z_t^i = \frac{S_t^i}{S_t^0}, \quad i = 0, \dots, N$$

are **Q-martingales**.

Wannow state the main result of arbitrage theory.

First Fundamental Theorem

of Asset Pricing (FTAP 1)

Theorem: The market is arbitrage free

iff

there exists an equivalent martingale measure.

This theorem was already announced on p.81.

Comments

- It is very easy to prove that existence of EMM imples no arbitrage (see below).
- The other imaplication is technically very hard.
- For discrete time and finite sample space Ω the hard part follows easily from the separation theorem for convex sets.
- For discrete time and more general sample space we need the Hahn-Banach Theorem. (formulated as an infinite dimensional version of the second version theorem)
- For continuous time the proof becomes technically very hard, mainly due to topological problems. See the textbook.

-> End of lecture 5 <

> Start of lecture 6a < Go back to p. 180 ("NA = EMM")

Proof that EMM implies no arbitrage

Assume that there exists an EMM denoted by Q. Assume that $P(V_T \geq 0) = 1$ and $P(V_T > 0) > 0$. Then, since $P \sim Q$ we also have $Q(V_T \geq 0) = 1$ and $Q(V_T>0)>0$. Note: $\mathbb{R}^Q(V_T)>0$

Recall:

$$dV_t^Z = \sum_{1}^{N} h_t^i dZ_t^i$$

This is a proof Q is a martingale measure by contradiction. $\downarrow \downarrow$

 V^Z is a Q-martingale (Ito theory)

$$V_0 = V_0^Z = E^Q \left[V_T^Z \right] > 0 \quad \text{contradicts}$$

$$V_0 = 0 \quad \text{in p. 172}$$

$$V_0 = 0 \quad \text{in p. 172}$$

No arbitrage

A) All these statements also true for VI instead of VI

Choice of Numeraire

The **numeraire** price S_t^0 can be chosen arbitrarily. The most common choice is however that we choose S^0 as the **bank account**, i.e.

$$S_t^0 = B_t$$

where

$$dB_t = r_t B_t dt$$

Here r is the (possibly stochastic) short rate and we have

$$B_t = e^{\int_0^t r_s ds}$$
 (generalizes $B_t = e^{rt}$, $dB_t = rB_t dt$, which we assume in most examples.)

Tomas Björk, 2017

Example: The Black-Scholes Model

$$dS_t = \alpha S_t dt + \sigma S_t dW_t,$$

$$dB_t = rB_t dt.$$

Look for martingale measure. We set $Z_t = S/B_t - S_t e$ Standard Collember gives, differentiate a product: no Itô is needed $dZ_t = Z_t(\alpha - r)dt + Z_t\sigma dW_t$, no Bravalan term (6a)

Girsanov transformation on [0, T]:

$$\begin{cases} dL_t = L_t \varphi_t dW_t, \\ L_0 = 1. \end{cases}$$

$$dQ = L_T dP$$
, on \mathcal{F}_T

Girsanov
$$\{see p \cdot 1bb\}$$

$$dW_t = \varphi_t dt + dW_t^Q, \qquad (6b)$$

where W^Q is a Q-Wiener process. (whereas W is P-Wiener)
Tomas Biörk. 2017

Tomas Björk, 2017

Inset (66) into (6a).

The Q-dynamics for Z are given by

$$dZ_t = Z_t \left[\alpha - r + \sigma \varphi_t \right] dt + Z_t \sigma dW_t^Q.$$

Unique martingale measure Q, with Girsanov kernel given by

 $\varphi_t = \frac{r-\alpha}{\sigma}, \text{ then } d\mathcal{I}_t = \mathsf{tyrdWt}^*$ martingale! Q-dynamics of S: insert (6b) into equation for dS_t :

$$dS_t = rS_t dt + \sigma S_t dW_t^Q.$$

The Black-Scholes model is free of **Conclusion:** arbitrage, as follows from p.182 since we have now shown that Q is an EMM: Z is a martingale under Q.

Pricing

We consider a market $B_t, S_t^1, \ldots, S_t^N$, (wavy risky assets)

Definition:

A **contingent claim** with **delivery time** T, is a random variable

$$X \in \mathcal{F}_T$$
.

"At t=T the amount X is paid to the holder of the claim".

Example: (European Call Option)

$$X = \max\left[S_T - K, 0\right]$$

Let X be a contingent T-claim.

Problem: How do we find an arbitrage free price process $\Pi_t[X]$ for X?

New Approach: use the change of measure framework.

Det: Tit(x) is an arbitrage fore process

If the extended market is arbitrage free

Solution

The extended market

exxa asset

$$B_t, S_t^1, \dots, S_t^N, \Pi_t[X]$$

TTAP 1.

must be arbitrage free, so there must exist a martingale measure Q for $(S_t, \Pi_t[X])$. In particular

$$\frac{\Pi_t \left[X \right]}{B_t}$$

must be a Q-martingale, i.e. it has the martingale property,

$$\frac{\Pi_{t}[X]}{B_{t}} = E^{Q} \left[\frac{\Pi_{T}[X]}{B_{T}} \middle| \mathcal{F}_{t} \right] \tag{6C}$$

$$\text{Since we obviously (why?) have} \tag{6C}$$

we have proved the main pricing formula.

Risk Neutral Valuation

Theorem: For a T-claim X, the arbitrage free price is given by the formula f(GC),

$$\Pi_{t}\left[X\right] = E^{Q} \left[e^{-\int_{t}^{T} r_{s} ds} \times X \middle| \mathcal{F}_{t}\right]$$

if dBt= 4Bt dt,

NB: if
$$t=0$$
, then
$$T_{\frac{1}{2}}(x) = e^{-c(T-t)} E^{2}[x]T_{\frac{1}{2}}$$

which we have encountered on p.76.

Note: here have not used the Feynman-kac formula to arrive at the same $T_{t}(x)$, but used a

Tomas Björk, 2017 martingale argument.

Example: The Black-Scholes Model

Q-dynamics: $dS_t = rS_t dt + \sigma S_t dW_t^Q. \tag{1}$ Mb; S is a Markov process uncles Q.

Simple claim:

$$X = \Phi(S_T),$$

where F(t,s) solves the Black-Scholes equation:

$$\begin{cases} \frac{\partial F}{\partial t} + rs\frac{\partial F}{\partial s} + \frac{1}{2}\sigma^2 s^2 \frac{\partial^2 F}{\partial s^2} - rF & = 0, \\ F(T, s) & = \Phi(s). \end{cases}$$

use Feynman- Kac and the model (*).

Problem

Recall the valuation formula

(B-138)

$$\Pi_{t}\left[X\right] = E^{Q} \left[e^{-\int_{t}^{T} r_{s} ds} \times X \middle| \mathcal{F}_{t}\right]$$

What if there are several different martingale measures Q?

This is connected with the **completeness** of the market.

Hedging (recall p. 100)

Def: A portfolio is a **hedge** against X ("replicates X") if

- h is self financing
- $V_T = X$, P a.s.: $P(V_T = X) = 1$

Def: The market is **complete** if every X can be hedged.

Pricing Formula:

7 arbitrage If h replicates X, then a natural way of pricing X is

$$\Pi_t[X] = V_t^h$$
 (See p. 101 for a justification)

When can we hedge?

Existence of hedge

Existence of stochastic integral representation

martingale representation theorem

Tomas Björk, 2017 192

Fix T-claim X.

If h is a hedge for X then $V_{\tau} = X$ and

•
$$V_T^Z=\frac{X}{B_T}$$
 ; recall the normalized prices • h is self financing, i.e. $\frac{2}{b_t}$, which are Q-Martingales;

$$dV_t^Z = \sum_1^K h_t^i dZ_t^i \quad , \text{ see } \mathbb{P}\text{-}176 \ .$$
 Thus V^Z is a Q -martingale, $V_t^Z = \mathbb{E}^Q \left[V_T \mid \mathcal{F}_t \right]$:

$$V_t^Z = E^Q \left[rac{X}{B_T} \middle| \mathcal{F}_t
ight] \, ,$$
 X can be hedged by h .

If X can be hedged by h.

> End of lecture ba =

-> Start of lecture 66 <

We reverse the previous argument, which led to P-193.

Lemma:

Fix T-claim X. Define martingale M by

$$M_t = E^Q \left[\frac{X}{B_T} \middle| \mathcal{F}_t \right]$$

Suppose that there exist predictable processes h^1, \cdots, h^N such that

$$M_t = x + \sum_{i=1}^{N} \int_0^t h_s^i dZ_s^i,$$

Then X can be replicated.

* Note that then M_B_=X (take t=T)

Proof

We guess that (for replication)

$$M_t = V_t^Z = h_t^B \cdot 1 + \sum_{i=1}^N h_t^i Z_t^i$$
 hormalized bank account

Define: h^B by

$$h_t^B = M_t - \sum_{i=1}^N h_t^i Z_t^i$$
. (the line given)

We have $M_t = V_t^Z$, and we get , by assumption,

$$dV_t^Z = dM_t = \sum_{i=1}^N h_t^i dZ_t^i$$
, by a sumptime $p \cdot 194$

so the portfolio is self financing. Furthermore:

$$V_T^Z = M_T = E^Q \left[\frac{X}{B_T} \middle| \mathcal{F}_T \right] = \frac{X}{B_T} : \text{ fledge, as wow}$$
 where the state then $X = V_T^2 B_T = k_T B_T + \sum_{i=1}^{T} 4k_T^2 S_T^2 = k_T^2 S_T^2 S_T^2 = k_T^2 S_T^2 S_T^2 S_T^2 = k_T^2 S_T^2 S_T$

Second Fundamental Theorem

FTAP2]

The second most important result in arbitrage theory is the following.

Theorem:

The market is complete

iff

the martingale measure Q is unique.

Proof: It is obvious (why?) that if the market is complete, then Q must be unique. The other implication is very hard to prove. It basically relies on duality arguments from functional analysis.

For all A& Fr, 1/4BT can be hedged and hence has a unique pice: for any Q: $T_{\xi}(I_{A}B_{T}) = \frac{E^{Q}(I_{A}|\mathcal{H}_{\xi})}{B_{\xi}}$ for $\xi = 0$; unique $T_{\xi}(I_{A}B_{T}) = \frac{E^{Q}(I_{A}|\mathcal{H}_{\xi})}{B_{\xi}} = \frac{E^{Q}(I_{A}|\mathcal$

Black-Scholes Model

$$Q$$
-dynamics $\left(\begin{array}{ccc} \left(\begin{array}{ccc} call & Z_t & S_t \\ \end{array} \right) \\ dS_t &= \begin{array}{ccc} rS_t dt + \sigma S_t dW_t^Q, \\ dZ_t &= \end{array} \right)$ see p. 185.

Consider the mastingale (!)

$$M_t = E^Q \left[e^{-rT} X \middle| \mathcal{F}_t \right],$$

 $M_t = E^Q \left[e^{-rT} X \middle| \mathcal{F}_t \right],$ Here X is an arbitrary daim

Representation theorem for Wiener processes

there exists q such that

(if we know that the Ft ar generated by Wt)

$$M_t = M(0) + \int_0^t g_s dW_s^Q.$$

$$M_t = M_0 + \int_0^t h_s^1 dZ_s,$$

Thus

with $h_t^1 = \frac{g_t}{\sigma Z_t}$.

Result: from lemma on 3.444, 195;

X can be replicated using the portfolio defined by

$$h_t^1 = g_t/\sigma Z_t,$$

$$h_t^B = M_t - h_t^1 Z_t.$$

Moral: The Black Scholes model is complete.

Here we didn't need (as on p. 102)

that X is if the form X=\$\overline{b}(S_T)\$,

but see next page(s).

Special Case: Simple Claims

Assume
$$X$$
 is of the form $X = \Phi(S_T)$ and was unalized markingale. $\longrightarrow M_t = E^Q\left[e^{-rT}\Phi(S_T)\big|\,\mathcal{F}_t\right],$

Kolmogorov backward equation $\Rightarrow M_t = f(t,S_t) = (5 \text{ is Q-} \text{ Marker})$

$$\begin{cases} \frac{\partial f}{\partial t} + rs \frac{\partial f}{\partial s} + \frac{1}{2}\sigma^2 s^2 \frac{\partial^2 f}{\partial s^2} &= 0, \\ f(T,s) &= e^{-rT} \Phi(s). \end{cases}$$

Itô
$$\Rightarrow$$
 dM_t=df(t) ξ_t) = f_t dt + f_s dS + f_s f(dS) f_s ; use PDE to get $dM_t = \sigma S_t \frac{\partial f}{\partial s} dW_t^Q$, so we know the "abstract" $g_t \frac{\partial f}{\partial s}$, $g_t = \sigma S_t \cdot \frac{\partial f}{\partial s}$, Replicating portfolio h :

Replicating portfolio h:

$$h_t^B = f - S_t \frac{\partial f}{\partial s},$$

$$h_t^B = h_t^1 = B_t \frac{\partial f}{\partial s}.$$

Interpretation:
$$f(t,S_t)=V_t^Z$$
, roundized pick \times

Define F(t,s) by

unnormalized, wominal pricing function $F(t,s)=e^{rt}f(t,s)=\mathbf{b}_{t}f(t,s)^{\gamma}$

$$F(t,s) = e^{rt} f(t,s) = b_t f(t,s)$$

so $F(t,S_t)=V_t$. Then from previous pay and $\frac{1}{2}$ = $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

$$\begin{cases} h_t^B = \frac{F(t,S_t) - S_t \frac{\partial F}{\partial s}(t,S_t)}{B_t}, \\ h_t^1 = \frac{\partial F}{\partial s}(t,S_t) \end{cases}$$

where F solves the **Black-Scholes equation**

$$\begin{cases} \frac{\partial F}{\partial t} + rs\frac{\partial F}{\partial s} + \frac{1}{2}\sigma^2 s^2 \frac{\partial^2 F}{\partial s^2} - rF & = & 0, \\ F(T,s) & = & \Phi(s). \end{cases}$$

Summary: Main Results

- The market is arbitrage free \Leftrightarrow There exists a martingale measure Q ($\Rightarrow TAP \ 1$)
- The market is complete $\Leftrightarrow Q$ is unique. (FTAP 2)
- Every X must be priced by the formula

$$\Pi_{t}\left[X\right] = E^{Q}\left[e^{-\int_{t}^{T}r_{s}ds} \times X\middle|\mathcal{F}_{t}\right]$$
, complete of

for some choice of Q.

- In a non-complete market, different choices of Q will produce different prices for X, if X is we hedge able
- For a hedgeable claim X, all choices of Q will produce the same price for X:

$$\Pi_t\left[X\right] = V_t = E^Q\left[e^{-\int_t^T r_s ds} \times X \middle| \mathcal{F}_t\right]$$

Excause $\Pi_t\left(X\right) = \text{the value of a protessio}$

Completeness vs No Arbitrage Rule of Thumb

Question:

When is a model arbitrage free and/or complete?

Answer:

Count the number of risky assets, and the number of random sources.

R = number of random sources

N = number of risky assets

Intuition:

If N is large, compared to R, you have lots of possibilities of forming clever portfolios. Thus lots of chances of making arbitrage profits. Also many chances of replicating a given claim. $(M \ M)^{-100})$

Rule of thumb

Generically, the following hold.

• The market is arbitrage free if and only if

$$N \leq R$$

• The market is complete if and only if

Example:

The Black-Scholes model.

$$dS_t = \alpha S_t dt + \sigma S_t dW_t,$$

$$dB_t = rB_t dt.$$

For B-S we have ${\cal N}={\cal R}=1.$ Thus the Black-Scholes model is arbitrage free and complete.

Stochastic Discount Factors pricing formula under P

Given a model under P. For every EMM Q we define the corresponding Stochastic Discount Factor, or SDF, by

$$D_t = e^{-\int_0^t r_s ds} L_t, \quad \Longrightarrow \quad \text{If } \int_{\mathbb{R}^d} \mathcal{B}_t$$

where

$$L_t = \frac{dQ}{dP}, \quad \text{on } \mathcal{F}_t$$

of they use Lx

There is thus a one-to-one correspondence between EMMs and SDFs.

The risk neutral valuation formula for a T-claim X can now be expressed under P instead of under Q.

Proposition: With notation as above we have a pricing formule under the measure Plant note that Q is "hisden" in A):

$$\Pi_t [X] = \frac{1}{D_t} E^P [D_T X | \mathcal{F}_t]$$

 $\Pi_t[X] = \frac{1}{D_t} E^P \left[D_T X | \mathcal{F}_t \right]$ Hostract
Proof: Bayes' formula: $E_t = \frac{1}{D_t} E^P \left[D_T X | \mathcal{F}_t \right]$ $E_t = \frac{1}{D_t} E^P \left[D_T X | \mathcal{F}_t \right]$ $E_t = \frac{1}{D_t} E^P \left[D_T X | \mathcal{F}_t \right]$ $E_t = \frac{1}{D_t} E^P \left[D_T X | \mathcal{F}_t \right]$ $E_t = \frac{1}{D_t} E^P \left[D_T X | \mathcal{F}_t \right]$ $E_t = \frac{1}{D_t} E^P \left[D_T X | \mathcal{F}_t \right]$ $E_t = \frac{1}{D_t} E^P \left[D_T X | \mathcal{F}_t \right]$ $E_t = \frac{1}{D_t} E^P \left[D_T X | \mathcal{F}_t \right]$ $E_t = \frac{1}{D_t} E^P \left[D_T X | \mathcal{F}_t \right]$ $E_t = \frac{1}{D_t} E^P \left[D_T X | \mathcal{F}_t \right]$ $E_t = \frac{1}{D_t} E^P \left[D_T X | \mathcal{F}_t \right]$ $E_t = \frac{1}{D_t} E^P \left[D_T X | \mathcal{F}_t \right]$ $E_t = \frac{1}{D_t} E^P \left[D_T X | \mathcal{F}_t \right]$ $E_t = \frac{1}{D_t} E^P \left[D_T X | \mathcal{F}_t \right]$ $E_t = \frac{1}{D_t} E^P \left[D_T X | \mathcal{F}_t \right]$ $E_t = \frac{1}{D_t} E^P \left[D_T X | \mathcal{F}_t \right]$ $E_t = \frac{1}{D_t} E^P \left[D_T X | \mathcal{F}_t \right]$ $E_t = \frac{1}{D_t} E^P \left[D_T X | \mathcal{F}_t \right]$ $E_t = \frac{1}{D_t} E^P \left[D_T X | \mathcal{F}_t \right]$ $E_t = \frac{1}{D_t} E^P \left[D_T X | \mathcal{F}_t \right]$ $E_t = \frac{1}{D_t} E^P \left[D_T X | \mathcal{F}_t \right]$ $E_t = \frac{1}{D_t} E^P \left[D_T X | \mathcal{F}_t \right]$ $E_t = \frac{1}{D_t} E^P \left[D_T X | \mathcal{F}_t \right]$ $E_t = \frac{1}{D_t} E^P \left[D_T X | \mathcal{F}_t \right]$ $E_t = \frac{1}{D_t} E^P \left[D_T X | \mathcal{F}_t \right]$ $E_t = \frac{1}{D_t} E^P \left[D_T X | \mathcal{F}_t \right]$ $E_t = \frac{1}{D_t} E^P \left[D_T X | \mathcal{F}_t \right]$ $E_t = \frac{1}{D_t} E^P \left[D_T X | \mathcal{F}_t \right]$ $E_t = \frac{1}{D_t} E^P \left[D_T X | \mathcal{F}_t \right]$ $E_t = \frac{1}{D_t} E^P \left[D_T X | \mathcal{F}_t \right]$ $E_t = \frac{1}{D_t} E^P \left[D_T X | \mathcal{F}_t \right]$ $E_t = \frac{1}{D_t} E^P \left[D_T X | \mathcal{F}_t \right]$ $E_t = \frac{1}{D_t} E^P \left[D_T X | \mathcal{F}_t \right]$ $E_t = \frac{1}{D_t} E^P \left[D_T X | \mathcal{F}_t \right]$ $E_t = \frac{1}{D_t} E^P \left[D_T X | \mathcal{F}_t \right]$ $E_t = \frac{1}{D_t} E^P \left[D_T X | \mathcal{F}_t \right]$ $E_t = \frac{1}{D_t} E^P \left[D_T X | \mathcal{F}_t \right]$ $E_t = \frac{1}{D_t} E^P \left[D_T X | \mathcal{F}_t \right]$ $E_t = \frac{1}{D_t} E^P \left[D_T X | \mathcal{F}_t \right]$ $E_t = \frac{1}{D_t} E^P \left[D_T X | \mathcal{F}_t \right]$ $E_t = \frac{1}{D_t} E^P \left[D_T X | \mathcal{F}_t \right]$ $E_t = \frac{1}{D_t} E^P \left[D_T X | \mathcal{F}_t \right]$ $E_t = \frac{1}{D_t} E^P \left[D_T X | \mathcal{F}_t \right]$ $E_t = \frac{1}{D_t} E^P \left[D_T X | \mathcal{F}_t \right]$ $E_t = \frac{1}{D_t} E^P \left[D_T X | \mathcal{F}_t \right]$ $E_t = \frac{1}{D_t} E^P \left[D_T X |$

Martingale Property of $S \cdot D$

Proposition: If S is an arbitrary price process, then the process

$$S_t D_t$$

is a P-martingale.

Proof: Bayes' formula again:

Same trist: we want $E^{Q}\left[\frac{S}{RT}\right] = \frac{S+}{R+}$

Tomas Björk, 2017

-> Find of lecture 66

-> Start of lecture 7a <

Continuous Time Finance

Dividends,

Forwards, Futures, and Futures Options

Ch 16 & 26

Contents

- 1. Dividends
- 2. Forward and futures contracts
- 3. Futures options

1. Dividends

Tomas Björk, 2017 208

Dividends

Black-Scholes model:

$$dS_t = \alpha S_t dt + \sigma S_t dW_t,$$

$$dB_t = rB_t dt.$$

New feature:

The underlying stock pays dividends. $D_t = \text{The cumulative dividends over}$

the interval [0,t] full separa on S_{u} , $u \leq t$)

Interpretation:

Over the interval [t,t+dt] you obtain the amount dD_t

Two cases

- Discrete dividends (realistic but messy): We skip !
- Continuous dividends (unrealistic but easy handle). in fact differentiable, as

Portfolios and Dividends

Consider a market with N assets.

 S_t^i = price at t, of asset No i

 $D_t^i = \text{cumulative dividends for } S^i \text{ over}$ the interval [0,t], $\mathcal{D}_{0}^{c} \approx \mathcal{D}$

 h_t^i = number of units of asset i

 V_t = market value of the portfolio h at t

Assumption: We assume that D has continuous differentiable trajctories.

Definition: The value process V is defined by

$$V_t = \sum_{i=1}^N h_t^i S_t^i$$
 (as before)

Self financing portfolios in presence of dividends

Recall:

$$V_t = \sum_{i=1}^{N} h_t^i S_t^i$$

New Definition: The strategy h is self financing if

$$dV_t = \sum_{i=1}^N h_t^i dG_t^i$$

where the **gain** process G^i is defined by $\begin{array}{c|c} \text{If } D_t^i \equiv 0 \text{ , we are} \\ \text{back in old case} \end{array} dG_t^i = dS_t^i + dD_t^i \\ \text{Interpret!} \end{array}$

$$dG_t^i = dS_t^i + dD_t^i$$

Note: The definitions above rely on the assumption that D is continuous. In the case of a discontinuous D, the definitions are more complicated.

Relative weights

 u_t^i = the relative share of the portfolio value, which is invested in asset No i.

$$u_t^i = \frac{h_t^i S_t^i}{V_t} \qquad \text{(as before)}$$

$$u_t^i = \frac{h_t^i S_t^i}{V_t} \qquad \text{(as before)}$$

$$dV_t = \sum_{i=1}^N h_t^i dG_t^i \qquad \text{(previous page)}$$

Substitute!

$$dV_t = V_t \sum_{i=1}^{N} u_t^i \frac{dG_t^i}{S_t^i}$$

Continuous Dividend Yield

Definition: The stock S pays a **continuous dividend** yield of q, if D has the form (with $q \ge 0$)

 $dD_t = qS_t dt \; , \; \text{here the dividend}$ growth qS_t is proportional to $S_t, \; \text{with rate } q$.

Problem:

How does the dividend affect the price of a European Call? (compared to a non-dividend stock).

Answer:

The price is lower. (why?) you can guess. ---

Tomas Björk, 2017 213

Black-Scholes with Cont. Dividend Yield

Gain process:

$$dG_t = (\alpha + q)S_t dt + \sigma S_t dW_t$$

Consider a fixed claim

$$X = \Phi(S_T)$$

and assume that

$$\Pi_t\left[X
ight] = F(t,S_t),$$
 justified by some Markov groperty as before.

Standard Procedure, familiar

Assume that the derivative price is of the form

$$\Pi_t[X] = F(t, S_t).$$

• Form a portfolio based on underlying S and derivative F, with portfolio dynamics with F projectly:

$$dV_t = V_t \left\{ u_t^S \cdot \frac{dG_t}{S_t} + u_t^F \cdot \frac{dF}{F} \right\} \quad \text{(asymptotic points)}$$

• Choose u^S and u^F such that the dW-term is wiped out. This gives us eventually, often computations,

$$dV_t = V_t \cdot k_t dt$$

Absence of arbitrage implies

$$k_t = r$$

 \bullet This relation will say something about F, on before.

Value dynamics (repeat);

$$dV = V \cdot \left\{ u^S \frac{dG}{S} + u^F \frac{dF}{F} \right\},\,$$

$$dG = S(\alpha + q)dt + \sigma SdW$$
. (Previous page)

From Itô we obtain

$$dF = \alpha_F F dt + \sigma_F F dW,$$
 where
$$\alpha_F = \frac{1}{F} \left\{ \frac{\partial F}{\partial t} + \alpha S \frac{\partial F}{\partial s} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 F}{\partial s^2} \right\},$$

$$\sigma_F = \frac{1}{F} \cdot \sigma S \frac{\partial F}{\partial s}.$$

Collecting terms gives us

$$dV = V \cdot \{u^S(\alpha + q) + u^F \alpha_F\} dt + V \cdot \{u^S \sigma + u^F \sigma_F\} dW,$$

Define \boldsymbol{u}^S and \boldsymbol{u}^F by the system

$$u^S \sigma + u^F \sigma_F = 0$$
, to ripe out the $u^S + u^F = 1$.

Solution (if
$$\nabla_{\overline{x}} \neq \nabla$$
)

$$u^{S} = \frac{\sigma_{F}}{\sigma_{F} - \sigma},$$

$$u^{F} = \frac{-\sigma}{\sigma_{F} - \sigma},$$

Value dynamics (dW term wiped out in previous equation):

$$dV = V \cdot \{u^S(\alpha + q) + u^F \alpha_F\} dt.$$

Absence of arbitrage implies [wand wgument]

$$u^S(\alpha + q) + u^F \alpha_F = r,$$

We get, using of and of of p.216 in us and uf,

$$\frac{\partial F}{\partial t} + (r - q)S\frac{\partial F}{\partial s} + \frac{1}{2}\sigma^2S^2\frac{\partial^2 F}{\partial s^2} - rF = 0.$$
 (verify!)

Pricing PDE

Proposition: The pricing function F is given as the solution to the PDE

$$\begin{cases} \frac{\partial F}{\partial t} + (r - q)s\frac{\partial F}{\partial s} + \frac{1}{2}\sigma^2 s^2\frac{\partial^2 F}{\partial s^2} - rF & = 0, \\ & \uparrow & F(T,s) & = \Phi(s). \end{cases}$$

We can now apply Feynman-Kac to the PDE in order to obtain a risk neutral valuation formula.

If q=0 we are back ins the old situation.

Tomas Björk, 2017 219

-> End of lecture fax

-> Start of lecture 766

Risk Neutral Valuation

The pricing function has the representation still discount-

$$F(t,s) = e^{-r(T-t)} E_{t,s}^{Q} \left[\Phi(S_T) \right],$$

where the Q-dynamics of S are given by

$$dS_t = (r - q)S_t dt + \sigma S_t dW_t^Q.$$

Question: Which object is a martingale under the meau $\operatorname{tre} Q$?

Is it St as before?

By

Answer should be no, as there
is "q" in the equation for St.

Martingale Property

Proposition: Under the martingale measure Q the normalized gain process

$$G_t^Z = e^{-rt}S_t + \int_0^t e^{-ru}dD_u$$
 ingale. La previous care

is a Q-martingale.

Proof: Exercise: Show $dG_t^2 = e^{-rt} \sigma S_t dW_t^Q$; no dt term

Note: The result above holds in great generality, emp. 228-

Interpretation:

In a risk neutral world, today's stock price should be the expected value of all future discounted earnings which arise from holding the stock, these include dividends,

$$S_0 = E^Q \left[\int_0^t e^{-ru} dD_u + e^{-rt} S_t \right], \ \ \, \text{the "off"}$$
 from Proposition upon noticing $G_o^2 = S_o$ Price Tomas Björk, 2017

Pricing formula

Find

Pricing formula for claims of the type

$$\mathcal{Z} = \Phi(S_T)$$
.

We are standing at time t, with dividend yield q. Today's stock price is s.

Suppose that you have the pricing function

$$F^{0}(t,s) = T_{t}(Z), \text{ when } S_{t}=s$$
.

for a non dividend stock.

 Denote the pricing function for the dividend paying stock by

$$F^q(t,s)$$

Proposition: With notation as above we have

$$F^{q}(t,s) = F^{0}\left(t, se^{-q(T-t)}\right)$$

This is Exercise 16.5.

Moral

Use your old formulas, but replace today's stock price s with $se^{-q(T-t)}$.

He Black - Scholls case

The Black - Scholls case

Se 2 \(\lambda \sigma \).

The foliation of the foliatio

European Call on Dividend-Paying-Stock

$$F^{q}(t,s) = se^{-q(T-t)}N[d_{1}] - e^{-r(T-t)}KN[d_{2}].$$

$$d_1 = \frac{1}{\sigma\sqrt{T-t}} \left\{ \ln\left(\frac{s}{K}\right) + \left(r - q + \frac{1}{2}\sigma^2\right) (T-t) \right\}$$

$$d_2 = d_1 - \sigma\sqrt{T-t}.$$

Compare to p.71, and observe the role of 9.

Tomas Björk, 2017

Martingale Analysis

Basic task: We have a general model for stock price S and cumulative dividends D, under P. How do we find a martingale measure Q, and exactly which objects will be martingales under Q?

needed to define a martingale measure

Main Idea: We attack this situation by reducing it to the well known case of a market without dividends. Then we apply standard techniques.

The Reduction Technique

- Consider the self financing portfolio where you keep 1 unit of the stock and invest all dividends in the bank. Denote the portfolio value by V.
- This portfolio can be viewed as a traded asset without dividends. (as they disappear into the bounk account)
- Now apply the First Fundamental Theorem to the market (B, V) instead of the original market (B, S).
- Thus there exists a martingale measure Q such that $\frac{\Pi_t}{B_t}$ is a Q martingale for all traded assets (underlying and derivatives) without dividends.
- In particular the process

$$\frac{V_t}{B_t}$$

is a Q martingale. Next we study V.

The V Process

Let h_t denote the number of units in the bank account, where $h_0=0$. V is then characterized by

$$V_t = 1 \cdot S_t + h_t B_t$$
 (1)

$$dV_t = dS_t + dD_t + h_t dB_t \tag{2}$$

From (1) we obtain

$$dV_t = dS_t + h_t dB_t + B_t dh_t$$

(ordinary produkt rule) if dhy makes sense)

Comparing this with (2) gives us

$$B_t dh_t = dD_t$$
 and $dh_t = \frac{1}{B_t} dD_t$.

Integrating this gives us

$$h_t = \int_0^t \frac{1}{B_s} dD_s$$

We thus have

$$V_t = S_t + B_t \int_0^t \frac{1}{B_s} dD_s \tag{3}$$

and the first fundamental theorem gives us the following result.

Proposition: For a market with dividends, the martingale measure Q is characterized by the fact that the **normalized gain process** $G_{+}^{2} = V_{+}$ such sfies

$$G_t^Z = \frac{S_t}{B_t} + \int_0^t \frac{1}{B_s} dD_s$$

is a Q martingale. (as on p. 22), but from a different argument)

Quiz: Could you have guessed the formula (3) for V?

Tomas Björk, 2017

Continuous Dividend Yield

Model under P

$$dS_t = \alpha S_t dt + \sigma S_t dW_t,$$

$$dD_t = qS_t dt$$

We recall
$$(p-22\delta, Proposition)$$

$$G_t^Z = \frac{S_t}{B_t} + \int_0^t \frac{1}{B_s} dD_s = 2 + \int_0^t q 2 ds ds$$

Easy calculation gives us (under P)

$$dG_t^Z = Z_t (\alpha - r + q) dt + Z_t \sigma dW_t$$

where Z = S/B.

Girsanov transformation dQ = LdP, where

$$dL_t = L_t \varphi_t dW_t$$
 (for time φ_t)

We have

$$dW_t = \varphi_t dt + dW_t^Q \qquad \text{(see p. 166)}$$

Insert this into dG^Z

The Q dynamics for G^Z are

$$dG_t^Z = Z_t (\alpha - r + q + \sigma \varphi_t) dt + Z_t \sigma dW_t^Q$$

$$\alpha - r + q + \sigma \varphi_t = 0$$
 $\alpha + \nabla \varphi_t = \nabla - \varphi_t$

 $\alpha-r+q+\sigma\varphi_t=0 \qquad \alpha+\nabla\varphi_t= -\varphi_t$ Q-dynamics of $S: dS=\alpha S_t dt + \sigma S_t (dw^Q+\varphi_t dt)$ gives $dS_t=S_t (\alpha+\sigma\varphi)\,dt+S_t\sigma dW_t^Q$ sing the martingale conditions of S as

 $dS_t = S_t \left(r-q\right) dt + S_t \sigma dW_t^Q \text{, already Seleve}$ (note again the ole of the dividend rate q.)

Risk Neutral Valuation

Theorem: For a T-claim X, the price process $\Pi_t[X]$ is given by

$$\Pi_t [X] = e^{-r(T-t)} E^Q [X | \mathcal{F}_t],$$

where the Q-dynamics of S are given by

$$dS_t = (r-q)S_t dt + \sigma S_t dW_t^Q.$$
 note that q appears (only) in the Q-dynamics of S^1 .

-> end of lecture 764

-> Start of lecture 8a <-

2. Forward and Futures Contracts

Forward Contracts

A forward contract on the T-claim X, contracted at t, is defined by the following payment scheme.

- The holder of the forward contract receives, at time T, the stochastic amount X from the underwriter.
- The holder of the contract pays, at time T, the forward price f(t;T,X) to the underwriter.
- The forward price f(t;T,X) is determined at time t. / will be \mathcal{F}_{t} weasurable
- The forward price f(t; T, X) is determined in such a way that the price of the forward contract equals zero, at the time t when the contract is made.

(compensating cash flows, suap of products that net to tero)

General Risk Neutral Formula

Suppose we have a bank account B with dynamics

$$dB_t = r_t B_t dt, \quad B_0 = 1$$

with a (possibly stochastic) short rate r_t . Then

$$B_t = e^{\int_0^t r_s ds}$$
 adapted process

and we have the following risk neutral valuation for a T-claim X $\mathcal{B}_{L} \neq \mathcal{F}_{L}$

$$\Pi_{t}[X] = E^{Q} \begin{bmatrix} e^{-\int_{t}^{T} r_{s} ds} \cdot X \middle| \mathcal{F}_{t} \end{bmatrix}$$

$$= B_{t} E^{Q} \begin{bmatrix} e^{-\int_{t}^{T} r_{s} ds} \cdot X \middle| \mathcal{F}_{t} \end{bmatrix} \xrightarrow{\mathcal{F}_{t}}$$

$$= B_{t} E^{Q} \begin{bmatrix} e^{-\int_{t}^{T} r_{s} ds} \cdot X \middle| \mathcal{F}_{t} \end{bmatrix}$$

Setting X=1 we have the price, at time t, of a zero coupon bond maturing at T as

$$p(t,T) = E^Q \left[e^{-\int_t^T r_s ds} \middle| \mathcal{F}_t \right] = \mathbf{b}_t \, \mathbf{E}^Q \left[\mathbf{p}_t \right] \, \mathbf{f}_t$$
[See also book, Section 2g.1)
$$\mathbf{p}_t \mathbf{f}_t \mathbf{f}_t$$

Forward Price Formula

Theorem: The forward price of the claim X is given by

$$f(t,T) = \frac{1}{p(t,T)} E^{Q} \left[e^{-\int_{t}^{T} r_{s} ds} \cdot X \middle| \mathcal{F}_{t} \right]$$

where p(t,T) denotes the price at time t of a zero coupon bond maturing at time T.

In particular, if the short rate r is deterministic we have

$$f(t,T) = E^{Q} [X | \mathcal{F}_t]$$

note the normalization factor, not By!

Proof

The net cash flow at maturity is X - f(t, T). value of this at time t equals zero we obtain

$$\Pi_t [X] = \Pi_t [f(t, T)]$$

We have (from p · 234)

$$\Pi_{t}\left[X\right] = E^{Q} \left[e^{-\int_{t}^{T} r_{s} ds} \cdot X \middle| \mathcal{F}_{t} \right]$$

and, since f(t,T) is known at t, we obviously (why?) have (see definition of plb, T) on T, 234) $\left(\Pi_{+}[\mathbf{x}] = \right) \Pi_{t} \left[f(t,T) \right] = p(t,T) f(t,T).$

This proves the main result. If r is deterministic then $p(t,T) = e^{-r(T-t)}$ which gives us the second formula.

$$T_{t}[fH,T]] = fH,T) = e^{\left(e \times p \left(-\frac{T}{s} \cos \right)\right) + \frac{T}{s}}$$

$$f_{t}-meanwable}$$

Futures Contracts

A futures contract on the T-claim X, is a financial asset with the following properties.

- (i) At every point of time t with $0 \le t \le T$, there exists in the market a quoted object F(t;T,X), known as the **futures price** for X at t, for delivery at T.
- (ii) At the time T of delivery, the holder of the contract pays F(T;T,X) and receives the claim X, both \mathcal{F}_{T}
 So F(T;T,X) = X weasurable
- (iii) During an arbitrary time interval (s,t] the holder of the contract receives the amount F(t;T,X)-F(s;T,X). The Cashflow F(t;T,X) labelike a dividend
- (iv) The spot price, at any time t prior to delivery, for buying or selling the futures contract, is by definition equal to zero.

this is not the futures price

Futures Price Formula

(Section 29.2)

From the definition it is clear that a futures contract is a **price-dividend pair** (S, D) with

$$S\equiv 0, \quad dD_t=dF(t,T)$$
 (not of the estate) $P_t=F(t,T)$

From general theory, the normalized gains process

$$G_t^Z = \frac{S_t}{B_t} + \int_0^t \frac{1}{B_s} dD_s$$

is a Q-martingale.

"general tenery

by of the type
$$\frac{1}{B_t}dF(t,T)$$

is a
$$Q$$
-martingale. Since $S\equiv 0$ and $dD_t=dF(t,T)$ this implies that
$$\frac{1}{B_t}dF(t,T)$$
 usually of the type \mathcal{L}_t $\frac{1}{B_t}dF(t,T)$ is a martingale increment, which implies (why?) the \mathcal{L}_t \mathcal{L}_t

This proves:

Theorem: The futures price process is given by

$$F(t,T)=E^{Q}\left[X|\mathcal{F}_{t}
ight].$$
 (no discounting!)

Corollary. If the short rate is deterministic, then the futures and forward prices coincide.

3. Futures Options

Futures Options

We denote the futures price process, at time t with delivery time at T by

$$F(t,T)$$
.

When T is fixed we sometimes suppress it and write F_t , i.e. $F_t = F(t,T)$ with a partial serious same which F_t are the same which F_t is fixed we sometimes suppress it and write F_t i.e. $F_t = F(t,T)$

Definition:

A European futures call option, with strike price K and exercise date T, on a futures contract with delivery date T_1 will, if exercised at T, pay to the holder:

- The amount $F(T, T_1) K$ in cash. $X = (F(T, T_1) - K)^T$
- A long postition in the underlying futures contract.

NB! The long position above can immediately be closed at no cost, so focus on F(T,T1)-K)+ the spot price of a future is zero Tomas Björk, 2017 241

Institutional fact:

The exercise date T of the futures option is typically very close to the date of delivery of the underlying T_1 futures contract.

Why do Futures Options exist?

- On many markets (such as commodity markets) the futures market is much more liquid than the underlying market.
- Futures options are typically settled in **cash**. This relieves you from handling the underlying (tons of copper, hundreds of pigs, etc.). tons of potatoes
- The market place for futures and futures options is often the same. This facilitates hedging etc.

Pricing Futures Options – Black-76

We consider a futures contract with delivery date T_1 (fixed) and use the notation $F_t = F(t, T_1)$. We assume the following dynamics for F.

$$dF_t = \mu F_t dt + \sigma F_t dW_t$$

Now suppose we want to price a derivative with exercise date T with the T_1 -futures price F as underlying, i.e. a claim of the form

$$\Phi(F_T)$$

This turns out to be quite easy.

From risk neutral valuation we know that the price process $\Pi_t[\Phi]$ is of the form (by analogy,ON different with Fig. F.

replace St with Ft);

$$\Pi_t \left[\Phi \right] = f(t, F_t)$$

where f is given by

$$f(t,F) = e^{-r(T-t)} E_{t,F}^{Q} [\Phi(F_T)]$$

so it only remains to find the Q-dynamics for F.

We now recall from p.238

Proposition: The futures price process F_t is a Qmartingale.

Thus the Q-dynamics of F are given by

$$dF_t = \sigma F_t dW_t^Q$$
: No de term, and

Note that the diffusion wefficient is the same for Q~P, see previous page.

Tomas Björk, 2017

We thus have

$$f(t,F) = e^{-r(T-t)} E_{t,F}^{Q} [\Phi(F_T)]$$

with Q-dynamics

$$dF_t = \sigma F_t dW_t^Q$$

from p. 230

Now recall, the formula for a stock with continuous dividend yield (q).

with
$$Q$$
-dynamics
$$dS_t = (r-q)S_t + \sigma S_t dW_t^Q$$

Note: If we set q = r the formulas are **identical**!

Pricing Formulas

Let $f^0(t,s)$ be the pricing function for the contract $\Phi(S_T)$ for the case when S is a stock without dividends. Let f(t,F) be the pricing formula for the claim $\Phi(F_T)$.

Proposition: With notation as above we have

(book Pap 7.13)
$$f(t,F) = f^0(t,Fe^{-r(T-t)})$$

Moral: Reset today's futures price F to $Fe^{-r(T-t)}$ and use your formulas for stock options.

Compare to p. 222 for dividend, Similar story, replue q with r.

Black-76 Formula

The price of a futures option with exercise date T and exercise price K is given by

$$c = e^{-r(T-t)} \{FN [d_1] - KN [d_2]\}.$$

$$d_1 = \frac{1}{\sigma\sqrt{T-t}} \left\{ \ln\left(\frac{F}{K}\right) + \frac{1}{2}\sigma^2(T-t) \right\},\,$$

$$d_2 = d_1 - \sigma \sqrt{T - t}.$$

(Use the formula on p.224 with $q=r_1$ and s=F.

> End of lecture da e

>> Start of lecture 86 <

Continuous Time Finance

Currency Derivatives

Ch 17

Tomas Björk

(Foreign exchange markets)
(FX)

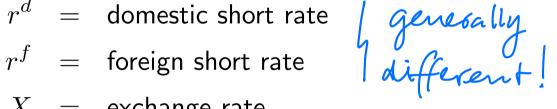
Pure Currency Contracts

Consider two markets, domestic (England) and foreign (USA).

$$r^d$$
 = domestic short rate

$$r^f$$
 = foreign short rate

$$X =$$
exchange rate



NB! The exchange rate X is quoted as

units of the domestic currency unit of the foreign currency

If
$$1 \text{ EUR} = 1,0g \text{ USD}$$
, then $X = \frac{1}{1,0g}$

Simple Model (Garman-Kohlhagen)

for the exchange rate

The P-dynamics are given as:

$$dX_t = X_t \alpha dt + X_t \sigma dW_t,$$

$$dB_t^d = r^d B_t^d dt,$$

$$dB_t^f = r^f B_t^f dt,$$

$$Main Problem:$$
Find arbitrage free price for currency derivative,

Find arbitrage free price for currency derivative, Z, of the form

$$Z = \Phi(X_T)$$

Typical example: European Call on X.

$$Z = \max\left[X_T - K, 0\right]$$

Naive idea

For the European Call, use the standard Black-Scholes formula, with S replaced by X and r replaced by r^d .

Is this OK?

"Suspicions question"

NO!

WHY?

La 28 set brice both but a court from the court of the court from the court of the court from the court of the court from the Main Idea

- When you buy stock you just keep the asset until you sell it. (we interest on assets)
- When you buy dollars, these are put into a bank account, giving the interest r^f . a many similarités

Moral:

Buying a currency is like buying a dividend-paying stock with dividend yield $q = r^f$.

But ex change rate keeps on fluctuating, this does NOT affect what you have on your bank account in the foreign currency.

Technique

- Transform all objects into domestically traded asset prices.
- Use standard techniques on the transformed model.

Transformed Market

1. Investing foreign currency in the foreign bank gives value dynamics in foreign currency according to

$$dB_t^f = r^f B_t^f dt.$$

- 2. B_f units of the foreign currency is worth $X \cdot B_f$ in the domestic currency.
- 3. Trading in the foreign currency is equivalent to trading in a domestic market with the domestic price process

$$\tilde{B}_t^f = B_t^f \cdot X_t$$
 — this is the transformation

4. Study the domestic market consisting of

$$\tilde{B}^f$$
, B^d

Market dynamics

Summary:
$$dX_t = X_t \alpha dt + X_t \sigma dW$$

$$\tilde{B}_t^f = B_t^f \cdot X_t \text{, the domestic prices}$$

Using Itô we have domestic market dynamics

$$d\tilde{B}_t^f = \tilde{B}_t^f \left(\alpha + r^f\right) dt + \tilde{B}_t^f \sigma dW_t$$

$$dB_t^d = r^d B_t^d dt$$

Standard results gives us $ec{Q}$ -dynamics for domestically traded asset prices: (with down do m 3,)

derives us
$$O$$
-dynamics for $X_t = \tilde{B}_t^f/B_t^f$.

Itô gives us Q-dynamics for $X_t = \tilde{B}_t^f/B_t^f$:

Risk neutral Valuation

If a currency derivative

Theorem: The arbitrage free price $\Pi_t [\Phi]$ is given by $\Pi_t [\Phi] = F(t, X_t)$ where

$$F(t,x) = e^{-r^d(T-t)} E_{t,x}^Q \left[\Phi(X_T) \right]$$

The Q-dynamics of X are given by, see page 257,

$$dX_t = X_t(r^d - r^f)dt + X_t\sigma dW_t^Q$$

Jes chation to PDE

Pricing PDE

Theorem: The pricing function F solves the boundary value problem

value problem
$$\int_{fr}^{fr} \int_{fr}^{ru} \int_{fr}^{eq} \int_{fr}^{ru} \int_{fr}^{eq} \int_{fr}^{ru} \int_{fr}^{eq} \int_$$

$$\frac{\partial F}{\partial t} + x(r^d - r^f)\frac{\partial F}{\partial x} + \frac{1}{2}x^2\sigma^2\frac{\partial^2 F}{\partial x^2} - r^d F = 0,$$

$$F(T, x) = \Phi(x)$$

(analogy with usual BS framework, also similarity with results for dividends)

Currency vs Equity Derivatives

Proposition: Introduce the notation:

- $F^0(t,x)=$ the pricing function for the claim $\mathcal{Z}=\Phi(X_T)$, where we interpret X as the price of an ordinary stock without dividends.
- F(t,x) = the pricing function of the same claim when X is interpreted as an exchange rate.

Then the following holds

$$F(t,x) = F_0\left(t, xe^{-r^f(T-t)}\right).$$

like dividend case on p.222 with Fr (t,x) and Fr (t,x) and Fr (t,x) and Fr (t,x) and q replaced with (t

Currency Option Formula

The price of a European currency call is given by

$$F(t,x) = xe^{-r^{f}(T-t)}N[d_{1}] - e^{-r^{d}(T-t)}KN[d_{2}],$$

where

$$d_1 = \frac{1}{\sigma\sqrt{T-t}} \left\{ \ln\left(\frac{x}{K}\right) + \left(r^d - r^f + \frac{1}{2}\sigma_X^2\right) (T-t) \right\}$$

$$d_2 = d_1(t, x) - \sigma \sqrt{T - t}$$

Upon senaming the coultants, shis is the same formula as on p.224 far dividends.

Tomas Björk, 2017 261

-> End of lecture 8b <

-> Start of lecture ga <

Martingale Analysis

 Q^d = domestic martingale measure

 Q^f = foreign martingale measure

$$L_t = \frac{dQ^f}{dQ^d}, \quad L_t^d = \frac{dQ^d}{dP}, \quad L_t^f = \frac{dQ^f}{dP}$$

P-dynamics of X

$$dX_t = X_t \alpha_t dt + X_t \sigma_t dW_t$$

where α and σ are arbitrary adapted processes and W is $P\text{-}\mathsf{Wiener}.$

Problem: How are Q^d and Q^f related?

through L_t of course, but how exactly? via L^d, L^f?

Tomas Björk, 2017

Main Idea

Fix an arbitrary foreign T-claim Z.

Compute foreign price and change to domestic currency. The price at t=0 will be

$$\Pi_0\left[Z\right] = X_0 E^{Q^f} \left[e^{-\int_0^T r_s^f ds} Z\right] \quad \text{for an pice}$$

This can be written as

is can be written as
$$\Pi_0\left[Z\right] = X_0 E^{Q^d} \left[L_T e^{-\int_0^T r_s^f ds} Z\right]$$

$$\Pi_0\left[Z\right] = E^{Q^d} \left[e^{-\int_0^T r_s^d ds} X_T \cdot Z \right]$$

 These expressions must be equal for all choices of $Z \in \mathcal{F}_T$

We thus obtain

$$E^{Q^d} \left[e^{-\int_0^T r_s^d ds} X_T \cdot Z \right] = X_0 E^{Q^d} \left[L_T e^{-\int_0^T r_s^f ds} Z \right]$$

for all Υ -claims Z. This implies the following result (replace Twitht)

Theorem: The exchange rate X is given by

e exchange rate
$$X$$
 is given by
$$X_t = X_0 e^{\int_0^t (r_s^d - r_s^f) ds} L_t = X_0$$

alternatively by

$$X_t = X_0 \frac{D_t^f}{D_t^d}$$

 D_t^d is the domestic stochastic and D_t^d is the domestic stochastic stochastic and D_t^d is the domestic stochastic stochastic stochastic stochastic stochastic stoch where D_t^d is the domestic stochastic discount factor

Proof: The last part follows from

$$L = \frac{dQ^f}{dQ^d} = \frac{dQ^f}{dP} \bigg/ \frac{dQ^d}{dP} = \frac{L^f}{L^d}$$
 and $B_t^f = \text{Dry}\left(\binom{t}{p} \binom{t}{s} ds\right)$ etc.

Compare to general theory on p-155 we

Q^d -Dynamics of X

In particular, since L is a Q^d -martingale the Q^d dynamics of L are of the form

$$(\land) dL_t = L_t \varphi_t dW_t^d$$

where W^d is Q^d -Wiener. From (Thm on ϕ .264)

$$(b) X_t = X_0 e^{\int_0^t (r_s^d - r_s^f) ds} L_t$$

the Q^d -dynamics of X follows (A), (b) and (b) as

$$dX_t = (r_t^d - r_t^f) X_t dt + X_t \varphi_t dW_t^d \quad \text{(bit of work)}$$
 Compare to p.257 (we W = W) and endude that

the Girsanov kernel φ equals the exchange rate volatility and we have the general Q^d dynamics.

Theorem: The Q^d dynamics of X are of the form

$$dX_t = (r_t^d - r_t^f)X_tdt + X_t\sigma_t dW_t^d,$$

known from p.257

Tomas Björk, 2017

Market Prices of Risk

Recall
$$D_t^d = e^{-\int_0^t r_s^d ds} L_t^d$$
 We also have a representation like
$$dL_t^d = L_t^d \varphi_t^d dW_t \leftarrow \text{P. Wiener process}$$

where $-\varphi_t^d = \lambda^d$ is the domestic market price of risk tc. From $X_t = X_0 \frac{D_t^f}{D_t^d}$ (returns later, p.305 and p.305) and similar for φ^f etc. From

$$X_t = X_0 \frac{D_t^f}{D_t^d}$$

we now easily obtain (exercise in Ito-calculus)

$$dX_t = X_t \alpha_t dt + X_t \left(\lambda_t^d - \lambda_t^f\right) dW_t,$$

where we do not care about the exact shape of α . We we don't specify it thus have

Theorem: The exchange rate volatility is given by

$$\sigma_t = \lambda_t^d - \lambda_t^f,$$
 a Clatin between volatility and market prices of risk.

Siegel's Paradox

Assume that the domestic and the foreign markets are hoth risk neutral and assume constant short rates. We now have the following surprising (?) argument.

A: Let us consider a T claim of 1 dollar. The arbitrage free dollar value at t=0 is of course

$$e^{-r^fT}$$

so the Euro value at at t=0 is given by

$$X_0e^{-r^fT}$$
.

The 1-dollar claim is, however, identical to a T-claim of X_T euros. Given domestic risk neutrality, the Euro value at t=0 is then $\mathbb{R}^{d} = \mathbb{P} \quad \text{by assumption}.$

$$e^{-r^d T} E^P \left[X_T \right].$$

We thus have

$$X_0 e^{-r^f T} = e^{-r^d T} E^P [X_T]$$

Siegel's Paradox ct'd

B: We now consider a T-claim of one Euro and compute the dollar value of this claim. The Euro value at t=0 is of course

$$e^{-r^dT}$$

so the dollar value is

$$\frac{1}{X_0}e^{-r^dT}.$$

The 1-Euro claim is identical to a T-claim of X_T^{-1} Euros so, by foreign risk neutrality, we obtain the dollar price as

$$e^{-r^f T} E^P \left[\frac{1}{X_T} \right]$$

which gives us

$$\frac{1}{X_0}e^{-r^dT} = e^{-r^fT}E^P\left[\frac{1}{X_T}\right]$$

Siegel's Paradox ct'd

Recall our earlier results (pp 267 and 268)

$$X_0 e^{-r^f T} = e^{-r^d T} E^P [X_T]$$

$$\frac{1}{X_0} e^{-r^d T} = e^{-r^f T} E^P \left[\frac{1}{X_T} \right]$$
[multiply]

Combining these gives us

$$E^{P}\left[\frac{1}{X_{T}}\right] = \frac{1}{E^{P}\left[X_{T}\right]}$$

which, by Jensen's inequality, is impossible unless X_T is deterministic. This is sometimes referred to as (one formulation of) "Siegel's paradox."

It thus seems that Americans cannot be risk neutral at the same time as Europeans.

Formal analysis of Siegel's Paradox

Question: Can we assume that both the domestic and the foreign markets are risk neutral?

Answer: Generally no, because of Jensen's inequality

Proof: The assumption would be equivalent to assuming the $P=Q^d=Q^f$ i.e.

$$\lambda_t^d = \lambda_t^f = 0$$
 (must have $\lambda_t^d \equiv 1 \equiv (f_t)$

However, we know that $(See p \cdot 266)$

$$\sigma_t = \lambda_t^d - \lambda_t^f$$

so we would need to have $\sigma_t=0$ i.e. a non-stochastic exchange rate, which is the second stock of the se

Which is not realistic.

AX = X X dt 7 Oct

from p-266

The previous slide gave us the mathematical result, but the intuitive question remains why Americans cannot be risk neutral at the same time as Europeans.

The solution is roughly as follows.

- Risk neutrality (or risk aversion) is always **defined**in terms of a given numeraire.
- It is **not** an attitude towards **risk as such**. but also refers to a specific market
- You can therefore **not** be risk neutral w.r.t two different numeraires at the same time unless the ratio between them is deterministic.
- In particular we cannot have risk neutrality w.r.t.
 Dollars and Euros at the same time.

Convincing.

-> End of lecture gaz-

Tomas Björk, 2017

If you are risk under all in one markets, you cannot be so in the other one, due to random fluctuations of the exchange rate.

-> Start of lecture 96 <-

Continuous Time Finance

Change of Numeraire

Ch 26

Tomas Björk

Recap of General Theory

Consider a market with asset prices

$$S_t^0, S_t^1, \dots, S_t^N$$

FTAP 1;

Theorem: The market is arbitrage free

iff

there exists an EMM, i.e. a measure Q such that

• Q and P are equivalent, i.e.

$$Q \sim P$$

The normalized price processes

$$\frac{S_t^0}{S_t^0}, \frac{S_t^1}{S_t^0}, \dots, \frac{S_t^N}{S_t^0}$$

are Q-martingales.

Recap continued

Recall the normalized market

$$(Z_t^0, Z_t^1, \dots Z_t^N) = \left(\frac{S_t^0}{S_t^0}, \frac{S_t^1}{S_t^0}, \dots, \frac{S_t^N}{S_t^0}\right)$$

We obviously have

$$Z_t^0 \equiv 1$$

- ullet Thus Z^0 is a risk free asset in the normalized economy.
- ullet Z^0 is a bank account in the normalized economy.
- In the normalized economy the short rate is zero:

If
$$dZ_t^2 = \Gamma_t Z_t^2 dt$$
 by then $Z_t^0 = \exp\left(\int_0^1 \Gamma_s ds\right) = 1$, $\forall t \geq 0$
 $Z_t^0 = 1$ $\Rightarrow \Gamma_s = 0$, $\forall s \neq 0$.

Dependence on numeraire

- The EMM Q will obviously depend on the choice of numeraire, so we should really write Q^0 to emphasize that we are using S^0 as numeraire.
- So far we have only considered the case when the numeraire asset is the bank account, i.e. when $S_t^0 = B_t$. In this case, the martingale measure Q^B is referred to as "the risk neutral martingale measure".
- Henceforth the notation Q (without upper case index) will only be used for the risk neutral martingale measure, i.e. $Q = Q^B = Q^o$
- We will now consider the case of a general numeraire.

Tomas Björk, 2017 275

General change of numeraire.

- ullet Consider a financial market, including a bank account B.
- Assume that the market is using a fixed risk neutral measure Q as pricing measure. $\begin{pmatrix} S_{k} \end{pmatrix}_{B_{q}}$ and $\begin{pmatrix} S_{k} \end{pmatrix}_{B_{$

Altervanti

• Choose a fixed asset S as numeraire, and denote the corresponding martingale measure by Q^S .

St become martingales

Problems:

ullet Determine Q^S , i.e. determine

$$L_t = \frac{dQ^S}{dQ}, \quad \text{on } \mathcal{F}_t \quad \left(\begin{array}{c} \text{determine} \\ \text{dQ} \end{array} \right)$$

• Develop pricing formulas for contingent claims using Q^S instead of Q.

Constructing \mathbf{Q}^S

Fix a T-claim X. From general theory we know that

$$\Pi_0[X] = E^Q \left[\frac{X}{B_T} \right] \qquad \left(\frac{\Pi_1(X)}{B_t} \right) = \frac{B_t}{B_t} \text{ marringale}$$

Since Q^S is a martingale measure for the numeraire S, the normalized process

$$\frac{\Pi_t[X]}{S_t}$$
 note the different measures and numeraires

is a Q^S -martingale. We thus have with $L_T = \frac{dQ^S}{dQ} = \frac{dQ^S}{Q} = \frac{Q}{Q} = \frac{dQ^S}{Q} = \frac{dQ^S}{Q} = \frac{dQ^S}{Q} = \frac{dQ^S}{Q} = \frac{dQ^$

$$\frac{\Pi_0\left[X\right]}{S_0} = E^S \left[\frac{\Pi_T\left[X\right]}{S_T}\right] = E^S \left[\frac{X}{S_T}\right] = E^Q \left[L_T \frac{X}{S_T}\right]$$

From this we obtain (use So is ~ wishaut)

$$\Pi_0[X] = E^Q \left[L_T \frac{X \cdot S_0}{S_T} \right],$$

For all $X \in \mathcal{F}_T$ we thus have

$$E^{Q} \left[\frac{X}{B_{T}} \right] = E^{Q} \left[L_{T} \frac{X \cdot S_{0}}{S_{T}} \right]$$

Recall the following basic result from probability theory. (see again $p \cdot 264$)

Proposition: Consider a probability space (Ω, \mathcal{F}, P) and assume that

$$E\left[Y\cdot X\right]=E\left[Z\cdot X\right], \quad \text{for all } \mathbf{Z}\in\mathcal{F}. \quad \text{s.t.}$$
 expectations exist

Then we have

$$Y = Z$$
, $P - a.s$. (Prove this)

From this result we conclude that

$$\frac{1}{B_T} = L_T \frac{S_0}{S_T}$$
 Can do the same for t instead of T :

Main result

Proposition: The likelihood process for the change a to QS,

$$L_t = \frac{dQ^S}{dQ}, \quad \text{on } \mathcal{F}_t$$

is given by

$$L_t = \frac{S_t}{B_t} \cdot \frac{1}{S_0}$$

Ceneral theory says L is a Q-maringule

NB Also
$$L_{\pm} = \frac{S_{\pm}/S_{0}}{B_{\pm}/B_{0}}$$
 (as $B_{5}=1$)

Easy exercises

- 1. Convince yourself that L is a Q-martingale. Also follows from formula of L_L , and projecty of Q.
- 2. Assume that a process A_t has the property that A_t/B_t is a Q martingale. Show that this implies that A_t/S_t is a Q^S -martingale. Interpret the result.

Prove by Bayes rule las one possibility)

There is a general result in the Exercise class, Exercise 3 in the "additional exercises".

Pricing

Theorem: For every T-claim X we have the pricing formula

$$\Pi_t [X] = S_t E^S \left[\frac{X}{S_T} \middle| \mathcal{F}_t \right]$$

Proof: Follows directly from the Q^S -martingale property of $\Pi_t[X]/S_t$. \blacksquare (parallel to the usual property under R)

Note 1: We observe S_t directly on the market.

Note 2: The pricing formula above is particularly useful when X is of the form

$$X = S_T \cdot Y$$

In this case we obtain

$$\Pi_{t}\left[S_{t}Y\right] = \Pi_{t}\left[X\right] = S_{t}E^{S}\left[Y\right|\mathcal{F}_{t}\right]$$

variable here, instead of the ratio

Tomas Björk, 2017

Important example

Consider a claim of the form

$$X = \Phi\left[S_T^0, S_T^1\right]$$

We assume that Φ is **linearly homogeneous**, i.e.

$$\Phi(\lambda x, \lambda y) = \lambda \Phi(x, y), \text{ for all } \lambda > 0$$

Using Q^0 we obtain

$$\Pi_{t}\left[X\right] = S_{t}^{0}E^{0}\left[\frac{\Phi\left[S_{T}^{0}, S_{T}^{1}\right]}{S_{T}^{0}}\middle|\mathcal{F}_{t}\right]$$

$$\Pi_{t}\left[X\right] = S_{t}^{0}E^{0}\left[\Phi\left(1, \frac{S_{T}^{1}}{S_{T}^{0}}\right)\middle|\mathcal{F}_{t}\right]$$

$$\text{ is linearly homogeneous}$$

Important example cnt'd

Proposition: For a claim of the form

$$X = \Phi \left[S_T^0, S_T^1 \right],$$

where Φ is homogeneous, we have

$$\Pi_t [X] = S_t^0 E^0 [\varphi (Z_T) | \mathcal{F}_t]$$

where

$$\varphi\left(z\right)=\Phi\left[1,z\right],\quad Z_{t}=\frac{S_{t}^{1}}{S_{t}^{0}}$$
 what of on for normalized process, here with some faire

Exchange option

has working to so with exchange rates

Consider an exchange option, i.e. a claim X given by explain. He wave!

$$X = \max\left[S_T^1 - S_T^0, \ 0\right]$$

Since $\Phi(x,y) = \max[x-y,0]$ is homogeneous we obtain

$$\Pi_t[X] = S_t^0 E^0 \left[\max \left[Z_T - 1, 0 \right] \middle| \mathcal{F}_t \right]$$

- This is a European Call on Z with strike price K=
- Zero interest rate. (?) What IF $S_t = B_t$?
- Piece of cake!

• If S^0 and S^1 are both GBM, then so is Z and the price will be given by the Black-Scholes formula.

Thangerous statement: "porduct or ratio of two lognormals is by normal agains"

Tomas Björk, 2017

[why dangerous ?]

284

Related: Is the sum of two normals again.

Identifying the Girsanov Transformation

Assume the Q-dynamics of S are known as

$$dS_t = r_t S_t dt + S_t v_t dW_t^Q$$

$$\text{p. 279 fives} \quad L_t = \frac{S_t}{S_0 B_t} \quad \left(\begin{array}{c} \text{dof} \\ \text{dof} \end{array} \right)$$
 From this we immediately have
$$\left(\begin{array}{c} \text{if} \quad \text{dB}_t = \text{f} \quad \text{B}_t \text{d} \end{array} \right)$$

$$dL_t = L_t v_t dW_t^Q.$$

and we can summarize.

Theorem: The Girsanov kernel is given by the numeraire volatility v_t , i.e.

$$dL_t = L_t v_t dW_t^Q.$$

Recap on zero coupon bonds

Recall: A zero coupon T-bond is a contract which gives you the claim

$$X \equiv 1$$

at time T.

The price process $\Pi_t[1]$ is denoted by p(t,T), see also Allowing a stochastic short rate r_t we have

$$dB_t = r_t B_t dt$$
. Lisadapted,

This gives us

$$B_t = e^{\int_0^t r_s ds}, \in \mathcal{F}_t$$

and using standard risk neutral valuation we have

$$p(t,T) = E^{Q} \left[e^{-\int_{t}^{T} r_{s} ds} \middle| \mathcal{F}_{t} \right] = \mathbb{E}^{Q} \left[\mathbb{E}^{1} \right]$$

Note:

$$p(T,T) = 1$$

Special choice of numéraire leads to

The forward measure Q^T

- \bullet Consider a fixed T.
- ullet Choose the bond price process p(t,T) as numeraire.
- ullet The corresponding martingale measure is denoted by Q^T and referred to as "the T-forward measure".

For any T claim X we obtain

$$\Pi_t[X] = p(t, T)E^{Q^T} \left[\frac{\Pi_T[X]}{p(T, T)} \middle| \mathcal{F}_t \right]$$

We have

$$\Pi_T[X] = X, \quad p(T,T) = 1$$

Theorem: For any T-claim X we have any one variable of $\Pi_t[X] = p(t,T)E^{Q^T}[X|\mathcal{F}_t]$ but also note the different Tomas Björk, 2017 and $\Pi_0[X] = p(0,T)$ but $\mathbb{F}_q[X] = \mathbb{F}_q[X]$ expectations

A general option pricing formula, by use of two different numéraires, and Randa

European call on asset S with strike price K and maturity T.

$$X = \max\left[S_T - K, \ 0\right]$$

Write X as and use Note 2 on p.281

$$X = (S_T - K) \cdot I \{S_T \ge K\} = S_T I \{S_T \ge K\} - K I \{S_T \ge K\}$$

forward measure

Use Q^S on the first term and Q^T on the second.

$$\Pi_0[X] = S_0 \cdot Q^S[S_T \ge K] - K \cdot p(0, T) \cdot Q^T[S_T \ge K]$$

Exercise: find Amilar expression for Tf [X],
Tomas Björk, 2017

at time t instead 288

-> End of lecture gbz

3 Start of lecture 10ac

Continuous Time Finance

Incomplete Markets

Ch 15

Tomas Björk

Recall: In a complete market, every dain can be hedged (and thus has a unique price).

Metatheorem: N < R (not sufficiently many risky assets) in incomplete markets.

What else? Typical examples?

Tomas Björk, 2017

Derivatives on Non Financial Underlying

Recall: The Black-Scholes theory assumes that the market for the underlying asset has (among other things) the following properties.

- The underlying is a liquidly traded asset.
- Shortselling allowed.
- Portfolios can be carried forward in time.

There exists a large market for derivatives, where the underlying does not satisfy these assumptions.

Examples: (see wext page)

- Weather derivatives.
- Derivatives on electric energy.
- CAT-bonds.

Tomas Björk, 2017

Typical Contracts

Weather derivatives:

"Heating degree days". Payoff at maturity T is given by

$$\mathcal{Z} = \max\left\{X_T - 30, 0\right\}$$

where X_T is the (mean) temperature at some place.

Electricity option:

The right (but not the obligation) to buy, at time T, at a predetermined price K, a constant flow of energy over a predetermined time interval.

CAT bond:

A bond for which the payment of coupons and nominal value is contingent on some (well specified) natural disaster to take place.

Tomas Björk, 2017 291

Problems

Weather derivatives:

The temperature is not the price of a traded asset.

Electricity derivatives:

Electric energy cannot easily be stored.

CAT-bonds:

Natural disasters are not traded assets.

We will treat all these problems within a factor model.

for the maeseying

Tomas Björk, 2017 292

Typical Factor Model Setup

Given:

 \bullet An underlying factor process X, which is **not** the price process of a traded asset, with dynamics under the objective probability measure P as

$$dX_t = \mu(t, X_t) dt + \sigma(t, X_t) dW_t.$$

A risk free asset with dynamics

$$dB_t = rB_t dt,$$

Problem:

Find arbitrage free price $\Pi_t [\mathcal{Z}]$ of a derivative of the form

$$\mathcal{Z} = \Phi(X_T)$$

Note Similarity AND difference with earlier set up.

Tomas Björk, 2017

X is NOT the price of a braded asset

Concrete Examples

Assume that X_t is the temperature at time t at the village of Peniche (Portugal).

Heating degree days:

$$\Phi(X_T) = 100 \cdot \max\{X_T - 30, 0\}$$

Holiday Insurance:

$$\Phi(X_T) = \begin{cases} 1000, & \text{if } X_T < 20 \\ 0, & \text{if } X_T \ge 20 \end{cases}$$

Question

顶分

Is the price $\Pi_t[\Phi]$ uniquely determined by the P-dynamics of X, and the requirement of an arbitrage free derivatives market?

[again a quession that should make you suspicions]

NO!!

WHY?

find the difference(s)
between current and
trevious set ups

Tomas Björk, 2017

Stock Price Model \sim Factor Model

Black-Scholes:

$$dS_t = \mu S_t dt + \sigma S_t dW_t,$$

$$dB_t = rB_t dt.$$

Factor Model: (fixilar equain)

$$dX_t = \mu(t, X_t)dt + \sigma(t, X_t)dW_t,$$

$$dB_t = rB_t dt. \qquad \text{(r can be fine dent too!)}$$

What is the difference?

Answer

- X is not the price of a traded asset!
- We can not form a portfolio based on X, hudging this way is Impossible .

298

1. Rule of thumb:

$$N=0,$$
 (no risky asset) $R=1,$ (one source of randomness, W)

We have N < R. The exogenously given market, consisting only of B, is incomplete.

2. Replicating portfolios:

We can only invest money in the bank, and then sit down passively and wait.

We do **not** have **enough underlying assets** in order to price X-derivatives.

Tomas Björk, 2017 299

- There is **not** a unique price for a **particular** derivative. Hypical for incomplete warkets
- In order to avoid arbitrage, different derivatives have to satisfy internal consistency relations.
- If we take **one** "benchmark" derivative as given, then all other derivatives can be priced in terms of the market price of the benchmark.

We consider two given claims $\Phi(X_T)$ and $\Gamma(X_T)$. We assume they are traded with prices

$$\Pi_t \left[\Phi \right] = f(t, X_t)$$
 $\Pi_t \left[\Gamma \right] = g(t, X_t)$
Same Same Supply for the factor

$$\Pi_t \left[\Gamma \right] = g(t, X_t)$$

Program:

grabile process V self fivancing ullet Form portfolio based on Φ and Γ . Use Itô on f and g to get portfolio dynamics

Self-financing
$$dV = V\left\{u^f \frac{df}{f} + u^g \frac{dg}{g}\right\}$$
 relative weights

Usual steps:

• Choose portfolio weights such that the $dW-$ term

• Choose portfolio weights such that the dW- term vanishes. Then we have

$$dV = V \cdot kdt$$

("synthetic bank" with k as the short rate)

Absence of arbitrage implies

$$k = r$$

Read off the relation k = r!

arrying out the program: Recall III[]=f(t, Xt), assumptim

From Itô:

where

$$\begin{cases} df = f\mu_f dt + f\sigma_f dW, \\ \mu_f = \frac{f_t + \mu f_x + \frac{1}{2}\sigma^2 f_{xx}}{f}, \\ \sigma_f = \frac{\sigma f_x}{f}. \end{cases}$$
 see equation for

Portfolio dynamics

$$dV = V \left\{ u^f \frac{df}{f} + u^g \frac{dg}{g} \right\}.$$
 Use also T_t[T] = g (t, X_t):
Reshuffling terms gives us

Reshuffling terms gives us

$$dV = V \cdot \left\{ u^f \mu_f + u^g \mu_g \right\} dt + V \cdot \left\{ u^f \sigma_f + u^g \sigma_g \right\} dW.$$

Let the portfolio weights solve the system

$$\begin{cases} u^f + u^g &= 1, \\ u^f \sigma_f + u^g \sigma_g &= 0. \end{cases} \leftarrow \lim_{m \to \infty} dM$$

$$u^{f} = -\frac{\sigma_{g}}{\sigma_{f} - \sigma_{g}},$$

$$u^{g} = \frac{\sigma_{f}}{\sigma_{f} - \sigma_{g}},$$

Portfolio dynamics

$$dV = V \cdot \left\{ u^f \mu_f + u^g \mu_g \right\} dt. + \mathcal{O}, dW$$

$$dV = V \cdot \left\{ \frac{\mu_g \sigma_f - \mu_f \sigma_g}{\sigma_f - \sigma_g} \right\} dt.$$

i.e.

Absence of arbitrage requires

$$\frac{\mu_g \sigma_f - \mu_f \sigma_g}{\sigma_f - \sigma_g} = r$$

which can be written as

$$\frac{\mu_g - r}{\sigma_g} = \frac{\mu_f - r}{\sigma_f}.$$

Refreat from previous seide:

$$\frac{\mu_g - r}{\sigma_g} = \frac{\mu_f - r}{\sigma_f}.$$

Note!

The quotient does **not** depend upon the particular choice of contract. (Same for $f_{1}g_{1}$)

Consider this as an visternal Consistency relation (See p-300)

This relation should also hold when I is the price of a traded assot.

True? Think of this!

Result

Assume that the market for X-derivatives is free of Then there exists a universal process λ , arbitrage. such that

$$\frac{\mu_f(t) - r}{\sigma_f(t)} = \lambda(t, X_t),$$

holds for all t and for every choice of contract f.

NB: The same λ for all choices of f.

- - Sharpe Ratio

λ = Risk premium per unit of volatility = "Market Price of Risk" (cf. CAPM).

Slogan:

"On an arbitrage free market all X-derivatives have the same market price of risk."

$$\frac{\mu_f - r}{\sigma} = \lambda$$

> Start of lecture 1066

Pricing Equation

Note also that μ [drift of X under P] is present in this equation, not in the Black-Scholes PDE, Why?

P-dynamics:

$$dX = \mu(t, X)dt + \sigma(t, X)dW.$$

Can we solve the PDE?

No!!

Why??

Tomas Björk, 2017 307

Answer

Recall the PDE (in short hand wolation)

$$\begin{cases} f_t + \{\mu - \lambda\sigma\} f_x + \frac{1}{2}\sigma^2 f_{xx} - rf = 0 \\ f(T, x) = \Phi(x), \end{cases}$$

- In order to solve the PDE we need to know λ .
- λ is not given exogenously.
- λ is not determined endogenously.

looks hopeless, way out?

Question:

Who determines λ ?

Tomas Björk, 2017 309

Answer:

THE MARKET!

Tomas Björk, 2017 310

Interpreting λ

Recall that the f dynamics are

$$df = f\mu_f dt + f\sigma_f dW_t$$

and λ is defined as

$$\frac{\mu_f(t) - r}{\sigma_f(t)} = \lambda(t, X_t),$$

- ullet λ measures the aggregate risk aversion in the market.
- If λ is big then the market is highly risk averse.
- If λ is zero then the market is **risk ne** ral.
- If you make an assumption about λ , then you implicitly make an assumption about the aggregate risk aversion of the market. and VVV.: You may than about λ from market (agents) behaviour,

Tomas Björk, 2017 or perhaps in analysing a particularing a particular perhaps in analysing a particular perhaps in a particular

Moral

- Since the market is incomplete the requirement of an arbitrage free market will **not** lead to unique prices for *X*-derivatives.
- Prices on derivatives are determined by two main factors.
 - 1. Partly by the requirement of an arbitrage free derivative market. All pricing functions satisfies the same PDE but with different bandary
 - 2. **Partly** by supply and demand on the market. These are in turn determined by attitude towards risk, liquidity consideration and other factors. All these are aggregated into the particular λ used (implicitly) by the market.

depending on 7!

Tomas Björk, 2017 312

Risk Neutral Valuation

We recall the PDE

$$\begin{cases} f_t + \{\mu - \lambda \sigma\} f_x + \frac{1}{2} \sigma^2 f_{xx} - rf = 0 \\ f(T, x) = \Phi(x), \end{cases}$$

Using Feynman-Kac we obtain a risk neutral valuation formula.

As always: couples this PDE to an SDE for X.

Risk Neutral Valuation

$$f(t,x)=e^{-r(T-t)}E_{t,x}^Q\left[\Phi(X_T)\right]$$
 Q-dynamics: Note: Huse are not constants,
$$dX_t=\{\mu-\lambda\sigma\}\,dt+\sigma dW_t^Q$$

- Price = expected value of future payments
- The expectation should **not** be taken under the "objective" probabilities P, but under the adjusted" probabilities Q.

adjusted" probabilities Q.

Think of Girsanov. If
$$l_t$$
 (dB on Fz)

satisfies dl_t : l_t (dl_t on Fz)

satisfies dl_t : l_t (dl_t on Fz)

 dl_t : l_t :

(see also pp. 318, 3(g)

Interpretation of the risk adjusted probabilities, i.e. Q

As at the beginning of the course:

- The risk adjusted probabilities can be interpreted as probabilities in a (fictuous) risk neutral world.
- When we compute prices, we can calculate as if we live in a risk neutral world.
- This does **not** mean that we live in, or think that we live in, a risk neutral world.
- The formulas above hold regardless of the attitude towards risk of the investor, as long as he/she prefers more to less.

Tomas Björk, 2017 315

Market price of risk

Diversification argument about λ

• If the risk factor is **idiosyncratic** and **diversifiable**, then one can argue that the factor should not be priced by the market. Compare with APT Arkibase

priced by the market. Compare with APT, Arbitrage
Pricing Theory, e.g. CAPH

• Mathematically this means that $\lambda=0$, i.e. P=Q, i.e. the risk neutral distribution coincides with the objective distribution.

• We thus have the "actuarial pricing formula"

$$f(t,x)=e^{-r(T-t)}E_{t,x}^{P}\left[\Phi(X_{T})\right] \text{ (so, if PeQ)}$$

where we use the objective probability measure P.

Modeling Issues

Temperature:

mperature:
A standard model is given by Ornskin-Whlenbede

$$dX_t = \{m(t) - bX_t\} dt + \sigma dW_t,$$

where m is the mean temperature capturing seasonal variations. This often works reasonably well. Here Xt has a normal distribution of X, is normal (independent of W)

Electricity:

A (naive) model for the spot electricity price is

 $dS_t = S_t \{m(t) - a \ln S_t\} dt + \sigma S_t dW_t$ Use Itô to show: $\log S_t$ is an OU process This implies lognormal prices (why?). Electricty prices are however very far from lognormal, because of "spikes" in the prices. Complicated. in cality!

CAT bonds:

Here we have to use the theory of point processes and the theory of extremal statistics to model natural disasters. Complicated. yatural concept here, like Poisson process;

beyond scope 317 this course

Tomas Björk, 2017

Martingale Analysis

(like on p.314)

Model: Under P we have

$$dX_t = \mu(t, X_t) dt + \sigma(t, X_t) dW_t,$$

$$dB_t = rB_t dt,$$

We look for martingale measures. Since B is the only traded asset we need to find $Q \sim P$ such that

$$\frac{B_t}{B_t} = 1$$

is a Q martingale.

Result: In this model, every $Q \sim P$ is a martingale measure.

Girsanov

$$dL_t = L_t \varphi_t dW_t$$

P-dynamics

$$dX_{t} = \mu (t, X_{t}) dt + \sigma (t, X_{t}) dW_{t}, \qquad ()$$

$$dL_{t} = L_{t}\varphi_{t}dW_{t}$$

 $dQ = L_t dP$ on \mathcal{F}_t

Girsanov:

$$dW_t = \varphi_t dt + dW_t^Q \tag{b}$$

Martingale pricing: for appropriate T-dain Z

$$F(t,x) = e^{-r(T-t)} E^{Q} \left[Z | \mathcal{F}_t \right]$$

Q-dynamics of X: (Combine (G) and (G)):

$$dX_{t} = \{\mu(t, X_{t}) + \sigma(t, X_{t}) \varphi_{t}\} dt + \sigma(t, X_{t}) dW_{t}^{Q},$$

Result: We have $\lambda_t = -\varphi_t$, i.e,. the Girsanov kernel φ equals minus the market price of risk.

Tomas Björk, 2017

Several Risk Factors

We recall the dynamics of the f-derivative

$$df = f\mu_f dt + f\sigma_f dW_t$$

af-f [M+ FP) dt of-f [M+ FP) dt of-f [M+ FP) dt

and the Market Price of Risk

$$\frac{\mu_f - r}{\sigma_f} = \lambda,$$
 i.e. $\mu_f - r = \lambda \sigma_f.$

In a multifactor model of the type

$$dX_t = \mu\left(t, X_t\right) dt + \sum_{i=1}^n \sigma_i\left(t, X_t\right) dW_t^i,$$
 for multiple wiener processes (not treated)

it follows from Girsanov that for every risk factor W^i there will exist a market price of risk $\lambda_i = -\varphi_i$ such

that

$$\mu_f - r = \sum_{i=1}^n \lambda_i \sigma_i$$

New equation: $\mu_f - r = \sum_{i=1}^n \lambda_i \sigma_i$ Compare with CAPM. (H you know what that is)

Tomas Björk, 2017 320

End of lecture 1062

-> Start of lecture 11ac

Continuous Time Finance

Stochastic Control Theory

Ch 19

Tomas Björk

Financial applications in lecture 12 (optimal

investment and consumption)

Contents

1. Dynamic programming. (mathematical background)

2. Investment theory. (exnomic application, next lecture)

Tomas Björk, 2017 322

1. Dynamic Programming

- The basic idea.
- Deriving the HJB equation.
- The verification theorem.

• The linear quadratic regulator. (dassic example from Systems theory)

Problem Formulation

$$\max_{u} \ E\left[\int_{0}^{T} F(t,X_{t},u_{t})dt + \Phi(X_{T})\right]$$
 subject to
$$\max_{u} \ kov \text{ process for five } u \text{ } X_{t} = X_{t}$$

$$dX_{t} = \mu\left(t,X_{t},u_{t}\right)dt + \sigma\left(t,X_{t},u_{t}\right)dW_{t}$$

$$X_{0} = x_{0},$$

$$u_{t} \in U(t,X_{t}), \ \forall t. \text{ of for all } t \times \text{ }$$

We will only consider **feedback control laws**, i.e. controls of the form

$$u_t = \mathbf{u}(t, X_t)$$
 partly justified by previous justified by previous justified by previous y will still be Harber

Terminology:

$$X = \text{state variable}$$
 $U = \text{control constraint}$ $X \in \mathbb{R}^{N}$ $U \in \mathbb{R}^{N}$

Note: No state space constraints. $(e.g. \times_{t} > 0)$

Main idea

- Embedd the problem above in a family of problems indexed by starting point in time and space. $\searrow p 3\sqrt{3}$
- - The control problem is <u>reduced</u> to the problem of solving the deterministic HJB equation.

can be a very complicated equation, but it gives a way to "compute" the solution to the original problem, and in a way, it is an "easier" problem

Some notation (looks wessy/ but try to see 'through')

ullet For any fixed vector $u \in \mathbb{R}^k$, the functions μ^u , σ^u and C^u are defined by

$$\mu^{u}(t,x) = \mu(t,x,u),$$

$$\sigma^{u}(t,x) = \sigma(t,x,u),$$

$$C^{u}(t,x) = \sigma(t,x,u)\sigma(t,x,u)'.$$

$$(a) = \sigma(t,x,u) = \sigma(t,x,u) = \sigma(t,x,u)'.$$

For any control law
$$\mathbf{u}$$
, the functions $\mu^{\mathbf{u}}$, $\sigma^{\mathbf{u}}$, $C^{\mathbf{u}}(t,x)$ and $F^{\mathbf{u}}(t,x)$ are defined by
$$\begin{pmatrix} \mathbf{u} & \mathbf{v} & \mathbf{u} & \mathbf{u} \\ \mathbf{v} & \mathbf{v} & \mathbf{u} \end{pmatrix}$$
 thus \mathbf{u} and \mathbf{u} are defined by
$$\begin{pmatrix} \mathbf{u} & \mathbf{v} & \mathbf{u} \\ \mathbf{v} & \mathbf{v} & \mathbf{u} \end{pmatrix}$$
 for any control law \mathbf{u} , the functions $\mu^{\mathbf{u}}$, $\sigma^{\mathbf{u}}$, $C^{\mathbf{u}}(t,x)$ are defined by
$$\begin{pmatrix} \mathbf{u} & \mathbf{v} & \mathbf{u} \\ \mathbf{v} & \mathbf{v} \end{pmatrix}$$
 and \mathbf{u} , the functions $\mu^{\mathbf{u}}$, $\sigma^{\mathbf{u}}$, \mathbf{u} and \mathbf{u} \mathbf{u} and

Ito: dft, xt)=f, (t,xt)dt+f)+(t,xt)dt+fx(t,xt)of,x)dWt

More notation (to confuse you more)

• For any fixed vector $u \in \mathbb{R}^k$, the partial differential operator \mathcal{A}^u is defined by

$$\mathcal{A}^{u} = \sum_{i=1}^{n} \mu_{i}^{u}(t,x) \frac{\partial}{\partial x_{i}} + \frac{1}{2} \sum_{i,j=1}^{n} C_{ij}^{u}(t,x) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}.$$
Generator of \mathbf{X}^{u}

ullet For any control law old u, the partial differential operator $\mathcal{A}^{\mathbf{u}}$ is defined by

$$\mathcal{A}^{\mathbf{u}} = \sum_{i=1}^{n} \mu_{i}^{\mathbf{u}}(t, x) \frac{\partial}{\partial x_{i}} + \frac{1}{2} \sum_{i, j=1}^{n} C_{ij}^{\mathbf{u}}(t, x) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}.$$

• For any control law \mathbf{u} , the process $X^{\mathbf{u}}$ is the solution of the SDE

$$dX_t^{\mathbf{u}} = \underbrace{\mu\left(t, X_t^{\mathbf{u}}, \mathbf{u}_t\right)}_{\text{def}} dt + \sigma\left(t, X_t^{\mathbf{u}}, \mathbf{u}_t\right) dW_t,$$
where

$$\mathbf{u}_t = \mathbf{u}(t, X_t^{\mathbf{u}})$$

$$u_{t} = \mathbf{u}(t, X_{t}^{\mathbf{u}})$$
Size $dX_{t}^{\mathbf{u}} = \mu(t, X_{t}^{\mathbf{u}}, \mathbf{u}(t, X_{t}^{\mathbf{u}}))dt + \sigma(\cdot \cdot \cdot)dw_{t}$
Tomas Björk, 2017
$$= \mu(t, X_{t}^{\mathbf{u}}, \mathbf{u}(t, X_{t}^{\mathbf{u}}))dt + \sigma(t, X_{t}^{\mathbf{u}})dw_{t}^{327}$$

$$= \mu(t, X_{t}^{\mathbf{u}})dt + \sigma(t, X_{t}^{\mathbf{u}})dw_{t}^{327}$$

$$= \mu(t, X_{t}^{\mathbf{u}})dt + \sigma(t, X_{t}^{\mathbf{u}})dw_{t}^{327}$$

$$= \mu(t, X_{t}^{\mathbf{u}})dw_{t}^{327}$$

Embedding the problem 84 p.324

into a family of problems Ptx

For every fixed (t,x) the control problem $\mathcal{P}_{t,x}$ is defined as the problem to maximize from initial time t and with a value x: x = x

$$E_{t,x}\left[\int_{t}^{T}F(s,X_{s}^{\mathbf{u}},u_{s})ds+\Phi\left(X_{T}^{\mathbf{u}}\right)\right],$$

$$=\mathbb{E}\left[\int_{t}^{T}\mathsf{F}ds+\Phi\left(\mathsf{T}_{T}^{\mathbf{u}}\right)\right],$$
 given the dynamics

$$dX_s^{\mathbf{u}} = \mu(s, X_s^{\mathbf{u}}, \mathbf{u}_s) ds + \sigma(s, X_s^{\mathbf{u}}, \mathbf{u}_s) dW_s,$$

$$X_t^{\mathbf{v}} = x,$$

and the constraints

$$\mathbf{u}(s,y) \in U, \ \forall (s,y) \in [t,T] \times \mathbb{R}^n.$$

The original problem was \mathcal{P}_{0,x_0} , as special in stance of $\mathcal{P}_{t,\chi}$ with two special problem was \mathcal{P}_{0,x_0} , as special in stance $\mathcal{P}_{t,\chi}$ with $\mathcal{P}_{t,\chi}$ with $\mathcal{P}_{t,\chi}$ and $\mathcal{P}_{t,\chi}$ with $\mathcal{P}_{t,\chi}$ and $\mathcal{P}_{t,\chi}$ with $\mathcal{P}_{t,\chi}$ with $\mathcal{P}_{t,\chi}$ and $\mathcal{P}_{t,\chi}$ with $\mathcal{P}_{t,\chi}$ and $\mathcal{P}_{t,\chi}$ with $\mathcal{P}_{t,\chi}$ with $\mathcal{P}_{t,\chi}$ and $\mathcal{P}_{t,\chi}$ with $\mathcal{P}_{t,\chi}$ wis

The optimal value function

The value function

$$\mathcal{J}: R_+ \times R^n \times \mathcal{U} \to R$$

(recall 2, the finital value at time t) is defined by

$$\mathcal{J}(t, x, \mathbf{u}) = E\left[\int_{t}^{T} F(s, X_{s}^{\mathbf{u}}, \mathbf{u}_{s}) ds + \Phi(X_{T}^{\mathbf{u}})\right]$$

given the dynamics above. $(M \times_{\downarrow} = \times)$

Note: in fact X_3 also depends on X for all S > t;

• The optimal value function work X_4, X_5 , but

 $V: R_{+} \times R^{n} \to R$

is defined by (recall we want to maximize)

$$V(t,x) = \sup_{\mathbf{u} \in \mathcal{U}} \mathcal{J}(t,x,\mathbf{u}). \text{ Notes } \mathbf{V}(\mathbf{T},\mathbf{x}) = \mathbf{T}(\mathbf{x})$$

Oux crim:

We want to derive a PDE for V.

If sup is attained, then there is some $u = \hat{u} \in \hat{u}$ than $u = \hat{u}$

Tomas Björk, 2017

Assumptions

We assume:

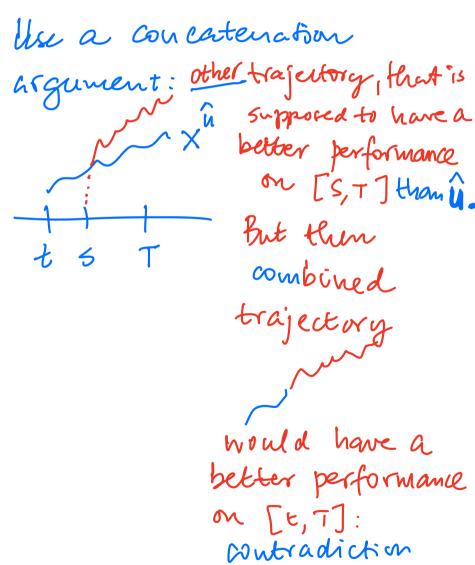
- There exists an optimal control law $\hat{\mathbf{u}}$. (-) $\hat{\mathcal{u}}$ $(+, \times)$
- The optimal value function V is regular in the sense that $V \in C^{1,2}$.
- A number of limiting procedures in the following arguments can be justified. We will make big steps and ignore many mathematical details that would require a finer analysis; beyond the scope and aims of this course.

Tomas Björk, 2017 330

Bellman Optimality Principle

Theorem: If a control law $\hat{\mathbf{u}}$ is optimal for the time interval [t,T] then it is also optimal for all smaller intervals [s, T] where $s \geq t$.

Proof: Exercise.



331

Basic strategy

To derive the PDE do as follows:

- Fix $(t, x) \in (0, T) \times \mathbb{R}^n$.
- ullet Choose a real number h (interpreted as a "small" time increment).
- ullet Choose an arbitrary control law ${f u}$ on the time interval [t, t+h].

Now define the control law \mathbf{u}^* by

$$\mathbf{u}^{\star}(s,y) = \begin{cases} \mathbf{u}(s,y), & (s,y) \in [t,t+h] \times \mathbb{R}^n \\ \hat{\mathbf{u}}(s,y), & (s,y) \in (t+h,T] \times \mathbb{R}^n. \end{cases}$$

In other words, if we use \mathbf{u}^{\star} then we use the arbitrary control ${\bf u}$ during the time interval [t,t+h], and then we switch to the optimal control law during the rest of the time period.

Note that ut is worse than û on [t, T]

Basic idea

The whole idea of DynP boils down to the following procedure. \sim

- ullet Given the point (t,x) above, we consider the following two strategies over the time interval [t,T]:
 - **I:** Use the optimal law $\hat{\mathbf{u}}$.

lif you can

- Compute the expected utilities obtained by the respective strategies.
- Using the obvious fact that $\hat{\mathbf{u}}$ is least as good as \mathbf{u}^* , and letting h tend to zero, we obtain our fundamental PDE. (in this step we will reason rather heuristically)

Tomas Björk, 2017 333

-> End of lecture 11a =

-> Start of lecture 116

Strategy values

T: Expected utility for $\hat{\mathbf{u}}$:

$$\mathcal{J}(t,x,\hat{\mathbf{u}}) = V(t,x) \quad \left(\begin{array}{ccc} \mathbf{p} \cdot \mathbf{329} & \text{sefinition} \\ \mathbf{01} & \mathbf{V} \end{array} \right)$$

II: Expected utility for u*: Split the time interval [1,7]:

• The expected utility for [t, t+h) is given by

$$E_{t,x}\left[\int_{t}^{t+h}F\left(s,X_{s}^{\mathbf{u}},\mathbf{u}_{s}\right)ds\right].$$

• Conditional expected utility over [t+h,T], given (t,x):

$$E_{t,x}\left[V(t+h,X_{t+h}^{\mathbf{u}})\right].$$
 Starting point at time the reached from

Total expected utility for Strategy II is

$$V_{\mathcal{L}} = E_{t,x} \left[\int_{t}^{t+h} F(s, X_{s}^{\mathbf{u}}, \mathbf{u}_{s}) ds + V(t+h, X_{t+h}^{\mathbf{u}}) \right].$$

Comparing strategies

(the math here is a bit sloppy)

We have trivially () cosults from grand
$$\hat{u}$$
, strategy F is aptimal)
$$V(t,x) \geq E_{t,x} \left[\int_t^{t+h} F\left(s,X_s^{\mathbf{u}},\mathbf{u}_s\right) ds + V(t+h,X_{t+h}^{\mathbf{u}}) \right] = 0.5$$

Remark (trivial)

We have equality above if and only if the control law ${\bf u}$ is the optimal law $\hat{\bf u}$.

Now use Itô to obtain

$$V(t+h, X_{t+h}^{\mathbf{u}}) = V(t, x)$$

$$+ \int_{t}^{t+h} \left\{ \frac{\partial V}{\partial t}(s, X_{s}^{\mathbf{u}}) + \mathcal{A}^{\mathbf{u}}V(s, X_{s}^{\mathbf{u}}) \right\} ds$$

$$+\int_{t}^{t+h}\nabla_{x}V(s,X_{s}^{\mathbf{u}})\sigma^{\mathbf{u}}dW_{s},$$
 and plug into the formula above. Tomas Björk, 2017 (**) It) It) It is a true reacting the conditions of the possible of

$$E_{t,x}\left[\int_t^{t+h}\left\{F\left(s,X_s^{\mathbf{u}},\mathbf{u}_s\right) + \frac{\partial V}{\partial t}(s,X_s^{\mathbf{u}}) + \mathcal{A}^{\mathbf{u}}V(s,X_s^{\mathbf{u}})\right\}ds\right] \leq 0.$$

Going to the limit:

Divide by h, move h within the expectation and let h tend to zero.

$$F(t, x, u) + \frac{\partial V}{\partial t}(t, x) + \mathcal{A}^{u}V(t, x) \le 0,$$

We get with
$$X_t^u = x : F(t, x, u) + \frac{\partial V}{\partial t}(t, x) + A^u V(t, x) \leq 0,$$

$$\{1, x, u\} + \frac{\partial V}{\partial t}(t, x) + A^u V(t, x) \leq 0,$$

$$\{1, x, u\} + \frac{\partial V}{\partial t}(t, x) + A^u V(t, x) \leq 0,$$
 Tomas Björk, 2017

Recall from previous slike:

$$F(t, x, u) + \frac{\partial V}{\partial t}(t, x) + \mathcal{A}^{u}V(t, x) \le 0,$$

This holds for all $u = \mathbf{u}(t, x)$, with equality if and only if $\mathbf{u} = \hat{\mathbf{u}}$.

We thus obtain the HJB equation

$$\frac{\partial V}{\partial t}(t,x) + \sup_{u \in U} \left\{ F(t,x,u) + \mathcal{A}^u V(t,x) \right\} = 0.$$

The HJB equation

Theorem:

Under suitable regularity assumptions the follwing hold:

 ${f l}: V$ satisfies the Hamilton-Jacobi-Bellman equation

$$\frac{\partial V}{\partial t}(t,x) + \sup_{u \in U} \left\{ F(t,x,u) + \mathcal{A}^u V(t,x) \right\} = 0,$$

$$V(T,x) = \Phi(x),$$

II: For each $(t,x) \in [0,T] \times R^n$ the supremum in the HJB equation above is attained by $u = \hat{\mathbf{u}}(t,x)$, i.e. by the optimal control.

Tomas Björk, 2017 338

Logic and problem

Note: We have shown that **if** V is the optimal value function, and **if** V is regular enough, **then** V satisfies the HJB equation. The HJB eqn is thus derived as a **necessary** condition, and requires strong *ad hoc* regularity assumptions, alternatively the use of viscosity solutions techniques.

Problem: Suppose we have solved the HJB equation. Have we then found the optimal value function and the optimal control law? In other words, is HJB a **sufficient** condition for optimality.

Answer: Yes! This follows from the **Verification Theorem**.

Tomas Björk, 2017 339

The Verification Theorem

Suppose that we have two functions H(t,x) and g(t,x), such that

H is sufficiently integrable, and solves the HJB equation

$$\begin{cases} \frac{\partial H}{\partial t}(t,x) + \sup_{u \in U} \left\{ F(t,x,u) + \mathcal{A}^u H(t,x) \right\} &= 0, \\ H(T,x) &= \Phi(x), \end{cases}$$

For each fixed (t, x), the supremum in the expression

$$\sup_{u \in U} \left\{ F(t, x, u) + A^u H(t, x) \right\} \iff \text{static}$$
with shoice $u = a(t, x)$

is attained by the choice u = g(t, x).

Then the following hold.

1. The optimal value function V to the control problem is given by

$$V(t,x)=H(t,x)$$
 , the function that 2. There exists an optimal control law $\hat{\bf u}$, and in fact

$$\hat{\mathbf{u}}(t,x) = g(t,x)$$
 Print perhaps (see book pp 291-293)

Handling the HJB equation (Section 19-4)

- 1. Consider the HJB equation for V.
- 2. Fix $(t,x) \in [0,T] \times \mathbb{R}^n$ and solve, the static optimization problem

(maximizer with:) $\max_{u \in U} \ [F(t,x,u) + \mathcal{A}^u V(t,x)]$ of slide 340 Here u is the only variable, whereas t and x are fixed parameters. The functions F, μ , σ and V are considered as given.

3. The optimal \hat{u} , will depend on t and x, and on the function V and its partial derivatives. We thus write \hat{u} as

$$\hat{\mathbf{u}} = \hat{\mathbf{u}}(t, x; V). \tag{4}$$

4. The function $\hat{\mathbf{u}}(t,x;V)$ is our candidate for the optimal control law, but since we do not know V this description is incomplete. Therefore we substitute the expression for \hat{u} into the PDE, giving us the highly nonlinear (why?) PDE

$$\frac{\partial V}{\partial t}(t,x) + F^{\hat{\mathbf{u}}}(t,x) + \mathcal{A}^{\hat{\mathbf{u}}}(t,x) V(t,x) = 0,$$

$$V(T,x) = \Phi(x).$$

5. Now we solve the PDE above! Then we put the solution V into expression (4). Using the verification theorem we can identify V as the optimal value function, and \hat{u} as the optimal control law.

Does this work in ? Concrete situations?

Making an Ansatz

- The hard work of dynamic programming consists in solving the highly nonlinear HJB equation
- There are no general analytic methods available for this, so the number of known optimal control problems with an analytic solution is very small indeed.
- In an actual case one usually tries to guess a solution, i.e. we typically make a parameterized Ansatz for V then use the PDE in order to identify the parameters.
- **Hint:** V often inherits some structural properties from the boundary function Φ as well as from the instantaneous utility function F. (Him is experience)
- Most of the known solved control problems have, to some extent, been "rigged" in order to be analytically solvable.

Tomas Björk, 2017 342

LAMPLE

> standard, classical > problem in systems &

The Linear Quadratic Regulator (seem 19.5)

$$\min_{u \in R} E\left[\int_0^T \left\{QX_t^2 + Ru_t^2\right\} dt + HX_T^2\right], \quad \text{ In }$$

with dynamics

 $dX_t = \{AX_t + Bu_t\} dt + CdW_t$. nu bidi mensimal for each fixed ut, this gives Gaussian Xt, OU process,
LQG control proken

Example: We want to control a vehicle in such a way that it stays close to the origin (the terms Qx^2 and Hx^2) while at the same time keeping the "energy" Ru^2 small.

> Here $X_t \in R$ and $\mathbf{u}_t \in R$, and we impose no control constraints on u.

> The real numbers Q, R, H, A, B and C are assumed to be known. We assume that R is strictly positive.

Handling the Problem

The HJB equation becomes (up the generator: Af = trept bfrom)

for dx = u dt + o dw)

$$\begin{cases} \frac{\partial V}{\partial t}(t,x) + \inf_{u \in R} \left\{ Qx^2 + Ru^2 + V_x(t,x) \left[Ax + Bu \right] \right\} \\ + \frac{1}{2} \frac{\partial^2 V}{\partial x^2}(t,x) C^2 = 0, \\ V(T,x) = Hx^2. \end{cases}$$

For each fixed choice of (t,x) we now have to solve the static unconstrained optimization problem to minimize

$$Qx^2 + Ru^2 + V_x(t,x) \left[Ax + Bu \right].$$

The problem was:

$$\min_{u} Qx^{2} + Ru^{2} + V_{x}(t, x) [Ax + Bu].$$

Since R > 0 we set the *u*-derivative to zero and obtain

$$2Ru = -V_x B,$$

which gives us the optimal u as

$$\hat{u} = -\frac{1}{2} \frac{B}{R} V_x.$$

Note: This is our candidate of optimal control law, but it depends on the unknown function V.

We now make an educated guess about the structure of ${\cal V}$.

From the boundary function Hx^2 and the term Qx^2 in the cost function we make the Ansatz

$$V(t,x) = P(t)x^2 + q(t),$$

where P(t) and q(t) are deterministic functions to be with this trial solution we have,

$$\frac{\partial V}{\partial t}(t,x) = \dot{P}x^2 + \dot{q},$$

$$V_x(t,x) = 2Px, \qquad (P = PH) \text{ (A.)}$$

$$V_{xx}(t,x) = 2P$$

$$\hat{u} = -\frac{B}{R}Px. \qquad (\text{see } p - 345)$$

Inserting these expressions into the HJB equation we get

$$x^{2} \left\{ \dot{P} + Q - \frac{B^{2}}{R} P^{2} + 2AP \right\}$$

$$+ \dot{Q} P C^{2} + 0. + \dot{Q} + P C^{2} = 0, \quad \downarrow \chi$$

We thus get the following ODE for P

$$\begin{cases} \dot{P} = \frac{B^2}{R}P^2 - 2AP - Q, \\ P(T) = H. \end{cases}$$

and we can integrate directly for q:

grate directly for
$$q$$
:
$$\begin{cases} \dot{q} &= -C^2 P, \\ q(T) &= 0. \end{cases}$$

The \bigcirc ODE for P is a **Riccati equation**. The equation for q can then be integrated directly, mee you have P

Final Result for LQ: (note that P is not given explicitly) $V(t,x) = P(t)x^2 + \int_t^T C^2 P(s) ds, \quad \text{verify}$

$$\hat{\mathbf{u}}(t,x) = -\frac{B}{R}P(t)x, \text{ Heis is a livear feedback law}$$

Tomas Björk, 2017

347

7 End of lecture 116 c

-> Start of lecture 12a <

Back to finance:

2. Investment Theory

(Section 19.6)

- Problem formulation.
- An extension of HJB.
- The simplest consumption-investment problem.
- The Merton fund separation results.

Recap of Basic Facts

We consider a market with n assets.

 S^i_{t} = price of asset No i,

 h_t^i = units of asset No i in portfolio

 $w_t^i = \text{portfolio weight on asset No } i$ $X_t^i = \text{portfolio value previously denoted } 1$

 $c_t = consumption rate 30$

We have the relations

$$X_t = \sum_{i=0}^n h_t^i S_t^i, \quad w_t^i = \frac{h_t^i S_t^i}{X_t}, \quad \sum_{i=0}^n w_t^i = 1.$$

(The 0-asset is the bank account in what follows)

Basic equationwhen consumption is present:

Dynamics of self financing portfolio in terms of relative weights

$$dX_t = X_t \sum_{i=0}^n w_t^i \frac{dS_t^i}{S_t^i} - c_t dt$$

 $dX_t = X_t \sum_{i=0}^n w_t^i \frac{dS_t^i}{S_t^i} - c_t dt$ (opposite to dividends), cet p-2/2, 2/4, wow we $\text{Tomas Björk, 2017} \quad \text{have a "minus term")} \qquad 349$

(N = 1)Simplest model

Assume a scalar risky asset and a constant short rate.

$$dS_t = \alpha S_t dt + \sigma S_t dW_t$$

$$dB_t = rB_t dt$$

We want to maximize expected utility of consumption over time

note the control variables w, w, c

$$\max_{w^0,w^1,c}$$

$$E\left[\int_0^T F(t,c_t)dt\right]$$

 $\max_{w^0,w^1,c} E\left[\int_0^T F(t,c_t)dt\right] \begin{pmatrix} also & a & term \\ & & & \\$

Dynamics

$$dX_t = X_t \left[w_t^0 r + w_t^1 \alpha \right] dt - c_t dt + w_t^1 \sigma X_t dW_t,$$
(verify!)

Constraints

$$c_t \geq 0, \ \forall t \geq 0,$$

$$w_t^0 + w_t^1 = 1, \ \forall t \ge 0.$$

Tomas Björk, 2017

Sensible groblem (firmulation)?

... become suspicions

Nonsense!

Tomas Björk, 2017 351

What are the problems?

- We can obtain unlimited utility by simply consuming arbitrary large amounts.
- The wealth will go negative, but there is nothing in the problem formulations which prohibits this.
- We would like to impose a constrate of type $X_t \geq 0$ but this is a **state constraint** and DynP does not allow this. (See p.324)

Good News:

DynP can be generalized to handle (some) problems of this kind.

The use of stopping times helps!

Generalized problem

Let D be a nice open subset of $[0,T] \times \mathbb{R}^n$ and consider

the following problem.

Tollowing problem.
$$\max_{u \in U} E\left[\int_0^\tau F(s, X_s^{\mathbf{u}}, \mathbf{u}_s) ds + \Phi\left(\tau, X_\tau^{\mathbf{u}}\right)\right].$$

Dynamics:

$$dX_t = \mu(t, X_t, u_t) dt + \sigma(t, X_t, u_t) dW_t,$$

$$X_0 = x_0 \in \mathcal{D} \bullet$$

The **stopping time** τ is defined by

$$\tau=\inf\{t\geq 0\;|(t,X_t)\in\partial D\}\wedge T. \leq T$$
 a random time! boundary of D boundary of D to the problem looks as before, but with the difference that the horizon T is random!

Generalized HJB

Theorem: Given enough regularity the following hold.

1. The optimal value function satisfies

Theorem: Given enough regularity the following hold.

1. The optimal value function satisfies
$$\begin{cases} \frac{\partial V}{\partial t}(t,x) + \sup_{u \in U} \left\{ F(t,x,u) + \mathcal{A}^u V(t,x) \right\} &= 0, & \forall (t,x) \in D \end{cases}$$

$$V(t,x) = \Phi(t,x), \quad \forall (t,x) \in \partial D.$$

2. We have an obvious verification theorem: replace
$$e-g$$
.

 $H(T,x)$ on 3340 by $H(t,x) = 1, t,x$,

 $H(T,x) \in 340$

Reformulated problem
$$\max_{c\geq 0,\ w\in R}\ E\left[\int_0^\tau F(t,c_t)dt + \Phi(X_T)\right] \text{ containing wealth}$$
 The "ruin time" τ is defined by
$$\tau = \inf\left\{t\geq 0\ | X_t = 0\right\} \wedge T.$$
 Notation:
$$v^1 = w.$$

$$\tau = \inf \{ t \ge 0 \mid X_t = 0 \} \wedge T.$$

$$w^1 = w,$$

$$w^0 = 1 - w$$

Thus no constraint on w_1 only wand c remain as constrained Dynamics of simple model on p.350 become

$$dX_t = w_t \left[\alpha - r\right] X_t dt + (rX_t - c_t) dt + w\sigma X_t dW_t,$$

now GW, are the control variables

for optimal
$$2, \omega$$
: $V_4+F(t,2)+i v(x-r) \frac{3v}{3v}(...)$

HJB Equation

$$\frac{\partial V}{\partial t} + \sup_{c \ge 0, w \in R} \left\{ F(t, c) + wx(\alpha - r) \frac{\partial V}{\partial x} + (rx - c) \frac{\partial V}{\partial x} + \frac{1}{2} x^2 w^2 \sigma^2 \frac{\partial^2 V}{\partial x^2} \right\} = 0,$$

We now specialize (why?) to and for simplicity we assume that

so we have to maximize

$$F(t,c) = e^{-\delta t} c^{\gamma},$$

$$\Phi = 0,$$

 $F(t,c) = e^{-\delta t}c^{\gamma}, \quad \text{with } \mathbb{K} / \mathbb{K} = 0,$ $\Phi = 0, \quad \mathbb{F} / \mathbb{K} = 0.$

$$e^{-\delta t}c^{\gamma} + wx(\alpha - r)\frac{\partial V}{\partial x} + (rx - c)\frac{\partial V}{\partial x} + \frac{1}{2}x^2w^2\sigma^2\frac{\partial^2 V}{\partial x^2},$$
 which as we have

Analysis of the HJB Equation

In the embedded static problem we maximize, over cand w, (repeat from p.356)

$$G(c_{N})=e^{-\delta t}c^{\gamma}+wx(\alpha-r)V_{x}+(rx-c)V_{x}+\frac{1}{2}x^{2}w^{2}\sigma^{2}V_{xx},$$

First order conditions:

$$\gamma c^{\gamma - 1} = e^{\delta t} V_x, \qquad \text{(from } \frac{\partial G}{\partial c} = 0)$$

$$w = \frac{-V_x}{x \cdot V_{xx}} \cdot \frac{\alpha - r}{\sigma^2}, \qquad \text{(from } \frac{\partial G}{\partial w} = 0)$$

Ansatz:

$$V(t,x)=e^{-\delta t}h(t)x^{\gamma},$$
 (like $F(t,c)$)

Because of the boundary conditions, we must demand that

$$h(T) = 0. (5)$$

h(T) = 0.afternatively,
you could try $V(t,x) = k(t)x^t$,
should work as well. 357

Given a V of this form we have (using \cdot to denote the time derivative)

$$V_t = e^{-\delta t}\dot{h}x^{\gamma} - \delta e^{-\delta t}hx^{\gamma},$$
 $\begin{bmatrix} \text{Note:} \\ \textbf{h} = \textbf{h} \text{th} \end{bmatrix}$
 $V_x = \gamma e^{-\delta t}hx^{\gamma-1},$
 $V_{xx} = \gamma(\gamma-1)e^{-\delta t}hx^{\gamma-2}.$

giving us

use p.357, (2):
$$\widehat{w}(t,x)=\frac{\alpha-r}{\sigma^2(1-\gamma)},$$
 (constant!) use p.357, (1): $\widehat{c}(t,x)=xh(t)^{-1/(1-\gamma)}.$ (linear inx)

Plug all this into HJB! and try to solve (*) on top of p. 356, or the one on the bottom with ward 2, etc.

After rearrangements we obtain

$$x^{\gamma} \left\{ \dot{h}(t) + Ah(t) + Bh(t)^{-\gamma/(1-\gamma)} \right\} = 0,$$

where the constants
$$A$$
 and B are given by tediow computations,
$$A = \frac{\gamma(\alpha-r)^2}{\sigma^2(1-\gamma)} + r\gamma - \frac{1}{2}\frac{\gamma(\alpha-r)^2}{\sigma^2(1-\gamma)} - \delta = 0$$

$$B = 1-\gamma.$$

If this equation is to hold for all x and all t, then we see that h must solve the ODE

$$\dot{h}(t) + Ah(t) + Bh(t)^{-\gamma/(1-\gamma)} = 0,$$

$$h(T) = 0.$$

An equation of this kind is known as a **Bernoulli** equation, and it can be solved explicitly.

We are done.

Exercises (9.2, 19.3

Tomas Björk, 2017 359

=> End of lecture 12a

Start of lecture 126

Merton's Mutal Fund Theorems

Section 19.7

1. The case with no risk free asset

We consider n risky assets with dynamics

$$dS_i = S_i \alpha_i dt + S_i \sigma_i dW, \quad i = 1, \dots, n \quad \text{for } i \in \mathbb{R}$$

where W is Wiener in R^k . In vector form: we was every component in Wiener and they are all

$$dS = D(S)\alpha dt + D(S)\sigma dW.$$

independent

where

$$\alpha = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} \in \mathbf{R}^{n \text{ on }} \begin{bmatrix} -\sigma_1 - \\ \vdots \\ -\sigma_n - \end{bmatrix} \in \mathbf{R}^{n \times k}$$

D(S) is the diagonal matrix

$$D(S) = diag[S_1, \dots, S_n]. \quad E^{n}$$

$$= \begin{bmatrix} S_1, & \emptyset \\ \emptyset & S_n \end{bmatrix}$$

Formal problem

$$\max_{c,w} \ E\left[\int_0^\tau F(t,c_t)dt\right] \text{ [Note } \{0\} = 0 \text{]}$$
 given the dynamics (use the SF condition on § .34g)

$$dX = Xw'\alpha dt - cdt + Xw'\sigma dW_{\rm g}$$
 additional to the dSi equations and constraints

$$\sum_{i=1}^{n} w_{i}^{i} = e'w_{i} = 1, \quad c \geq 0. \qquad \qquad W_{i} = (\omega_{i}^{i}, -) w_{i}^{n})'$$

Assumptions:

- ullet The vector lpha and the matrix σ are constant and deterministic.
- The volatility matrix σ has full rank so $\sigma \sigma'$ is positive definite and invertible. = arbitrage free and epomplete market if n=k

Note: S does not turn up in the X-dynamics so V is of the form

$$V(t,x,s) = V(t,x)$$

Would result from

V(t,x,s) = V(t,x)Would result from $\{x,y\} = \dots = \{x\}$ 361

The HJB equation is

Note that the

where

 $\mathcal{A}^{c,w}V = xw'\alpha V_x - cV_x + \frac{1}{2}x^2w'\Sigma w V_{xx},$

The matrix Σ is given by

property of W (k-dim):

(dw)(dw)' = Ik dt

=> dx = ... at + xw'rdw?

(dx)² = 2w'r(dw)(dw) o'w = $\frac{1}{2}$ wrow $\frac{362}{4}$

The HJB equation & then becomes

$$\begin{cases} V_t + \sup_{w'e=1, c \ge 0} \left\{ F(t,c) + (xw'\alpha - c)V_x + \frac{1}{2}x^2w'\Sigma wV_{xx} \right\} &= 0, \\ V(T,x) &= 0, \\ V(t,0) &= 0. \end{cases}$$

where $\Sigma = \sigma \sigma'$.

If we relax the constraint w'e=1, the Lagrange function for the static optimization problem is given by

ization problem is given by
$$L = F(t,c) + (xw'\alpha - c)V_x + \frac{1}{2}x^2w'\Sigma wV_{xx} + \lambda\left(1 - w'e\right).$$
 Optimization under linear Constraints 363

$$L = F(t,c) + (xw'\alpha - c)V_x$$
$$+ \frac{1}{2}x^2w'\Sigma wV_{xx} + \lambda (1 - w'e).$$

The first order condition for c is (we have not specified \mathcal{F})

$$F_c = V_x$$
.

The first order condition for w is $x\alpha'V_x + x^2V_{xx}w'\Sigma - \gamma'$

$$x\alpha' V_x + x^2 V_{xx} w' \Sigma = \lambda e',$$

 $x\alpha'V_x + x^2V_{xx}w'\Sigma = \lambda e', \qquad \text{(The Vectors)}$ can solve for w in order to obtain

so we can solve for w in order to obtain

$$\hat{w} = \Sigma^{-1} \left[\frac{\lambda}{x^2 V_{xx}} e - \frac{x V_x}{x^2 V_{xx}} \alpha \right].$$
 Column vector)

Using the relation e'w=1 this gives λ as

$$\lambda = \frac{x^2 V_{xx} + x V_x e' \Sigma^{-1} \alpha}{e' \Sigma^{-1} e},$$

$$\lambda = \frac{1}{e' \Sigma^{-1} e},$$

$$\lambda = \lambda \quad e' \Sigma^{-1} e \quad \lambda \quad e' \Sigma^{-1} e \quad$$

Inserting λ gives us, after some manipulation,

$$\hat{w} = \frac{1}{e'\Sigma^{-1}e}\Sigma^{-1}e + \underbrace{\frac{V_x}{xV_{xx}}}\Sigma^{-1}\left[\frac{e'\Sigma^{-1}\alpha}{e'\Sigma^{-1}e}e - \alpha\right].$$

We can write this as

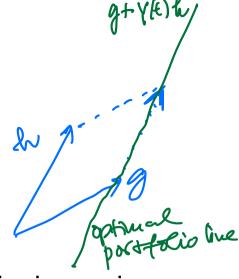
as
$$\begin{cases} \text{the quotient} \\ \text{depends on t} \end{cases}$$

$$\hat{w}(t) = g + Y(t)h,$$

where the fixed vectors g and h are given by

whereas Y is given by

$$Y(t) = \frac{V_x(t, X(t))}{X(t)V_{xx}(t, X(t))}.$$



We had

$$\hat{w}(t) = g + Y(t)h,$$

Thus we see that the optimal portfolio is moving stochastically along the one-dimensional "optimal portfolio line"

$$g + sh$$
,

in the (n-1)-dimensional "portfolio hyperplane" Δ , where

$$\Delta = \{ w \in R^n \mid e'w = 1 \}.$$

If we fix two points on the optimal portfolio line, say $w^a = g + ah$ and $w^b = g + bh$, then any point w on the line can be written as an affine combination of the basis points w^a and w^b . An easy calculation shows that if $w^s = g + sh$ then we can write

$$w^{s} = \mu w^{a} + (1 - \mu)w^{b},$$

where

$$\mu = \frac{s - b}{a - b}.$$

Summary:

Mutual Fund Theorem

There exists a family of mutual funds, given by $w^s = g + sh$, such that

- 1. For each fixed s the portfolio w^s stays fixed over time.
- 2. For fixed a, b with $a \neq b$ the optimal portfolio $\hat{\mathbf{w}}(t)$ is, obtained by allocating all resources between the fixed funds w^a and w^b , i.e.

$$\hat{w}(t) = \mu^{a}(t)w^{a} + \mu^{b}(t)w^{b},$$

$$\mu^{a}(t) = \frac{\gamma(bt) - b}{b - a}, \quad \mu^{b}(t) = 1 - \mu(t)$$

(note $\mu^{a}(t) + \mu^{b}(t) = 1$)

Remark: to obtain the geometric interpretation (SCE also p.366) It is not necessary to (precisely) know Tomas Björk, 2017 the utility function of and/or 367 the spinal value function V. Europising!

See \$7360-367 for the case "without," Merton's mutual funds?
The case with a risk free asset

Again we consider the standard model

$$dS = D(S)\alpha dt + D(S)\sigma dW(t),$$

We also assume the risk free asset B with dynamics

$$dB = rBdt.$$

We denote $B=S_0$ and consider portfolio weights $(w_0,w_1,\ldots,w_n)'$ where $\sum_0^n w_i=1$. We then eliminate w_0 by the relation

$$w_0 = 1 - \sum_{i=1}^{n} w_i$$
, (nethod wind use)

and use the letter w to denote the portfolio weight vector for the risky assets only. Thus we use the notation

$$w = (w_1, \dots, w_n)',$$

Note: $w \in R^n$ without constraints. (w " baplace" without m w is m of m with m of m of m with m of m of

HJB

We obtain (again from the ST condition)

$$dX = X \cdot w'(\alpha - re)dt + (rX - c)dt + X \cdot w'\sigma dW,$$

where
$$e=(1,1,\ldots,1)'$$
. (note: w'e \neq 1 in general here, because we removed W_0)

The HJB equation now becomes

$$\begin{cases} V_t(t,x) + \sup_{c \ge 0, w \in \mathbb{R}^n} \{ F(t,c) + \mathcal{A}^{c,w} V(t,x) \} &= 0, \\ V(T,x) &= 0, \\ V(t,0) &= 0, \end{cases}$$

where

$$\mathcal{A}^{c}V = xw'(\alpha - re)V_x(t, x) + (rx - c)V_x(t, x) + \frac{1}{2}x^2w'\Sigma wV_{xx}(t, x).$$

Tomas Björk, 2017

First order conditions

We maximize

$$F(t,c) + xw'(\alpha - re)V_x + (rx - c)V_x + \frac{1}{2}x^2w'\Sigma wV_{xx}$$

with $c \ge 0$ and $w \in \mathbb{R}^n$.

The first order conditions are (parallel + \$.364)

$$F_c = V_x,$$

$$\hat{w} = -\frac{V_x}{xV_{xx}} \Sigma^{-1}(\alpha - re),$$
 with geometrically obvious economic interpretation.

solutions p. 371

like on p.366

Mutual Fund Separation Theorem

- 1. The optimal portfolio consists of an allocation between two fixed mutual funds w^0 and w^f .
- 2. The fund w^0 consists only of the risk free asset.
- 3. The fund w^f consists only of the risky assets, and is given by

$$w^f = \Sigma^{-1}(\alpha - re).$$

and relative allocations of wealter

are $\mu f = -\frac{1}{2} \frac{1}{2} \frac{1}{2} \left(\frac{1}{2} \frac{$

Remark: These results do not follow from the case without riskfree asset (see the book).

Tomas Björk, 2017

371

-> start of Cecture 13a € More (alternative) theory

Continuous Time Finance

The Martingale Approach to Optimal Investment Theory

Ch 20

Tomas Björk

essential ingredient is Completeness of the market

Contents

- Decoupling the wealth profile from the portfolio choice.
 - Lagrange relaxation. (Seen befole, but vill be explained again)
 - Solving the general wealth problem.
 - Example: Log utility.
 - Example: The numeraire portfolio.

Tomas Björk, 2017 373

Problem Formulation

Standard model with internal filtration (See 170, 360, 360)

$$dS_t = D(S_t)\alpha_t dt + D(S_t)\sigma_t dW_t,$$

$$dB_t = rB_t dt.$$

Assumptions:

- Drift and diffusion terms are allowed to be arbitrary adapted processes.
- (" N = 2") • The market is **complete**.
- We have a given initial wealth x_0

Problem:

$$\max_{h \in \mathcal{H}} E^P \left[\Phi(X_T) \right]$$

 $\max_{h \in \mathcal{H}} E^{P} \left[\Phi(X_T) \right] \qquad \begin{array}{c} \text{only} \\ \text{terminal} \\ \text{wealth} \end{array}$

where

$$\mathcal{H} = \{\text{self financing portfolios}\}$$

given the initial wealth $X_0 = x_0$.

Some observations

- In a complete market, there is a unique martingale measure Q.
- ullet Every claim Z satisfying the budget constraint

$$e^{-rT}E^Q[Z] = x_0,$$

 $e^{-rT}E^Q[Z]=x_0, \qquad \text{is attainable by an } h\in \mathcal{H} \text{ and vice versal-his-ertehical}$ is attainable by an $h\in \mathcal{H}$ and vice versal-his-ertehical}. We can thus write our problem as $E^P = \max_Z E^P[\Phi(Z)]$ subject to the constraint

$$\max_{Z} \quad E^{P}\left[\Phi(Z)\right]$$

subject to the constraint

$$e^{-rT}E^Q[Z] = x_0.$$

We can forget the wealth dynamics!

Aine being, see Ap2 below) Tomas Björk, 2017

Basic Ideas

Our problem was

$$\max_{Z} \quad E^{P}\left[\Phi(Z)\right]$$

subject to

$$e^{-rT}E^Q[Z] = x_0.$$

Idea I:

We can decouple the optimal portfolio problem into:

- 1. Finding the optimal wealth profile \hat{Z} .
- 2. Given \hat{Z} , find the replicating portfolio. (Here the dynamics come in)

Idea II:

- Rewrite the constraint under the measure P(incread of Q).
- Use Lagrangian techniques to relax the constraint.

Lagrange formulation

Recall

Problem:

$$\max_{Z} \quad E^{P}\left[\Phi(Z)\right]$$
 Ze Fr

subject to

$$e^{-rT}E^P\left[L_TZ\right] = x_0.$$

Now: constraint in terms of measure P!

Here L is the likelihood process, i.e.

$$L_t = \frac{dQ}{dP}, \quad \text{on } \mathcal{F}_t, \quad 0 \leq t \leq T$$
 , and recall the first

The Lagrangian of the problem is

$$\mathcal{L} = E^{P} \left[\Phi(Z) \right] + \lambda \left\{ x_0 - e^{-rT} E^{P} \left[L_T Z \right] \right\}$$

i.e.

$$\mathcal{L} = E^P \left[\Phi(Z) - \lambda e^{-rT} L_T Z \right] + \lambda x_0$$

Tomas Björk, 2017

expectations under P.

The optimal wealth profile

Given enough convexity and regularity we now expect, given the dual variable λ , to find the optimal Z by maximizing

$$\mathcal{L} = E^{P} \left[\Phi(Z) - \lambda e^{-rT} L_{T} Z \right] + \lambda x_{0}$$

over unconstrained Z, i.e. to maximize the lebesgue integral

$$\int_{\Omega} \left\{ \Phi(Z(\omega)) - \lambda e^{-rT} L_T(\omega) Z(\omega) \right\} dP(\omega)$$

This is a trivial problem! (if you (which at it the right Way) We can simply maximize $Z(\omega)$ for each ω separately.

$$\max_{z} \quad \left\{ \Phi(z) - \lambda e^{-rT} L_{T} z \right\}, \text{ with } L_{T} = L_{T}(\omega),$$
 and the integral

Tomas Björk, 2017

The optimal wealth profile

Our problem: (liplat from previous slide)

$$\max_{z} \quad \left\{ \Phi(z) - \lambda e^{-rT} L_{T} z \right\}$$

First order condition

$$\Phi'(z) = \lambda e^{-rT} L_T$$

The optimal Z is thus given by

 $\hat{Z}=G\left(\lambda e^{-rT}L_{T}\right)^{2}$ reputation λ . $G(y)=\left[\Phi'\right]^{-1}(y).$ (if Φ than the property with Φ in its armain) Φ in its armain.

where

The dual varaiable λ is determined by the constraint

 $e^{-rT}E^P\left[L_T\hat{Z}\right] = x_0.$

Tomas Björk, 2017 from this equation, 2 depends on 2,

and hope/prove that a unique

Jend of lecture 13a & golution exists

-start of lecture 136

Example – log utility

Assume that

Then where
$$f$$
 is $g(y) = \frac{1}{y}$, for all $y > 0$

Thus

$$\hat{Z} = G\left(\lambda e^{-rT} L_T\right) = \frac{1}{\lambda} e^{rT} L_T^{-1}$$

Finally λ is determined by

$$e^{-rT}E^P\left[L_T\hat{Z}\right] = x_0.$$

i.e.

$$e^{-rT}E^P\left[L_T\frac{1}{\lambda}e^{rT}L_T^{-1}\right] = x_0.$$

so $\lambda = x_0^{-1}$ and

$$\hat{Z}=x_0e^{rT}L_T^{-1},$$
 to be interpreted as optimal wealth at time T, given the budget constraint.

The optimal wealth process

• We have computed the optimal terminal wealth profile

(1) $\widehat{Z} = \widehat{X}_T = x_0 e^{rT} L_T^{-1}$

• What does the optimal wealth **process** \widehat{X}_t look like?

We have (why?) (discounted traded assets one B-martingales)

$$\widehat{X}_t = e^{-r(T-t)} E^Q \left[\widehat{X}_T \middle| \mathcal{F}_t \right] \tag{7}$$

 $\hat{X}_t = x_0 e^{rt} E^Q \left[L_T^{-1} \middle| \mathcal{F}_t \right]$ base weasure $\frac{abstract}{Q} \text{ theory } \mathcal{F}_t = \frac{df}{dQ} \text{ on } \mathcal{F}_t$ But L^{-1} is a Q-martingale (why?) so we obtain

$$\widehat{X}_t = x_0 e^{rt} L_t^{-1}.$$

The Optimal Portfolio

- We have computed the optimal wealth process: χ_{t}
- How do we compute the optimal portfolio?

Assume for simplicity that we have a standard Black-Scholes model (complete model)

$$dS_t = \mu S_t dt + \sigma S_t dW_t,$$

$$dB_t = rB_t dt$$

Recall that

1. Use Ito and the formula for \hat{X}_t to compute $d\hat{X}_t$ like

$$d\widehat{X}_t = \widehat{X}_t(\)dt + \widehat{X}_t\beta_t dW_t$$
 (find by later)

where we do not care about θ

2. Recall that (for some \hat{u}_t , post-following the second $d\hat{X}_t = \hat{X}_t \left\{ (1 - \hat{u}_t) \frac{dB_t}{B_t} + \hat{u}_t \frac{dS_t}{S_t} \right\}$ See \emptyset . 382

$$(\hat{u}_t)\frac{dB_t}{B_t} + \hat{u}_t\frac{dS_t}{S_t}$$

which we write as

$$d\widehat{X}_t = \widehat{X}_t \{ \} dt + \widehat{X}_t \widehat{u}_t \sigma dW_t$$

3. We can dentify \hat{u} as

$$\hat{u}_t = \frac{\beta_t}{\sigma}$$

 $\hat{u}_t = \frac{\beta_t}{\sigma}$ (if we know β_t , see further down)

Yt on proses is term We recall $\widehat{X}_t = x_0 e^{rt} L_t^{-1}.$ We also recall that $dL_t = L_t \varphi dW_t,$ where $\varphi = \frac{r-\mu}{\sigma} \qquad \text{(many lactures)}$ From this we have (III) for L_t $(2) dL_t^{-1} = \varphi^2 L_t^{-1} dt - L_t^{-1} \varphi dW_t = -i \varphi L_t^{-1} dW_t^{-1}$ and we obtain from (1) and (2), as the calculus!, $d\widehat{X}_t = \widehat{X}_t \left\{ \right\} dt - \widehat{X}_t \varphi dW_t \rightarrow \mathcal{Y}$ **Result:** The optimal portfolio is given by $\frac{\beta \epsilon}{\epsilon}$

Note that \hat{u} is a "myopic" portfolio in the sense that it does not depend on the time horizon T.

 $\hat{u}_t = \frac{\mu - r}{\sigma^2} \qquad \text{(which we have seen as Market price of risk)}$

(Arrother example)

A Digression: The Numeraire Portfolio

Standard approach:

- Choose a fixed numeraire (portfolio) N.
- ullet Find the corresponding martingale measure, i.e. find Q^N s.t.

$$\frac{B}{N}$$
, and $\frac{S}{N}$

are Q^N -martingales.

Alternative approach (Swap the two steps above) • Choose a fixed measure $Q \sim P$. • Find numeraire N such that $Q = Q^N$: Ne if x is value of traded asset

Special case:

- Set Q = P, ow choice
- \bullet Find numeraire N such that $Q^N=P$ i.e. such that

$$\frac{B}{N}, \quad \text{and} \quad \frac{S}{N}$$

are Q^N -martingales under the **objective** measure P.

• This N is called the **numeraire portfolio**.

Specialize further:

Log utility and the numeraire portfolio

Definition:

The growth optimal portfolio (GOP) is the portfolio weath process and trary terminal (p-381) which is optimal for log utility (for arbitrary terminal date T.

Assume that X is GOP. Then X is the numeraire portfolio.

Proof:

We have to show that the process

$$Y_t = \frac{S_t}{X_t}$$

$$Y_t = \frac{1}{X_t}$$
 is a P martingale. (and Likewise is $\frac{Bt}{X_t} = X_0$ by We have (see ρ -381)
$$\frac{S_t}{X_t} = x_0^{-1} e^{-rt} S(L_t)$$
 where $\frac{S_t}{X_t} = x_0^{-1} e^{-rt} S(L_t)$

which is a P martingale, since $x_0^{-1}e^{-rt}S_t$ is a Qmartingale. Use Bayes" (Additional exercise 3 = exercise C.g in the book)

Tomas Björk, 2017

7 End of lecture 1362