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European Call Option

The holder of this paper has the right 7ijc e
c)éKSCéaébPVLhﬂ

to buy
1 ACME INC
on the date
2026
June 30, 201%
ZH ooy ot ke c@wﬁé}
at the price

$100
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Financial Derivative

e A financial asset which is defined in terms of some
underlying asset.

e Future stochastic claim.
/__%
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Examples

e European calls and puts
e American options

e Forward rate agreements
e Convertibles

e Futures

e Bond options

e Caps & Floors

e Interest rate swaps

e CDO:s

e CDS:s

Tomas Bjork, 2017
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Main problems

e What is a “reasonable” price for a derivative?

e How do you hedge yourself against a derivative.

Tomas Bjork, 2017
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Natural Answers

Consider a random cash payment Z at time 7.

What is a reasonable price Il [Z] at time 07

Natural answers: (m%éﬁ\a\j mcpm'wb3

1. Price = Discounted present value of future payouts.
aaet-l

I, [Z] E 2]

okoxest ko o U l

2. The question is meaningless.

Tomas Bjork, 2017 49



Both answers are incorrect!

e Given some assumptions we can really talk about
“the correct price” of an option.

e The correct pricing formula is not the one on the
previous slide.
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Philosophy

e The derivative is defined in terms of underlying.

e The derivative can be priced in terms of underlying
price.

e Consistent pricing.

e Relative pricing.

Before we can go on further we need some simple
portfolio theory
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Portfolios

We consider a market with N assets.
S;f — price at ¢, of asset No 1. /\05 -0 N
A portfolio strategy is an adapted vector process
hy = (h%,---,hiv)

where

h; = number of units of asset 1,

Vi = market value of the portfolio

N
Vi =) hiS;
i=1
The portfolio is typically of the form
ht — h(t, St)

I.e. today’s portfolio is based on today's prices.

(0wt cdo o P (Zn ATV
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Self financing portfolios

We want to study self financing portfolio strategies,
i.e. portfolios where purchase of a “new” asset must
be financed through sale of an “old” asset.

How is this formalized?

Definition:
The strategy h is self financing if

N
dV, =) hidS;

Interpret!

See Appendix B for details. Z? ﬁ§>
Ooade w0 osts v frpen  ANSOTER R

A(,C(/r& Hon MW\,{”M _/a{ e He b@{mg,
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Relative weights

Definition:

w! = relative portfolio weight on asset No i.

We have .
i his;

74
ok thew \f\‘ = W, yg'
£ € étz

Insert this into the self financing condition
N
dV, =) hjdS;
i=1

We obtain

Portfolio dynamics:

N .
z'dSZ 1. /. W
1=1
Interpret!

Tomas Bjérk, 2017 (AZ/DV GD ‘ %q )
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Deriving the Black-Scholes PDE
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Back to Financial Derivatives

Consider the Black-Scholes model

dSt — uStdt + O'Stth,

'\5 e %o, — aBy = rBdt. /é&w% OCOunt

‘ T vtecect Calo
\&W“\Iagf Bt [werwaaligakon) <

We want to price a European call with strike price K
and exercise time 1. This is a stochastic claim on
the future. The future pay-out (at 7T') is a stochastic
variable, Z, given by

Z = maX[ST—K 0],
= (50T o

/ wo’ca:hm ’

More general:
Z=®(57)

for some contract function &.

Main problem: What is a “reasonable” price, II; [Z],
for Z at t?
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Main ldea

e \We demand consistent pricing between derivative
and underlying.

e No mispricing between derivative and underlying.

e No arbitrage possibilities on the market (B, S, 1I)
e P

e &m&b&/ e ket
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Arbitrage

The portfolio w is an arbitrage portfolio if

e The portfolio strategy is self financing.
® VO = O

e V1 > 0 with probability one.

(of) w@aW,’P@T> D\:;’l, and ?(\/T >o> > U>

Moral: See q; ]:}l

e Arbitrage = Free Lunch

e No arbitrage possibilities in an efficient market.

A0 Jc(aﬁz/ jW@S%bwf«rﬁy WLC% VNS
o ek Wi Wﬁ’"‘ﬁ po el
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Arbitrage test

Suppose that a portfolio w is self financing whith
dynamics

dVy = kVidt
e No driving Wiener process

e Risk free rate of return.

e "“Synthetic bank” with rate of return k.

If the market is free of arbitrage we must have:

é&&&w@& oy E95
Rowasle - L amd € wmey Asfurnd o T, b
cH L wov ComMom - T W 4ok k&:r'e ‘
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Main Idea of Black-Scholes

e Since the derivative is defined in terms of the
underlying, the derivative price should be highly
correlated with the underlying price.

e We should be able to balance dervative against
underlying in our portfolio, so as to cancel the
randomness.

e [hus we will obtain a riskless rate of return k& on
our portfolio.

e Absence of arbitrage must imply

k=1 [o Y=t )

——>’@Qﬂ,tf Agmkgﬁﬁ;iﬂ£é”
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Two Approaches

The program above can be formally carried out in two
slightly different ways:

e The way Black-Scholes did it in the original paper.
This leads to some logical problems. (7 )

e A more conceptually satisfying way, first presented
by Merton.

Here we use the Merton method. You will find the
original BS method in Appendix C at the end of this

lecture. [‘Q? ~ ﬁ g]
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Formalized program a la Merton / OUU%W)

e Assume that the derivative price is of the form

11; [Z] — f(tv St)-
self frmamclony

e Form a portfolio based on the underlying .S and the

derivative f, with portfolio dynamics
5.((, P'Sg

1 V{@ R T S R
oA —L—&a,gawm(,
2l cAANe %\ﬂ& ke

e Choose w” and w/ such that the dW-term is wiped
out. This gives us

dVy = Vi - kdt

e Absence of arbitrage implies

k=r
e This relation will say something about f.
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Back to Black-Scholes
dSt — uStdt + O'Stth,
Ht [Z] — f(ta St)

[t6's formula gives us the f dynamics as
& fcom AS,(,,

1 ., ,0%f
df = +§S 952 dt
_l_
Write this as
df = pys- fdt +oy- fdW
where X
UA
o o B M
_ S+ pSgh 4+ 35%0° %% Do
:uf T f @/&
JS% dmﬂ%ﬁ
T Ty L
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@ﬁ/%ﬁ/@/ /Q(OW\ ?‘(Z\HDM (pm%sz
df = pys- fdt +oy- fdW

dV = V{ws-ﬁﬂﬂ“-ﬁ}

S f
= V{wS(udt + cdW) + w! (usdt + o ;dW) )}
dV =V { u+wlpp}dt +V {w o +wlos} dW

Now we kill the dWV/-terml

Choose (w®,w') such that

wlo+wlor = 0
w¥twl =1
. . . \ / ' Aaj\z{
Linear system with solution (1{1 Y 0 don t AW \
) %@)
W =91 C wl = 2
of — 0O Of — 0

Plug into dV'!
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We obtain
dV =V {wpu+wlpp}dt
This is a risk free “synthetic bank” with short rate

{WSM + waF}

Absence of arbitrage implies

Plug in the fexpressions) for w?”, w/, pr and simplify.

e following result.

MQMM )
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Black-Schole’s PDE

The price is given by
11, [Z] — f (ta St)

where the pricing function f satisfies the PDE (partial differential equation)

éc??_{(t, s) + rs%(t, s) + %0232%(’57 s)—rf(t,s) = 0
f(T,s) = ®(s)
Thontow

There is a [unigue solution\to the PDE so there is a unique arbitrage free
. - —
price process for the contract.
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Black-Scholes’ PDE ct'd

of  Of 1 ,,0%
8t+r883+208832 rf = 0

f(T,s) = ®(s)

e The price of all derivative contracts have to satisfy
the same PDE

of Of 1 4 ,0°f

— +rs—+=0°s"=—5—rf =0

ot ds 2 052

otherwise there will be an arbitrage opportunity.

e Theonly difference’between different contracts is in
the boundary value condition

f(T,s) = ®(s)
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Data needed

e The contract function 9.
e Today's date ¢.

e Today's stock price S.

e Short rate r.

e Volatility o.

Note: The pricing formula does not involve the mean

rate of return u!
WY (¢ & 7 7

Tomas Bjork, 2017
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Black-Scholes Basic Assumptions

Assumptions:

e The stock price is Geometric Brownian Motion
e Continuous trading.

e Frictionless efficient market.

e Short positions are allowed.

e Constant volatility o.

e Constant short rate r.

g Flat yield curvej

Tomas Bjork, 2017
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Black-Scholes’ Formula
European Call

T'=date of expiration,
t=today's date,

K =strike price,
r=short rate,
s=today's stock price,
o=volatility.

f(t,s) =sN[di] —e " T=YKN [dy].

N|-]=cdf for N (0, 1)-distribution.

di = J\/;i_t{ln(%)Jr(rJr%cﬁ)(T—t)},

dy = dl—O\/ﬁ. %
Covss ouk TF PR e&;d@ wme >
Tomas Bjork, 2017 WV%// b(/;ir/ ﬁg}\ﬂpw ?DC [ML@ ?
to B

Dk | §ee oj/so p?:}'



European Call,

K = 100,

Black-Scholes

oc=20%, r=17%,

T—t=1/4

£

20 -
151

10

Tomas Bjork, 2017
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Dependence on Time to Maturity

25

20

151

10

—— 13 weeks
— — -7 weeks
1 week
maturity
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Dependence on Volatility

25 T
sigma=0.2
— — -sigma=0.4
sigma=0.6|
maturity |
20 —,
151 .
(6]

10 .
5F i
O-. - — =T " - ! ! 1
80 85 90 95 100 105 110 115
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Risk neutral valuation

Appplyingm to the Black-Scholes PDE we

obtain

N H[t;X]:e_T(T_tX])
M\l‘ = < s

Lovndn B mmal, @Xv&%&i‘\m od P ‘bawm <
U AL g VWL OGlge Q -

@dynamics:

dSt = TStdt + JStthQa

dBt = TBtdt.

e Price = Expected discounted value of future
payments.

e [he expectation shall not be taken under the
“objective” probability measure P, but under the
“risk adjusted” measure ( “martingale measure”) Q.

Note: P~ Q [ Glicsom ) ) 2oiivaf o ot

Kl Ao \mfo{m,éi,@l VUL G ¢ g §ET,

Tomas Bjork, 2017 ; M 76



Concrete formulas

)= e { LN

& ZL L )T GLT)
OUM&T%E] o N \/g/ﬁww

Noe © Spe o €%p/ (ﬁ-ﬂ))% oW fsee 57 )
Toe At G wite SO e gt

w0, ®)- <" f (st 4642

¢ pns>
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Interpretation of the risk adjusted
measure

e Assume a risk neutral world.

e Then the following must hold

&
s=8y=e "E[S]

e In our model this means that

dSt — TStdt -+ O'StthQ

e The risk adjusted probabilities can be intrepreted as
probabilities in a fictuous risk neutral economy.

Tomas Bjork, 2017 78



Moral

e \When we compute prices, we can compute as if we
live in a risk neutral world.

e This does not mean that we live (or think that we
live) in a risk neutral world.

e The formulas above hold regardless of the investor's
attitude to risk, as long as he/she prefers more to
less.

e [he wvaluation formulas are therefore called
“preference free valuation formulas”.

Tomas Bjork, 2017 79



Quih WWQ@ | i im

Properties of

e Prng [ Giccomo)

e For the price pricess 7 raded asset, derivative
or underlying, the process

Uy
Zy = —
t B,

is a (Q-martingale. ( Aok cils Aoker \

f—\_/—/ﬁ

e Under (), the price pricess m of any traded asset,

derivative or underlying, has@as its local rate of
return:

dﬂ't — tdt -+ Or tthQ

e The volatility of 7 is the same under () as under P.

B

> anh ot lecbure 15 [Wfi .
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A Preview of Martingale Measures
EWC o Hwo owﬂr 1?? @EC-j

Consider a market, under an objective probability
measure P, with underlying assets

B, St ... S¥

Definition: A probability measure () is called a
martingale measure if

o P~ ()

e For every 7, the process

is a (Q-martingale.

Theorem: The market is arbitrage free iff there exists

a martingale measure. FT,%(P 1:
1 Lrmmdonnended, Haootm of 05H ?ﬁa’"‘éy y
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Appendix A: Black-Scholes vs Binomial
bodic: &wﬁ% (““( o Ko W>

Z
Consider a|binomial model for an option with a fixed
time to maturity 1" and a fixed strike price K.

e Build a binomial model with n periods for each
n=12,...

e Use the standard formulas for scaling the jumps:

u:emqm d:e_(“/A_: At:T/n] >0,
ALl <in
e For a large n, the stock price at time 1" will then

be a product of a large number of i.i.d. random

variables.
WW\@SW‘M

e More precisely \—y—ﬁ—wrﬁt—ﬁ—t‘ﬁfr_wfé =

@)
St = S0Z125- -+ Zy,

where n is the number of periods in the binomial
model and Z; = u,d. T, & wiwleer H U<
omd  A'¢ wabtes N@y/\/}ﬂi’ He oer >
Tomas Bjork, 2017 ooty Lrle  Suc(eiges /,{-MQM,(% 83
m Hruwowral w4l



Recall (/f/(/u/\n Ao Hae OUX—%Q?WMW MM)
St = S02125 -+ Zy,

e The stock price at time 1" will be a product of a
large number of i.i.d. random variablés.

o The)%/t:lrn will be a large sum of i.i.d. variables.
Loy STSUDQSO% 5 ﬁog >
e The Central Limit Theorem will kick in. /mm
OWutded

e In the limit, returns will be normally distributed. =
e Stock prices will be lognormally distributed.
e We are in the Black-Scholes model.

e The binomial price will converge to the Black-

Scholes price. /T )
L e v
oo (K;:@(n )
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Binomial convergence to Black-Scholes

11

T
- - -BS
Bin

105

10

9.5

Price

8.5

75 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50
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Binomial ~ Black-Scholes

The intuition from the Binomial model carries over to
Black-Scholes.

e The B-S model is “just” a binomial model where
we rebalance the portfolio infinitely often.

M ~

N ) \
e\ The B-S model is /’c\%’complete. Wefon Covug s

Latet)

e (Completeness explains the unique prices for options
N / -_—
in the B-S model.

e /The B-S price for a derivative is the limit of the
binomial price when the number of periods is very
large.

/WQQ S{%W\/&U) o~e a,(/{ww\u(ﬁ +Hw o< ewms.

0 Rawma (W 'BKMW.»L wvoobten Dode |l uéeC

M gRO N (evon on Exced )
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Appendix B: Portfolio theory
(Hir &9 o Logyy 5t (gmag, 5%)

We consider a market with /N assets.

S’ = price at ¢, of asset No i.

A portfolio strategy is an adapted vector process

hy = (hivvhiv)
where

h; = number of units of asset 1,

Vi = market value of the portfolio

N
Vi =Y hiS]
i=1
The portfolio is typically of the form
ht — h(t, St)
I.e. today’s portfolio is based on today's prices.

Tomas Bjork, 2017
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Self financing portfolios

We want to study self financing portfolio strategies,
I.e. portfolios where

e There is now external infusion and/or withdrawal of
money to/from the portfolio.

e Purchase of a “new” asset must be financed through
sale of an “old” asset.

How is this formalized? s ”24‘
/7 o ‘)

Problem: Derive an expression for dV; for a self
financing portfolio.

We analyze in discrete time, and then go to the

continuous time |limi

Tomas Bjork, 2017 88



Discrete time portfolios

We trade at discrete points in time t =0,1,2,....

Price vector process:

Sp=(St ---,8Y), n=0,1,2,...

n

Portfolio process:

hy=(ht, - RY), n=0,1,2,...

Interpretation: At time n we buy the portfolio h,, at
the price S,,, and keep it until time n + 1.

Value process:

Tomas Bjork, 2017 89



The self financing condition

e At time n—1 we buy the portfolio h,,_1 at the price

S,_1.
Fﬂ ce) (}"W"W S
i ém-—(—h'gw

n at the price

o At time@this portfolio is worth h,,_1

e At time n we buy the new portfolio
Sh.

e The cost of this new portfolio |

e The self financing condition” is the budget

hn—lsn — hnSn

Tomas Bjork, 2017 90



The self financing condition

Recall:

Definition: For any sequence 1, xo, ... we define the
sequence Ax,, by

Problem: Derive an expression for AV, for a self
financing portfolio.

Lemma: For any pair of sequences x1,x5,... and
Y1,Y2, ... we have the relation

A(xY)n = Tn-1AYn + ynAz,
(Ab&{l S Tuvmhn e /ehfwxu,u

- eny 4 —'7(» - Z X - —f ~ )
Do it yourself. o -0 28, 8¢

Tomas Bjork, 2017
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Recall

From the Lemma we have

AV, = A(hS)p = hn_1ASp + SuAh,,

Recall the self financing condition
hp—1Sn = hnSn
which we can write as
SnAh, =0

Inserting this into the expression for AV,, gives us.

Proposition: The dynamics of a self financing portfolio
are given by

AV, = h,_1AS,

Note the forward increments!

Tomas Bjork, 2017 92



Portfolios in continuous time

P —

Price process:
S! = price at ¢, of asset No 1.
Portfolio:

he = (hiv"'vhiv)
Value process

N
V=) hiS;
i=1
From the self financing condition in discrete time
AV, = h, 1AS,

)
we are led to the following definition. (lDy W(pﬁ% >

Definition: The portfolio A is self financing if and only

if N
Hor owe dV, =) hydS;
MM"/ =) ¢ o
ok T2
Tomas Bjork, 2017 w? \V\A-ﬁ(h \Lg'&‘("(/)
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[5%ﬂm%(%l
Relative weights

Definition:

w! = relative portfolio weight on asset No i.

We have .
. hySy

()
0y
t
Vi

Insert this into the self financing condition
N
dV, =) hjdS;
i=1

We obtain

Portfolio dynamics:

N .

-dS?

dv, =V, E w; Sj
i=1 t

Interpret!

Tomas Bjork, 2017
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Cecollo woo aLl Aét-/kgtahe 4 G‘St dcvxlb

Appendix C:
The original Black-Scholes PDE
argument

Consider the following portfolio.

ubo((owu
e Short one unit of the derivative, with pricing
function f(t,s): you Mo =1 as A gpuomtity

e Hold = units of the underlying S. CW @&* e JD)
[l-,p.ka we frud 4 fgond o]

The portfolio value is given by

V=—ft,S)+aS (-
v St bl Wh‘ua
The object is to choose xssuch that the portfolio is
risk free for an infinitesimal ipterval of length dt.

w{l %}wm H
We have dV =+ —df Wand from@m
i’“ il

_ fof of 1., ,0%f e
AV = {at+“sas+25"as2 At
of

— JSa—dW + zpSdt + xoSdW
S —
L, ASy
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@mww%i
of of 1 0% f

_ 0] 9] Ll 207
av = {xuS 5 S(?s 250 832}dt

+ JS{x—g}dW
0s

We obtain a risk free partfolio if we choose x as
Iashiahads

x—g (%&&pam&x}

GE

and then we have, after simplification, (vv\ Sé/‘*\‘“?) Ct

e (‘N\d\vj
[ Of 14 ,0°f
dV—{ o= oSt

Using V = — f + x5 and x as above, the return dV/V
is thus given by

2
v % -1525221

052
= dt
9
v ~f+ 5%
« . u
Reoacl: wot  doar whet the (/0245;1, peddems
a3t Vey 62 ore -

Tomas Bjork, 2017 96
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2
AV a{ 152 28f

83
= dt
4 —f+ 53
This portfolio is risk free, so absence of arbitrage
implies that
_9f _ 1g2,20°f l
ot 2 9s? _ r (5& Péo)
—f+ 53

Simplifying this expression gives us the Black-Scholes
PDE.

of of 5 282f
7*”%*‘ 952

|
o

—rf

f(T,s) = ®(s).

Tomas Bjork, 2017 97
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Continuous Time Finance

Completeness and Hedging

(Ch 8-9)

Tomas Bjork

Tomas Bjork, 2017
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Problems around Standard Black-Scholes

e \We assumed that the derivative was traded. How
do we price |OT C|products?
e Why is the option price independent of the expected

rate of return «a of the underlying stock?
F ?{@J\OM’M \we u,ggd/u/ \/\/\Q@@Cg Q/? VI/O'\’,A#\M

e Suppose that we have sold a call option. Then we

face financial risk, so how do we hedge against that
risk?

All this has to do with completeness.

b AS{‘“%%*O—iJW{‘/
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C/D@w lowkendy of A ot wall
Cetutw v V'W'l

Definition:

We say that a T-claim X can be replicated,
alternatively that it is reachable or hedgeable, if
there exists a self financing portfolio / such that

\/:% c \}‘l_/ -

V=X, P—a.s. ;,g%gq,j,,ke-r

In this case we say that A is a hedge against X.
Alternatively, h is called a replicating or hedging
portfolio. If every contingent claim is reachable we say
that the market is complete

Basic Idea: [f X can be replicated by a portfolio A
then the arbitrage free price for X is given by

I, [ X] = V.
[ ¥ o2 phco
(o dnsbe MWUW\B o e
& oﬁ'ﬁ‘)&”/\?
(e ) < vy yon sebl € 0 A hs;::'fTw

- \f
M""‘ o prk %Mda&w ond \""‘JW
Tomas Bjork, 2017 }é(::/:widx' & coss o PV - 1



Consider a replicable claim X which we want to sell at
t=0..

e Compute the price Ily [X] and sell X at a slightly
(well) higher price. [ﬁwrpo;& yow are able 9 Aottt |

e Buy the hedging portfolio and invest the surplus in
the bank.

e Wait until expiration date 7'

e The liabilities stemming from X is exactly matched
by V{f, and we have our surplus in the bank.

Tomas Bjork, 2017 101
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r

Completeness of Black-Scholes

Theorem: The Black-Scholes model is complete.

“M‘o'vbmffj" Lomckrory
Proof. Fix a _claim 7). We want to find
processes V/, @@such that FM\F@ 7
sitrlroS o

/“ﬁﬁ/&v_u {UthBt+ SdSt}

By e St

&;t+¢€ AW B

dVy = %{ufr—l—ufoz}dt—l—%ufadwt,

—7 %8 4 LS, =
Vr = (I)(ST). \/t:/& B t 'e",tg.k 7
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Heuristics:
Let us assume that X is replicated by % B )

with value process V. §[
Ansatz: (F%W(O%f fosed > K= gT WWB

‘/t:F(t,St)

lto gives us

1
dV = {Ft + aSF, + 502521783} dt + o SF,dW,

Write this as

F; + aSF, + 15282 F,, F,
dV—V{ o ;20 }dt+V@adW. (%)

Compare with X
dV:V{uBT—I—uSoz}dt—l— odW

fd\/\/] i db e R0y 4 (}OU/L&ZOCZ:Z
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| wr'rbtem)
. - Aax £t omd é‘t expliatly
Define u° by [’k“’”" W
S _ StFS(tv St)

T TRR, S,

This gives us the eqn //FOVV) (# ) ow (?-103/

% t02S?F,,
dV =V {C—W/F T-I-usa}dt—l- VuodW.
r

booin
Compare with

dV =V {uPr +v’a} dt + VuiocdW
Natural choice for u” is given by (vwd'd'\, e dE WMS}

5 F+50°5°Fy,
- rF ’

u
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The relation u” + 4 = 1 gives us_the Black-Scholes
PDE "

1
Fy +rSF, + §J2S2F88 —rF =0.

The condition
Vi = ®(Sr)

gives us the boundary condition
F(T,s) = ®(s)

e /

Moral: The model is complete and we/\have explicit
formulas for the replicating portfolio.

"tt""-’\)/l/t6 a \/Lg < P 1A
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Main Result

Theorem: Define F' as the solution to the boundary
value problem

1
Fy +rsF, + 50232}788 —rF = 0,
F(T,s) = ®(s).

4(&( St )

Then X can be replicated by the relative portfolio

(A’i’aw ALA
e

B — TS5 — SiFi(t, S) o, Y2 PE
g F(t,S;) ’

& _ SE(S)

! (ta St) .

The corresponding absolute portfolio is given by

&)
\}&\l*' \B el

'“’)o

hB . F(tv St) St (t St)
t _ Bt )

he = Fu(t,S),

and the value process V" is given by

VI =F(t,Sy).
[%@/ clx \oﬁ'ﬂo LQ/\/VMA&\ Y- L/)
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Notes %,

W
GkKC

/’7
e Completeness explains unique price - the claim is
superfluous! wekvwg wen” Guapared S and §
T Ca Ml wmadeet
e Replicating the claim P — a.s. <= Replicating the
claim Q — a.s. for any (Q ~ P. Thus the price only

depends on the support of P. W\/\/\/—L\/\Qﬁl \%i?

e Thus (Girsanov) it will not depend on the driftJ& of
the state equation.

e The completeness theorem is a nice theoretical
result, but the replicating portfolio is continuously
rebalanced. Thus we are facing very high
transaction costs.

o Aef suby e v b T
e Q&) amd wmdn WW@Q, rc&u:‘U«\
%V\,_gﬁié%} \[{74 Fé—t‘gfs . V'V;t(:/&ﬁw -~ « PVV\a dﬂ"‘w‘

Medge A
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Completeness vs No Arbitrage

Question:
When is a model arbitrage free and/or complete?

Answer:
Count the number of risky assets, and the number of
random sources.

R = number of random sources

N = number of risky assets

Intuition:
If N is large, compared to R, you have lots of
possibilities of forming (clever )portfolios. Thus lots
of chances of making arpitrage profits. Also many
chances of replicating a given claim.

- &:T/@

wt - 4 (£6

(bW
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Meta-Theorem W

CC/OW(?M&JC@ st A=l Wt AE -

Vi CU/\/MW\ ot UN\/? Y EN C\f \Zj/\/l/\\cn
Generically, the following hold. T WAW“M;)

e The market is arbitrage free if and only if

N <R

e The market is complete if and only if

N>R

Example:
The Black-Scholes model. R=N=1. Arbitrage free
and complete.

— tod v kwe Qo <
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Parity Relations

Let ® and ¥ be contract functions for the T'-claims
= ®(S7) and Y = ¥(Sy). Then for any real
numbers a and 3 we have the following price relation.
II; [a® + Y| = oll; [®] + GI1; [¥] .
P ¥€/j\/\\/\4&v\~* \Ca q?';}é D‘f Lic @

Proof. Linearity of mathematlcal a‘bl’mj{/

M@“’W«w{?
Consider the following “basic” contract functions.

Ps(zr) = =, H@AA\L.D‘(L L o o
Pp(z) = 1, Volue o 1)
Qo x(z) = max|z— K,0].
Prices:
_ \ L]
IT; [®s] = S, i o o
Ht [(I)B _ e—r(T—t)’
I [Pc k] = c(t, Sy K, T).
gt/I\woJcashm 0 %& %T/)
Tomas Bjork, 2017 ’9& -ncz ﬂ "{’QLL . J(FM
A vwor2)



, L e
If we have /Gﬂ R Gt A S Wkt §trike =

® = adbg + BPp + Z viPo K,
i=1
then
I1; [®] = ol [®g] + BIL [P 5] + Z Ville [P, K]

1=1

We may replicate the claim & using a portfolio
consisting of basic contracts that is constant over
time, i.e. a buy-and hold portfolio:

e o3, ()

e « shares of the underlying stock,

e [3 zero coupon T-bonds with face value $1,

—

e v, European call options with strike price K;, all
maturing at 7'

fﬂ-
Tomas Bjork, 2017 <\-~\M£



Put-Call Parity

Consider a European put contract
(I)p’K(S) — INax [K — S, O]

It is easy to see (draw a figure) that
(¢ unple alytlra, )

(I)p,K(JZ) = (I)C,K(JZ) —s+ K
- %K(x) — Bg(z) + Bpz) K

We immediately get

_ ~v(T-t)
Put-call parity: 7

p(t, s; KiJ = c(t, s; Ky — s + l@

Thus you can construct a synthetic put option, using
a buy-and-hold portfolio. [, dt4 oo call @@hm\

- " \‘5 : ‘e \ﬂ O(Z, )
Tomas Bjork, 2017 C Q/C/(/ /Pﬁﬂ) g ” . B 112



Delta/Hedging

Wil W by do ot T “6\‘%@\1/3“, for
Consider a fixed claim —me Ao unsn

X = &(Sy)

with pricing function

Pit,s). (¢ F Lo S ) vk %fg>

Setup:
We are at time ¢, and have a short (mterpret') position
in the contract. CM/\M W Hal Coudvoth )
Goal:

Offset the risk in the derivative by buying (or selling)
the (highly correlated) underlyingj agz}mk haw 7

Definition: g;o b “5//%%

A W in the unde/lglmg is a delta hedge against
the derivative if the portfolio (underlying + derivative)

iIs immune against small changes in the underlying
price. L0 e s forteot aios

Arivarsen vn Heo Senge v (ALulS
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Formal Analysis

L
S e T
e
(<

f fr0
—1 = number of units of the derivative product

x = number of units of the underlying

s = today's stock price

t = today's date ;&7 S

Value of the portfolio:
V=-1-F(,s)+x-s
A delta hedge is characterized by the property that

v _, Z\/LA gengs e 0

B g )

OF
—%+$—O

We obtain

Solve for z!
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Result: /

We should have
oF

ds
shares of the underlying in the delta hedged portfolio.

T =

Definition:
For any contract, its “delta” is defined by

RocodX -
(;K/:;ZFO C/JM/\” >
Result:

We should have
r=A

shares of the underlying in the delta hedged portfolio.

Warning:
The delta hedge must be rebalanced over time. (why?)

/\ @1,/; ‘
( e = AJO = ’@zlhg&\ , MPWJ;>
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Black Scholes

For a European Call in the Black-Scholes model we

have
A = N(dy] = 7{ N[o") 20 )
g1, B
NB This is not a trivial result! %ngi@ﬁ sl

From put call parity it follows (how?) that A for a
European Put is given by

A= Nld] -1
_ _?[N[OJ1>>0M < 0

Check signs and interpret!
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Rebalanced Delta Hedge

e Sell one call option attime ¢ = 0 at the B-S price F'.

e Compute A and by A shares. (Use the income
from the sale of the option, and borrow money if
necessary. )

e Wait one day (week, minute, second..). The stock
price has now changed.

e Compute the new value of A, and borrow money in
order to adjust your stock holdings.

e Repeat this procedure until ¢ =71'. Then the value
of your portfolio (B+S) will match the value of the

option almost exactly.
P IC y %
u”

| g

ot ool

Tomas Bjork, 2017 117



e Lack of perfection comes from discrete, instead of
continuous, trading.

e You have created a “synthetic” option.
(Replicating portfolio).

Formal result:
The relative weights in the replicating portfolio are

S-A

us =—

up =

[ﬁ& (p'\oé,\mjfCL A‘Fsé%g%B)
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Portfolio Delta

Assume that you have a portfolio consisting of
derivatives

®;(Sty), i=1,--,n
all written on the same underlying stock S.

F;(t,s) = pricing function for i:th derivative [Sjcrfs)
OF;
A; = -
0s
h; = units of i:th derivative

Portfolio value: N
1= Z h;F,
i=1

Portfolio delta:

Ap = zn: hil;
1=1
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Gamma

A problem with discrete delta-hedging is.

e As time goes bij will change.

e This will cause A = %—Z to changei Ceo Fag{, (€

e : It L
e Thus you are sitting with the wrong value of delta.

[w% o Loty Hw wistands)
Moral:

e |f delta is sensitive to changes in .S, then you have
to rebalance often.

e |f delta is insensitive to changes in S you do not
need to rebalance so often, o« Y“QWM woe Ak all
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Definition:
Let II be the value of a derivative (or portfolio).
Gamma (I') is defined as

oA
0s
l.e. . M.r.,aw,
2
F:(?H/ T it {ﬂo‘/‘gﬁ
0s? = phtew T
Gamma is a measure of the sensitivity of A to changes
in S.

I —

Result: For a European Call in a Black-Scholes model,
I' can be calculated as

/B@W\é@v)

SJT

Important fact:
For a position in the underlying stock itself we have

r—o (towial 1)
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Gamma Neutrality

A portfolio II is said to be gamma neutral if its
gamma equals zero, i.e.

I'm=20

e Since I' = 0 for a stock you can not gamma-hedge
using only stocks. 4##&# Typically you use some
derivative to obtain gamma neutrality.

— Gt 71 Wkt Do o
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General procedure

Given a portfolio IT with underlying S. Consider two
derivatives with pricing functions F' and G.

rr = number of units of F

rca = number of units of G

)

Problem: 0
Choose xr and zg such that thportfolio is
delta- and gamma-neutral.

Value of hedged portfolio:

V=I+zr - F+acg-G

Tomas Bjork, 2017 123



(¢ :
%Que of hedged portfolio:

V=Il4+zrp-F+2c-G

We get the equations

A% 0. / M/L&u \/LQ/V"WQ’Q’)

0s
; N Wbmf/\
oV _ o WM
0s?
l.e.
An+2rpArp+2cAg = 0,
I'n+zpl'r+2cl’'e = 0

Solve for xr and z! /@W gy5amn \novn ouv
Uiyl Gvton ) )
Vo geatgol 905 \f G in
N,F(:'\"uj(w\'ha, M.Q‘&(m& .-@MF
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Particular Case

so0bt
e In many,cases the original portfolio II is already
delta neutral.

e [hen it is natural to use a derivative to obtain
gamma-neutrality.

e This will destroy the delta-neutrality. j@ﬁ( Hre no
poctA v
e Therefore we use the underlying stock (with zero
gamma!) to delta hedge in the end? viost UD%

Tomas Bjork, 2017 125



ﬂk

8w
. ;(,(a\*]
Formally: M"’”
V=T+a2p F+as- 8 (@<
Ang+zrArp+2sAs = 0,
I'm+zplp+2sl's = 0
We have a,%VV‘""Y’bM w ? y
Ag = 1
's = 0.
l.e.
Aq+xzrAr+xs = 0,
I'm+axpl'yr = 0
SOMQ'M-(/) Tr — _F_H
I'r
Arl
Ls = = H_AH
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Further Greeks

oIl
@_E’
oIl
V—a—a,
_ om
'0_87“

V is pronounced “Vega".

NB!

e A delta hedge is a hedge against the movements in
the underlying stock, given a fixed model.

e A Vega-hedge is not a hedge against movements of
the underlying asset. It is a hedge against a change
of the model itself: ¢ » » wwel Pafounstor
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Continuous Time Finance

The Martingale Approach

I: Mathematics
(Ch 10-12)

Tomas Bjork

a pw% Howreheal Lochuwre

Tomas Bjork, 2017
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Introduction ?fow%

In order to understand and“to apply the martingale
approach to derivative pricing and hedging we will
need to some basic concepts and results from measure
theory. These will be introduced below in an informal
manner - for full details see the textbook.

Many propositions below will be proved but we will
also present a couple of central results without proofs,
and these must then be considered as dogmatic truths.
You are of course not expected to know the pToofs of
such results (this is outside the scope of this course)
but you are supposed to be able to use the results in
an operational manner.

S buowledge,
poct 5f youwr +toolktt .
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Contents

1. Events and sigma-algebras

2. Conditional expectations

3. Changing measures

4. The Martingale Representation Theorem

5. The Girsanov Theorem
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Events and sigma-algebras
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Events and sigma-algebras

. \ A
C bOO]/(/- 54%0\/2/ A~ BCQ\M}M"W 4
" oo "t pudonar s

Consider a probability measure P on a sample space.
2. An event is/s\i/% a subset A C Q and P(A) is
the probability that th&event A occurs.

For technical reasons, a\probability measure can only
be defined for a certain ‘p\ig\e;’:/c\lg\s; F of events, so for
A € F we are allowed to write P(A) as the probability
for the event A.

For technical reasons the class F must be a sigma-
algebra, which means that F is closed under the usual

set theoretic operations like complements, countable f
intersections and countable_ unions. ’

Interpretation: We can view a o-algebra F as
formalizing the idea of information. More precisely: A
o-algebra F is a collection of events, and if we assume
that we have access to the information contained in F,
this means that for every A € F we know exactly if A
has occured or not.

7{0\0ﬁ‘o‘§6ﬁj SPace U e APl (‘SZ)T_)/P)
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Borel sets

Definition: The Borel algebra B is the smallest
sigma-algebra on R which contains all intervals. A set
B in B is called a Borel set. ‘

Remark: There is no constructivé definition of B, but
almost all subsets of R that you will ever see will in
fact be Borel sets, so the reader can without danger

think about a Borel set as “an arbitrary subset of R".
o~V

T .0

gl Ryl , Ao 4 cloed =24

s
[;OMA@ ¢ ‘506”6076(’&1’ wwbﬁ?‘%)
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Random variables
gé%axu -1

An F-measurable random variable X is a a mapping
X:Q— R

such that {X € B} = {w e Q: X(w) € B} belongs
to JF for all Borel sets B. This guarantees that we are
allowed to write P(X € B). Instad of writing “X is
F-measurable” we will often write X € F.

This means that if X € F then the value of X is
completely determined by the information contained in

F.

If we have another og-algebra G with G C F then we
interpret this as “G contains less information than F.

5 Gud o (pbte Boe—
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5 Stort s lebwrd Aa s

2.
ﬁiﬁfw Conditional Expectatlon / 56%/\\&] 2 5)
x| < 0o,
vy (%égf J X € R P fea'

3l ReR (3G s 1
- é
/E?u& - B XA, \%ce% [%[w\% «/[

N aNs e

Gk avwv/;\1 0 a4 s 7 T
OO\/L”U’B(N\W(/ ZXM()&QA\MW
X W% e I .
¢ [rl] unseat ot

Tomas Bjork, 2017 .
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Conditional Expectation

If X € Fand if G C F then we write £ [X|G] for
H\Vevconditional expectation of X given the information
contained in G. Sometimes we use the notation E; | X].

The following prcfpo%tlon contains everything that we
will need to know about conditional expectations within

this course. [\ ¢
Gt B, e Aoe Al e EEGP) =
”EZX/\m ig@x/x§+ 6(“%5

oo
[:W\;\m\& 7t PV%/:W . seﬁ— un ’P\@—I:u(c

(7§ Ay @UCORW\S) \//\ n

%
% Y
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Main Results

Proposition 1: Assume that X € F, and that G C F.
Then the following hold.

e The random variable E [ X | G] is completely determined by
the information in G so we have

B(X|6leg  (by Aofnrio)

e If we have Y € G then Y is completely determined by G so
we have

FE[XY|G]|=YFE[X|J]

In particular we have
ElY|g]=Y
o If H C G then we have the “law of iterated expectations”

/ E[E[X|G]H] = E[X|H]
o c ooy WAtin resato A ﬁﬂ%WSB

e In particular we have

E[X]=E[E[X]|F]]
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Changing Measures
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Changing Measures
Sockmn B-&

Consider a probability measure P on (£,F), and
assume that L € F is a random variable with the

properties that
L>0

and
EY (L] =1.

For every event A € F we now define the real number
Q(A) by the prescription

Q(A) = E"[L - I,]

where the random variable I4 is the indicator for A,
l.e.

B 1 if A occurs
A4 0 if A°occurs

YI wor e A, wstead T /B
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Recall that
Q(A) = EV[L - I4]

We now see that Q(A) > 0 for all A, and that
Q) =E"[L-Io)=FE"[L-1]=1

We also see that if AN B = 0 then

QAUB) = EY[L-IauB]=E"[L - (I14+Ip)]

= EPY[L- 14+ EY[L-Ig]

= Q(A) +Q(B)
/GMW/!/) v Lk AAS ot ons )
Furthermore we see that)

P(A)=0 = QA)=0

We have thus more or less proved the following

VAV

Tomas Bjork, 2017
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Proposition 2: If L € F is a nonnegative random
variable with E¥ [L] =1 and Q is defined by

Q(A) = EV[L - 14]

then () will be a probability measure on F with the
_probability m

property that for VB Yov wee
el alle Mﬂf/kb\/Hy (e )
P(A) =0 ?\ Q(A
| turns out that the property above is a very important
one, so we give it a name.
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Absolute Continuity

Definition: Given two probability measures P and ()
on F we say that () is absolutely continuous w.r.t.
P on F if, for all A € F, we have

P(A)=0 = QA)=0

We write this as
Q << P.

If Q << P and P << () then we say that P and ()
are equivalent and write

Q~P

[M 0@%6&@ naon Q=7 \\
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Equivalent measures

It is easy to see that P and () are equivalent if and

; G
only if | gt ame

P(A)=0 < QA= ?[%)794_@&[&)70

or, equivalently,
1(8) ) @ Q@)Z

PA)=1 & Q4)=
(bovle ot Complencarto

Two equivalent measures thus agree on all certain
events and on all impossible events, but can disagree
on all other events.

Simple examples:

e All non degenerate Gaussian distributions on R are
equivalent.

o If P is Gaussian on R and () is exponential then
() << P but not the other way around. (WE%? }
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Absolute Continuity ct'd

We have seen that if we are given P and define () by

QUA) = EP[L-1,] (4

for L > 0 with EY[L] = 1, then Q is a probability
measure and () << P. .

A natural question is now if all measures () << P
are obtained in this way. The answer is yes, and the
precise (quite deep) result is as follows. The proof is

difficult and therefore omitted.

Tomas Bjork, 2017 144
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The Radon Nikodym Theorem

Consider two probability measures P and @ on (2

The random variable L is denoted as

e

L=
dP’

on F

and it is called the Radon-Nikodym derivative of ()
w.r.t. P on F, or the likelihood ratio between () and
P on F.

Tomas Bjork, 2017 145
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A simple example

The Radon-Nikodym derivative L is intuitively the local

> local
scale factor between P and (). If the sample space (2
is finite so 2 = {w1,...,wy,} then P is determined by

the probabilities pq, ..., p, where

pi=Plw;) i=1,...,n

Now consider a measure () with probabilities

qi:Q(wi) izl,...,n

If () << P this simply says that
pi=0 = ¢=0

and it is easy to see that the Radon-Nikodym derivative
L =dQ/dP is given by

L(wi):% i=1,...,n [Qz«g P¢>O>)

)
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If p; = 0 then we also have ¢; = 0 and we can define
the ratio ¢;/p; arbitrarily.

If p1,...,p, as well as q1, ..., q, are all positive, then
we see that () ~ P and in fact

dap 1 dQ\~
dQ ~ L \dP
as could be expected. ‘
Note on wobatiow: EPX o T wihee as
Cle Lebesque  mntegrat (% 4P
Tww € (LT, = (L-‘ﬂm AP (*)

(2)
buk &U‘)[ & (=21 - S“’" Ia \
Wl Apcwally by A0 d WG

martw as e
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Computing expected values

A main use of Radon-Nikodym derivatives is for the
computation of expected values.

Suppose therefore that () << P on F and that X is

a random variable with X € F. With L = dQ/dP on
F then have the following result.

Proposition 3: With notation as above we have

E°[X]=E"[L-X],
(yag = ((Lxdp (e Lz 4L oo

AP
Proof: We only give a proof for the simple example
above where 2 = {wy,...,w,}. We then have
EC[X] = ZX wi)q ZX wz
= ZX(% EY[X L]
1

Tomas Bjork, 2017 148



The Abstract Bayes’ Formula

We can also use Radon-Nikodym derivatives in order to
compute conditional expectations. The result, known
as the abstract Bayes’ Formula, is as follows.

Theorem 4: Consider two measures P and () with
(Q << P on F and with

Lf:;l—g on F

Assume that G C F and let X be a random variable
with X € F. Then the following holds

B” [L7X|g]
EP[L7]4]

W Agind ATt
pbﬁ@mwﬁ( L EEX = “épfl/x? -
(ga bo@'k ?{OPO({’BM B- 4| )

Tomas Bjork, 2017 149

E?[X|G] =




Dependence of the o-algebra

Suppose that we have ) << P on F with

Lf:;l—g on F

Now consider smaller g-algebra G C F. Our problem

Is to find the R-N derivative Uoske J«M&ﬁ Ao

We recall that LY is characterized by the following
properties

1. Q(A)=FET |[LY9-14] VAeg
2. LY >0

3. EF L9 =1

Teg)
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A natural guess would p,\e/r\fl\a/[?/s be that LY = L%, so
let us check if L7 satisfies points 1-4 above.

By assumption we have

Q(A)=E"[L” -14] VAeF

Sinc we then have

Q(A)=E"[L7 - 14] VA e@

so point 1 above is certainly satisfied by L. It is
also clear that L7 satisfies points 2 and 3. It thus
seems that L7 is also a natural candidate for the R-N
derivative LY. but the problem is that we do not in

general have L7 € G. % Iﬁ”qg ¥ i gemecal.

This problem can, however, be fixed. By iterated
expectations we have, for all A € G,

Qp)= BV 1a] = BV BV [L7 - 14| 6]
\—W\_'__/
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Thew yw’towv forwmla Boppwas
a2 (@ IF T )

Since A € § we have

B (L7 - 1,] 6] = B” [L7|6] 14

L define LY b
et us now deftine y wg\@w
L9 =EP[17]G] , wRl e
T oo L g
o

We then obviouslyshave LY € G and w*

Q(A)=E"[LY-14] VA€

It is easy to see that also points 2-3 are satisfied so we
AV g

have proved the following result.
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A formula for LY

Proposition 5: If Q << P on F and G C F then,
with notation as above, we have

Lg:EP [Lﬂg] ?

=4

/\;%L\?mm& was Yuud e Wannsle do

AMM éﬁwpu A/) . < , ~

A b Rond T a omdRm yaaalle wnttu m@{;
(< A >0 o™ K,

/Gf) il \Q&. A S5 4?7 o~ qﬁ&\

T Poull 65—@/\ O ?@Bﬂ%&fgmawm M

F= %f Pucel, sets , e

2 oy, Tyx) de . @)
AP (74 /@(ZS J 3&' (%} r@%‘/[%)

Tl 7 S wormel donsbies Lo, £go

Tomas Bjork, 2017 .
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—2 Sart vl Ltture §a

—

The likelihood process on a filtered space

We now consider the case when we have a probability
measure P on some space (2 and that instead of just

one o-algebra F we have .e. an increasing
family of o-algebras {F;},~

The interpretation is as usual that F; is th@
available to us at time ¢, and that we have F; < F;

for s < t.

Now assume that we also have another measure (),
and that for some fixed T', we have () << P on Fr.
We define the random variable L1 by

LT:@ OHFT

dP o o (P.\’SO
Since () << P on Fp we alsm<< P on F

for all t < T and we define

=% o7 ()<t<T 4

dP W(UM/
(& A9
For every t we havelLf € Fi so L is an adapted

process, known as the likelihood process. .

Nk arowm X o adaptod G 2 {t rechim

Tomas Bjork, 2017 ..(:3 154
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The L process is a P martingale

We recall that

d
Lt:d_g onF 0<t<T

-16%
Since F, C F; for s < t we can use Propogi)tion 5 Jand

deduce that

L,=FEY[LJ|F,] s<t<T

and we have thus proved the following result.

Proposition: Given the assumptions above, the

likelihood process L is a P-martingale.
e

v ‘ Y.?’\w(ﬂwgcﬂ b at
A procny X Ao o 0% H

((\WLL ir adapied G o fatrabom 155,
L) IR \<= 1T
() E [ \Tﬂ? Xs
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Where are we heading?
(WL/\/L W%DU@W@ (howe Ao ompid Hio! )

We are now going to perform measure transformations
on Wiener spaces, where P will correspond to the
objective measure and () will be the risk neutral
measure.

For this we need define the proper likelihood process L
and, since L is a P-martingale, we have the following
natural questions.

e \What does a martingale look like in a Wiener driven
framework? (Lc\u, Blode. Sdaon Kw%\

e Suppose that we have a P-Wiener process W and
then change measure from P to (). What are the
properties of W under the new measure ()7

These questions are handled by the Martingale
Representation Theorem, and the Girsanov Theorem

respectively. s AW ( 3;;
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4.

The Martingale Representation Theorem

k%é%wu . 7>
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Intuition AR

RN i

Suppose that we hav?a&/mener process W under
the measure P. We recall that if h is adapted (and
integrable enough) and if the process X is defined by

’ X, =z + / h.dWV,
0

then X is a a martingale. We now have the following
natural question: D

Question: Assume that X is an?artingale.
Does it then follow that X has the form
'
X: =20+ / hdW
0

for some adapted process h?

In other words: Areﬂmartingales stochastic integrals
w.r.t. W7
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Answer : No//éwe -

It is immediately clear that all martingales can not be
written as stochastic integrals w.r.t. W. Consider for
example the process X defined by

0 for 0<t<1
Xt:
Z for t>1

where Z is an random variable, @@Eﬁﬂof W'NQM

with E'[Z] = 0. OWQXQQ“PWK E&b\:&] T %75
X is then a martingale (why?) but it is clear |(how?) 9 __
: : AU N
that it cannot be written as RS
— : p(.ucf
t ’7L mka’(‘ &l’ 645(,\
X =x —I—/ hsdWs A

for any process h. S.o X+ (P%é \ vawgb VI
¢ ({Z94 e

Tomas Bjork, 2017 6-(%3 ,+7 I -




Intuition

The intuitive reason why we cannot write

t
X =x9+ / hsdWs
0

in the example above is of course that the random
variable Z "has nothing to do with™ the Wiener process
W. In order to exclude examples like this, we thus need
an assumption which guarantees that our probability
space only contains the Wiener process W and nothing

else.

This idea is formalized by assuming that the filtration
{Fi}+>0 is the one generated by the Wiener
process W, — &~

%;; U’CWg) St ). O\ MWWW

Ve 3
““n No’r m&ar‘fbﬂ 4o 'tf/w)
/("\wabm
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The Martingale Representation Theorem

Theorem. Let W be a P-Wiener process and assume
that the filtation is the internal one i.e.

| artingale X, there exists a
: n-adapted process h such that

t
t =T —I-/ hSdWS,
0

Then, for ever
real number x

dXt — htth .

Proof: Hard. [This is very deep result.

Cruciah jo ok X o adagest
%b W"QM;%&\@D%M
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Note

For a given martingale X, the Representation Theorem
above guarantees the existence of a process h such that

t
X, = x—l—/ hodW,,
0

The Theorem does not, however, tell us how to find
or construct the process h.
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The Girsanov Theorem

Sechsimg W2, 122
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Setup

Let W be a P-Wiener process and fix a time horizon
T'. Suppose that we want to change measure from P
to () on Fr. For this we need a P-martingale L with Sg)
Lo = 1 to use as a likelihood process, and a natural

way of constructing this is to choose a process g and
then define L by

dL; = gy dW; éﬁo o ooy
{ L= 9 gk o wackipl)

This definition does nof, guarantee that L > 0, so we
make a small adjustment. We choose a process ¢ and

define L by \]Ur&\u 6&7{%(@ {WWC@O

st = Ltgﬁtth e
@Q { : &0«%1'“*8(
The process L will again be a martingale and we easily

obtain I 2
Lt_e()@sdws 5 Jo psds 9
AW%W T focumtn o by A2 #<° ot @ Wm

Tomas Bjork, 2017 L /]D Z%-bw“ Al ,Q[%\ 6 ( (&d\f\\g‘il‘@ﬂ(dé
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Thus we are guaranteed that L > 0. We now change
measure form P to () by setting

dQ = L;dP, on F;, 0<t<T

(r (f ] .
The main problem is to find out what the properties

of W are, under the new measure (). This problem is
resolved by the Girsanov Theorem.

U RLeodh v 2Q= L AP amd,
Lz & (e /)
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The Girsanov Theorem

Let W be a P-Wiener process. Fix a time horizon T..

Theorem: Choose an adapted process ¢, and define
the process L by

Vv [ dLy = LypdW, (%)
,DBQ \S\O Ao 06 { LO 1

Aﬂlume hat EX [L7] = 1, and define a new mesure Q
on Fr by

dQ = L;dP, on F;, 0<t<T

Then Q << P and the process W<, defined by

t
W =W, — / pods

0
is ()-Wiener. We can also write this as

AW, = odt + dW X

*) T 4t Wity @), | & a \MM{"’MOILLC (4<T)
Tomas Bjork, 2017 ) P 166
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Changing the drift in an SDE
[S@Ck‘wcm \1'53
The single most common use of the Girsanov Theorem
is as follows. ((¢{sted 4o bs Lo wrodels )

Suppose that we have a process X with P dynamics
) dX, = pedt + o dW;

where 1t and o are adapted and W is P-Wiener.

We now do a Girsanov Transformation as above, and
the question is what the ()-dynamics look like.

From the Girsanov Theorem we have
dW; = pydt + dW,? (@a% 166 )

and substituting this into the P—dynamicé%]we obtain
the () dynamics as

dXt = {ut + O'tgﬁt} dt +@th@

Moral: The drift changes but is

unaffected, 7 Weamiug Hiad e \éup - W/\Mﬁ

Tomas Bjérk, 2017 e S ’g@wtjﬂ_ Q167
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The Converse Girsanov Theorem

Let W be a P-Wiener process. Fix a time horizon T..

Theorem. Assume that:

e () << P on Frp, with likelihood process

d
Lt:d—g, OﬂftO,StST

e [ he filtation is the internal one .i.e.

Fi=0{W, 0<s <t}

Then there exists a process ¢ such that

Lo = 1
[ \g) Aot ) B oL
pote P s T e
Tomas Bjork, 2017 168
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Continuous Time Finance

The Martingale Approach
Il: Pricing and Hedging
(Ch 10-12)

Tomas Bjork
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Financial Markets [& F@cc%O

Price Processes:

St — [SE,,S{V}

Example: (Black-Scholes, S¥ := B, S :=9)
dSt — OéStdt + O'Stth,
dBt = TBtdt.

Portfolio:
he = [hy, ..., by ]

h! = number of units of asset 7 at time t.

Value Process: \Jgﬁ‘s(
QP
v
V= hiS;=mS
{ ; ¢ t\z - \,e,(k"’
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Self Financing Portfolios

Definition: (intuitive)
A portfolio is self-financing if there is no exogenous
infusion or withdrawal of money. “The purchase of a

new asset must be financed by the sale of an old one.”

Definition: (mathematical)
A portfolio is self-financing if the value process
satisfies

dV, = Z hidsS:

Major insight:(z((ow\ WM/ ’wa’vg’)?
If the price process S is a martingale, and if h is
self-financing, then V is a martingale.(wots %SQW\WMQ

NB! This simple observation is/in fact the basis of the
following theory. XA&D‘H&

Tomas Bjork, 2017
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Arbitrage

fu / t
The portfolio ¢ is an arbitrage portfolio if (W\&’(w V=V

e The portfolio strategy is self financing.

o 1h=0. ZOX‘—’*/‘ .
0 S P (N+ M{wr

{o Vir é(), P —a.s. (MA"W X s w ¥ 56

B

(\AA,‘
e P(Vr>0)>0 ot
[4uin hap LS EP EVr] >0.

Main Question: When is the market free of arbitrage?

IV R WOV TV Leew # &r’oibmj(/
apd A o o GF f@‘lwamc}\m? ?”"’@0&0 wit

& (VTZO)C" ;

o ?[VT~70):OI Lo

w-;-(,y'[’(\/..l_’—‘ O):?
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First Attempt s

Proposition: If S,---, 5" are P-martingales/ then
the market is free of arbitrage.

Proof: by
Assume that ¥ is an arbitrage strategy. Since

dV, = Xﬁ%%

V' is a P-martingale, so (L«chwco
c i

Vo = EF [Vp]

a,xMcA—mxw
M/}ww \[r V)

> 0/

<oz ?C{,\/\&O(AS ]9&2@

This contradicts V; = 0.

True, but uselessg 1 s> Q%%

(bw‘c o we L see ) Hee
AN o ?mw‘c on Mﬁou‘/‘/“""bﬁ)
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Example: (Black-Scholes)
dSt — OéStdt + O'Stth,

dBt = TBtdt.
web esdigtic

(We would have to assume thatm

We now try to improve on this result.

W
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Choose S; as numeraire
(\o*k, ok nv\UY\v\aC\.-B(d‘ '*(-\ULQB

Definition:
The normalized price vector Z is given by

D

, = , ¥4 LT
7, = gg 1,2}, ... 2] @”M?y“

WWHW

The normalized value process V7 is given by

N . .
=Y hizi
0

Idea:
The arbitrage and self financing concepts should be
independent of the accounting unit.
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Invariance of numeraire

Proposition: One can show (see the book) that

e S-arbitrage <= Z-arbitrage.
e S-self-financing <= Z-self-financing A\i: Ly ds &
SO we b fust talo o SdE-fFuanc

Insight:
e If h self-financing then

N wote tlsdt w=
dV/ =) hidz; da't s d zw_o>
1

e Thus, if the normalized price process Z is a P-
martingale, then V# is a martingale, brclgmnonk

an \o.(/,(q—(b.
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Second Attempt
o wetemabiged Procsis

Proposition: If Z?,--- ZN are P-martingales, then
the market is free of arbitrage.

True, but still fairly useless.

\
\7@ O graaznit S 2

Example: (Black-Scholes)

dSt — OéStdt + O'Stth,

dBt TBtdt r
Uécf(wv albwbwwfo ruﬂ(g( W@“@wh&mw %%:W

5%
Bt
o geb dzy = (a—r)Zidl+oZ{dW,,

dZ) = 0dt.

We would have to assume “r%meutrality” l.e. that
fx

a=r. ty Luxe 20 M/U‘\"WL@A(/C
bBut

Tomas Bj('j[rk, 2017?('“(/‘1)\,{,, DL? ( l,&*/(// Wl (Q Cea "{(Ala%;

”ebwmwmé wded QL.
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Arbitrage

Recall that A is an arbitrage if
p- 3

e h is self financing

® V():O.
e Vr>0, P—a.s. VTZ'OI L -n-s.
« P(Vr>0)>0 O (N-70)> 0

of measure!

20 = RIAWD
Ve & "Ql& %VPUZ:\ ’I\L s q(we! o tgd O P)({}

? U)‘\'7’() i
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Martingale Measures

Definition: A probability measure () is called an
equivalent martingale measure (EMM) if and only
if it has the following properties.

e () and P are equivalent, i.e. (W“A“U/’Q Miw’d

Q~P

e The normalized price processes

-_S;f

Z;_S—?, i=0,.... N

are Q-martingales.
e

¢
W#®» now state the main result of arbitrage theory.
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First Fundamental Theorem
of Asick Frithy (FTAP 1)

Theorem: The market is arbitrage free
iff
there exists an equivalent martingale measure.

/(—\/l/:/:’ ‘KC\WWV‘ wan WLM? Gavunomn . o P?l
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Comments

e |t is very easy to prove that existence of EMM
imples no arbitrage (see below).

e The other im#plication is technically very hard.
VRN A

e For discrete time and finite sample space €2 the hard
part follows "easily from the separation_theorem for
convex sets.

M”"w&""

e For dlscrete time and more general sample space we_

e For continuous time the proof becomes technically
very hard, mainly due to topological problems. See
the textbook.

—> Ewnd "b’f( Leckurt 5 &—
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— Skaxt Y lockure 04 <«—

o hase b 80 “NP:L@EHM")
Proof that EMM implies no arbitrage

Assume that there exists an EMM denoted by Q.

Gasiue o MM\o ¢ opporbumity

Assum that ‘P(Vy >0) =1 and P(Vy > 0) > 0. VA
Then, smce P ~ @ we also have Q(Vp > 0) =1 and

QUr>0>0 Wy B f)>o |

0

Recall:
N
dv7 =Y hydZ|
\_./\
Tl > !
oo P(@:E. (2 is a martingale measure
0o wH Gtk i ov.
"y | !
Z is a (Q-martingale [I’tﬁ‘ ‘W\Mr&j
J
VO VO _ZEQ [VT]>O[00VU{:YMM
VO o 2
by |

No arbitrage

Tomas Bjork, 2017 182
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Choice of Numeraire

The numeraire price S can be chosen arbitrarily. The
most common choice is however that we choose S as
the bank account, i.e.

S?:Bt

where
dBt = TtBtdt

Here 7 is the (possibly stochastic) short rate and we
have
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Example: The Black-Scholes Model

dSt — OéStdt + O'Stth,
dBt = TBtdt.

—t
Look for martingale measure. We set Z,= S/B e

— Skpandend Calislns opves | ol etog,” x produok -

) T o weded | 47, = Z,(a — r)dt + ZuodW,
M b wboaws
W 0 wian Taiw > (60\«)

Girsanov transformation on [0, T7:

st = Lt@ttha
Lo = 1.

dQ) = LrdP, on Fr

Girsanovis«w 3 6&)
P d tZQOtdt‘l—thQ, /éb>

where W@ is a Q-Wiener process. (wiereon W
P— Wwvw’

Tomas Bjork, 2017 34



Tueet (6 vinko [ba).
The Q-dynamics for Z are given by

dZ, = Z,la — v + o] dt + Z,odWE.

|
Unique martingale measure @, with Girsanov kernel
——

given by

Q2
r—a Huow 6&%{’ %ﬁcﬁdwb;
a

o

Pt =
Ma,‘(/lffmg-n:x.l
Q-dynamics of S: nggry, (b6) Vints s m s oy

dSt — TStdt + O'StthQ.

Conclusion: The Black-Scholes model is free of
arbitrage, an —follows freun p-1d2 emle (Ve
Rvse, wow B ok § n am EMM

2 U & wmatrugple woder &
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Pricing

We consider a market B;, S}, ..., vai (ww\fwa "‘SI‘@’ asyets))

Definition:
A contingent claim with delivery time 7', is a random
variable

X € Fr.
“At t = T the amount X is paid to the holder of the
claim”.

Example: (European Call Option)

X = max [St — K, 0]

Let X be a contingent (T}claim.

Problem: How do we find an arbitrage free price
process II; [ X] for X7?

Now Appeoate: uge €0t hampe ol weasuce ~framenore
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Do, O 1 oo b bge fiem 3o grotess
- 1F o Cdaded worleet O a(\a W@Q{(@e

/ Solution
Z/«/\Aj{a ﬁ\g%{/
Them

B, S} ... SN I, [X]

TTAP 1.
must be arbitrage free, so there must exist a martingale
measure @ for (S, I1; [ X]). In particular

1 [X]
By

must be a Q-martingale, i.e. Wt donn B wans
prphecy

o
(= TX)= f& TTM +[l E‘Q[E&ﬂx \T{]

Since we obviously why7) have

HT [X] ‘ ]_—t]

[Ir [ X]| =X
we have proved the main pricing formula.
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Risk Neutral Valuation

Theorem: For a T'-claim X, the arbitrage free price is
given by the formula | Clwite (663,

I, [X] = E@ [e— Jif rsds o X‘ Ft} )

ot e o entavmtited o Pt

Notw: ot ok wee wed e o
?L7v\w\m- koc ~€0fv\wt(lu bo arnt

g, Stanse, ﬂt[x§,\awﬂt wged @
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Example: The Black-Scholes Model

(Q-dynamics: l
—
dS; = rSudt + oS dw .\ #)

N SM&HMW?(O&%WM&J

Simple claim:
X = ®(Sy),

Mart o/ prshetny gves
I [X] = e "TOEQ[0(Sr)| 7] (pe(3d )

_ T-) 8
Kolmogorov = & 7 ﬂi‘(%.)lg,t]
T (K) i fwavion ¥ [rand) s, :

II; [ X] = F(t,5})

where F'(t, s) solves the Black-Scholes equation:

)
. %—f + 7“3%—5 + %0232%271; —rF = 0,
\ F(T,s) = ®(s).

wse “f“ujmm, koc omdh e worel ®) -
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Problem

Recall the valuation formula

(-0
I, [X] = EC [e— Jif rsds X‘ ft} r ng{

e\

What if there are several different martingale measures
Fﬂ/f

Q7

This is connected with the completeness of the
market.

Tomas Bjork, 2017 190



Hedging (fcwu ploo)

£

Def: A portfolio is a hedge against X (‘replicates
X") if

e h is self financing
o V=X, P—a.s.: 'F(\/‘Tz X\:’[

Def: The market is complete iffﬂ X can be
hedged.

NW K:Ci%

Pricing Formula: =
If h replicates X, then a natural way of pricing X is

Ht[X]:Vth (S(L P-\’(H fov a
olwit—'a—f'fcah’m )

When can we hedge?
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Existence of hedge

0

Existence of stochastic integral
representation

J

f I
W\A{{’E{v\ﬁ‘;‘u rév'{éwﬁl‘k.\m -%ﬂ,{)f(/vl/)
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Fix T-claim X.

If his a hedge for X then N= % omd

CVE= XK cecall Ha oimalinpd B

I
2, S wWdvare 8- WW/
e h is self financing, i.e. By )

K
=Y hydzi , p- 7O -
1

\/ii; ™ (\l?’r \?Jc]

X
Br

b Xcam,(m/f’u/%u/ \maﬁ.

Thus VZ is a Q—mal'rtingale,

= e X

.

-5 Gk ol tbowe b &=
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_76—130\,({ zf WWT‘C éé <

~ / led
W enthfse Kher pREVIOW? ettt which
o P't@'b'
Lemma:
Fix T-claim X . Define martingale M by

1°)

Suppose that there exist predictable processes
—) L, ~=-= AR
h'. ... h" such that

X
M; = E9 | —
=95

N t
M, =z + Z/ hidZ:,
i=170

Then X can be replicated.

-1
#)N‘%M Huaw Y‘T%T"X e 4T
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Proof
We guess that (’fv“ VC\’)@LCM‘IW\/)

L )

My =VZ=h- 14+ hiZ

i=1
VKV\MMM%A @M’b account
Define: hP by

N [
he =M, — > hiZ}. [t € %gﬂv@”>
=1

We have M; = V%, and we get | [73 LSSUrapR I

N v
V7 = dM, = hidZe', oy aSumphim
i=1 ¥ o P\7L17

so the portfolio is self financing. Furthermore:

s e
T N7 =K -

[
Tomas Bjork; s 195
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Second Fundamental Theorem

FT/W 2]

The second most important result in arbitrage theory
is the following.

Theorem:

The market is complete

iff

, the martingale measure () is unique.
Proof: It is obvious (why?) that if the market

iIs complete, then () must be unique. The other
implication is very hard to prove. It basically relies on
duality arguments from functional analysis.

, £
g/l/ o UA VOT) - /X _ Q[‘A')
Tomas Bjork, 2017 / 'E (A 196
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Black-Scholes Model

S}
(Q-dynamics (((. cedl T g

dSt = Tstdt + JStth{
dZ, = ZiodW | see p-185-

CQ win d tL Mmickwa/uu &3

oo X w

Representation theorem for Wiener processes

4

there exists g such that 8
(4 we wmow Kk by &, ar gmesdzd |”'3r Wt)
t
M, = M(0) + / g, dWE.
0
Thus S t
M, = MO+/ hidZ,,
0
with h} = e
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Result: (1w VIV SN 3"%”)\6%/5

X can be replicated using the portfolio defined by

h% = gt/O'Zt,
hf — Mt - h%Zt

Moral: The Black Scholes model is complete.
Uoce we drom weeh (20 o p. 02 )

Mk K o 0 Yoo T x=§ s

buk e wie pegels)-
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imple Claims /

Assume X is of the form/ X = ®(S7)

Special Case:

WWWW/
MMX‘\\A_K@(L, —> M;=E®[e7"0(Sr)| F poct
Kolmogorov backward equation = M; = f(t, S;)& S v &
(M mrppgmg\v ward equation ¢ = f(t,S) (t’lar\@’)
f _|_,r.88f _|_ 1 2 2(?925 — O’ Tgﬁr‘
f(T,s) = e ®(s).
— ? (_Lo
1t8 :>&H Wﬂ% A d)L+.(l§§S+( -PSS@,S) US(/( /L 9&:/
th = O'St%dWQ (ﬁ\/‘/}?’”‘.‘g’i 106 )

El% 5o We ko w Hl “dostrnct " %

of Fibg) = ¢ F o)
- g = O'St %, = g .QCE'S)‘
Replicating portfolio7: L olée Wb%
hy = f—Sf?—f,
! _ b — %3¢ 1 af
f{j_ G%JC Z“ = ht — Bt%

Interpretation: f(t,S;) = V2 WMMXJ phee
47{@@% ot A
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Mv\mn’w\é\l/:%m) .
| nowminal bricnm g TUumcdm
Define F'(t, s) by /

F(t,s) =¢e""f(t,s)= Q,'E(F(;E,S’)

=

- o2

A S

s0 F(t,S) = Vi Then fp, prev € (17 o

B F(t,St)—St%—?(t,St)
B! kL |
1 OF
ht — E(tv St)

where F' solves the Black-Scholes equation

|
=

oF OF | 1.2 20°F _
5r T rsgy 3078 57—k
F(T,s)

P(s).

i P& o0 p-1fg 24
= _ 3,26 ad g
%ic(?gg%Jr V%%\%/m’ toc et
owdieore )
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SV\W‘W\MK; Main Results

e The market is arbitrage free < There exists a
martingale measure Q ([ 2TAP L)

e The market is complete < () is unique. [FTAP L)

e Every X must be priced by the formula

I, [X] = E° [6_ Ji' reds X X‘ ]—"t} , bowap [J—M'ti-{“/

for some choice of ().

e In a non-complete market, different choices of ()

will produce different prices for X, WX i wet MW

e For a hedgeable claim X, all choices of () will
produce /the same price for X:

t[X]:Vt:EQ[ - T8d8><X‘f4

&LMQ/ T, (K= &b o ¥ O~ ‘»r-t—@&o
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Completeness vs No Arbitrage
Rule of Thumb

Question:
When is a model arbitrage free and/or complete?

Answer:
Count the number of risky assets, and the number of
random sources.

R = number of random sources

N = number of risky assets

Intuition:

If N is large, compared to R, you have lots of
possibilities of forming clever portfolios. Thus lots
of chances of making arbitrage profits. Also many
chances of replicating a given claim. [M oy d7-103)
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Rule of thumb

Generically, the following hold.

e The market is arbitrage free if and only if

N<R

e The market is complete if and only if

N>R

Example:
The Black-Scholes model.

dSt OéStdt -+ O'Stth,
dBt = ?“Btdt.

For B-S we have N = R = 1. Thus the Black-Scholes
model is arbitrage free and complete.
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Stochastic Discount Factory
’j)f'l&v'v:? /Envm&v wndes P

Given a model under P. For every EMM () we define
the corresponding Stochastic Discount Factor, or

SDF, by

Dy=e Jorsdsp, = LJC/ 2y,
where

L, = @, on F;
0 Hdy Wt Ly ar

<‘£here is thus a one-to-one correspondence between
MMs and SDFs.

The risk neutral valuation formula for a T-claim X can
now be expressed under P instead of under Q.

Proposition: With notation as above we have o ¢% %
Aol wgyy the Weasure Phut Wit taat Q o, "h
1
I [X] = HEP [DrX| F
t

Rosbaast Suart 0 U“M elz L !
Proof: Bayes' formula; T [X \ﬁ /P )/’c] (ga 0 l”lg)
—_ v
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Martingale Property of S5 - D

Proposition: If S is an arbitrary price process, then
the process

SiDy

is a P-martingale.

Proof: Bayes' formulamdw\m <
Gy, v dL,  WT E { \\J\T]

D
EP{& 7] ¢
J;?%“ -
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Continuous Time Finance

Dividends,

Forwards, Futures, and Futures Options

Ch 16 & 26

Tomas Bjork
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1. Dividends
o
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Dividends

Black-Scholes model:

dSt — OéStdt + O'Stth,
dBt = TBtdt.
New feature:
The underlying stock pays dividends.
| . ) - o€
B ot el wﬂ’(.«/ M%W'F’r Aidcovnnty %
D; = The cumulative dividends over

the interval [0, ] [W\UL L L Sy, “‘5*)

Interpretation:
Over the interval [t,t + dt] you obtain the amount dD;

Two cases

e Discrete dividends (realistic but messy): Wwe $UF¢|,

e Continuous dividends (unrealistic but easy to

handle). \JA fock difforodicile an
W Bl ger
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Portfolios and Dividends

Consider a market with N assets.

S! = price at t, of asset No i

D! = cumulative dividends for S over

. v
the interval [0,t] , D=0
h! = number of units of asset i

Vi = market value of the portfolio h at ¢

Assumption: We assume that D has continuous
trajctories. W‘ﬂ“—rrweh'a%e

Definition: The value process V is defined by

N . .
V=) hiSi
1=1

[0 befrit )
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Self financing portfolios
L ?’fC%ACL 15%« AN (LS

Recall:
N . .
Vi=> hiSi
i=1

N/Defmltlon: The strategy h is self financing if

N
dV, =)  hydG,
=1

1

where the gain process G* is defined by

WopiEawar | 4
bede vo W ase | dGi = dSi + dD: SR o
— /Y TIPS &
AP / g‘l
Interpret! o P ¢

Note: The definitions above rely on the assumption
that D is continuous. In the case of a discontinuous
D, the definitions are more complicated.
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Relative weights

u! = the relative share of the portfolio value, which is
invested in asset No .

u; _ h%SZ' [Vln W/@rﬂ&>

Vi

N % VA k
v, =" hidG: (7%
1=1

Substitute!
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Continuous Dividend Yield

Afont i atle

Definition: The stock S pays a continuous dividend
yield of ¢, if D has the form (W\'\""\/ 01/3 a)

growtlo 42y in poprctimal to S, vk @ 4

Problem:
How does the dividend affect the price of a European
Call? (compared to a non-dividend stock).

Answer:
The price is lower. (why?) Vow caw guiss. -
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Black-Scholes with Cont. Dividend Yield

01 S lﬁ&@—é@/ -7 dSt = OéStdt —+ O'Stth,

Gain process:

th — (Oé + Q)Stdt + O'Stth

Consider a fixed claim
X = ®(S7)
and assume that

I, [X] = F(t, ),

sl by Somt Yoy FrE2ety an loefoe -
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Standard Procedure | {apwilior

b\a,waw

Assume that the derivative price is of the form

I, [ X] = F(t,S;).

Form a portfolio based on underlying S and
derivative F', with portfolio dynamics w4 St prejesty:
—

dG

St
!

v

+ Uy -

L —J

7 dF} (oowogjﬁz

Choose u° and uf such that the dW-term is wiped
out. This gives us a,v&v\%uallﬁ, oftov Computatious)

dVy = Vi - kdt

Absence of arbitrage implies

]Ct:T

This relation will say something about F'; oo Laforz .

Tomas Bjork, 2017
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Value dynamicsérW) ;

dG dF
_ . S FYE
dV =V {u S +u F}’

AR\ &}‘f’rg dG = S(a + q)dt + o SdW. (?WJ‘/EG‘AS F"’Z‘)

From Ito we obtain

dF = apFdt + opFdW,
where we we e Frorhomd  wetai N

¥ OF OF 1 , ,0°F

ap = F{@ OJS% —O'S 832}
1 oOF
OF = F O'S%

Collecting terms gives us

v = V- {u(a+q)+u"ap}dt
+ V-{usa+uF0F}dW,
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Define ©® and u® by the system

S F

u-oc+u op =

u’ +uf’ =

Tomas Bjork, 2017
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Solution Z(’% Vg 2# Q—>

OF
uS — y
O — 0

—0
uF — y
O — 0O

Value dynamics (OW\/ wows w“?@(’ow v f{elvzz,bhm)
aV =V -{u(a+q) +u"ar}dt.
Absence of arbitrage implies ZWWWC Mj \wumt)

u’ (o +q) +ufap =,

« S adub
~ PO UM
We get/%(m@» KR auwd TF vf P

OF oF 1, ,0°F B
at+(r—q)5% —O'S——TF 0.

0s2
(very | )
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Pricing PDE

Proposition: The pricing function F' is given as the
solution to the PDE

OF OF 1 4, ,0°F
——I—(T—Q)S%—I—§OS@—TF = O,

ot
/[ F(T.s) = (s).

d 0\46‘0 Were
We can now apply Feynman-Kac to the PDE in order
to obtain a risk neutral valuation for

Mdey G Rglowauteal weea gl K. Mﬁf“?ﬁ;\s
& W
s AS, - [0 ”l/\gi AL > ‘75(6 Ay et a“.
g, s o) (w4
%{c [F £ q:[_th‘QJ at,)s

H 9=0 e are bade am
tle D’CdL. wbuak' o .
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— Staxrks 7t lecbure o

Risk Neutral Valuation

The pricing function has the representation 2L Aot
g with bl

ceo t
F(t,s) = e "TYE2 [&(Sr)], e

where the ()-dynamics of .S are given by

dSt — (7“ — Q)Stdt + O'StthQ.
-~

Question: Which object is a martingale under the

meaugre Q7 T R _Si. I (Z(' ,6?
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Martingale Property

Proposition: Under the martingale measure () the
normalized gain process

t
GZ = ¢S, + / e~ "dD,
0

prsp turn cowracd
is a (Q-martingale. kD prront Cate

~% Q
Proof: Exercise: $how A&i: 2 G‘Stdwt ;V\O&% o
Note: The result above holds in great generality, fe= p223-

Interpretation:
In a risk neutral world, today's stock price should be

the expected value of all future discounted earnings
which arise from holding the stock£tese wclude didennds

t ~ |
s 9 [ ap, s oors] 5 ERES,
0 Moo K47
?r‘ICQ/

Lo Propodihon upm vuoﬁ’a\% &7 = < ﬂ[
221

Tomas Bjork, 2017



Pricing formula
ot

Pricing formula for claims of the type

We are standing at time ¢, with dividend vyield gq.
Today's stock price is s.

e Suppose that you have the priciEg function
Fo(t, s) = ,ij (%),Wﬁw"‘ 5_[;’6 -

for a non dividend stock.

C——

e Denote the pricing function for the dividend paying
stock by
Fi(t, s)

Proposition: With notation as above we have

Fi(t,s) = F (t, se_q(T_t))

Tlur w Dreroise 1625
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Moral

Use your old formulas, but replace today’s stock price
s with se=2(T—1),

LN

= Qurliot eqgree
IR T o
_ e (7-%)
b SZ ' <2 gmg M2
1 B O - %
o 1,8
=9, ¢ Y (%) L
M ¥ (419 ot & %wrW“‘Mc
v \wréxt::w W’mc&@ v
¥ O
sl
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European Call on Dividend-Paying-Stock

Fit,s) =se {TON[d] —e "T"VKN [dy] .
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Martingale Analysis

Basic task: We have a general model for stock price S
and cumulative dividends D, under P.M do we find
a martingale measure (), and exactly which objects will
be martingales under ()7

wedrd 9 ,,u,(,w, o mmﬁmaauw%

Main Idea: We attack this situation by reducing it
to the well known case of a market without dividends.
Then we apply standard techniques.
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The Reduction Technique

e Consider the self financing portfolio where you keep
1 unit of the stock and invest all dividends in the
bank. Denote the portfolio value by V.

e This portfolio can be viewed as a traded asset
without dividends. (s, +ey disappeur b i o acn

e Now apply the First Fundamental Theorem to the
market (B, V) instead of the original market (B, .5).

e Thus there exists a martingale measure () such that

%ﬁ is a () martingale for all traded assets (underlying

and derivatives) without dividends.

e In particular the process

Ve
B,

is a () martingale. Next Wt S-‘ww'k V.
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The V Process

Let h; denote the number of units in the bank account,
where hg = 0. V' is then characterized by
\VF(G\M Prernova paye

Vi = 1-S5i+ B (1)
-—
s_? wv‘);ﬁ""l J? '2“
From (1) we obtain ATy
( v(ow ﬂ;.l»(.)
dV; = S, + hydB, + Bydhy 1t i@wwx

Comparing this with (2) gives us
1
Bidhy = dDy  amd &Wg& < _E:I} A

Integrating this gives us
t
1
h — _dDS
=[5
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We thus have

¢
1

Vi=5:+ Bt/ —d D (3)
o Bs

and the first fundamental theorem gives us the
following result.

Proposition: For a market with dividends, the
martingale measure () is characterized by the fact
that the normalized gain process &% Vp  codbisfis

Bt
S t 1
Z _ Pt -
GF =+ / D,

is a () martingale. //{4 o P ZZ) hui {(OM &~

Quiz: Could you have guessed the formula (3) for V7
@ w : 7
Awotbax iy \sthe i you -
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Continuous Dividend Yield

Model under P

dSt — OéStdt + O'Stth,

th = qStdt
We recall ( P- N0 7r°3’°§‘hmxt G
S 1
zZ _ Mt ~- 2 4 an
\ G ‘|‘/ B_Sst - 2,(: [{aé

] "B

\{D}Jp t

Easy calculation gives us (unacr P)
/

dGY = Zy (o — 7+ q) dt + ZyodW;

where Z = S/B.

Girsanov transformation d() = LdP, where

dLy = LipdWy (’6” Ermre f@k)

We have
6
AW, = dt + dW? A ‘)

Insert this into dG¥4
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The @ dynamics for G4 are

dG? = Z, (a — 1 + q + o) dt + ZyodW S

Martingale condition

a—r+q+op; =0 OZ‘N-‘Ct: Y

/

g )
(Q)-dynamics of S : A4 = “S,{;M a 5% (0\"‘/ ’\‘th Ak

g’l ves

dSt — St (Oé -+ O'QO) dt -+ StO'thQ

~
Using the martingale @ this gives us the Q-
dynamics of S as

Tomas Bjork, 2017 230



Risk Neutral Valuation

Theorem: For a T-claim X, the price process II; | X]
is given by

I, [X] = e " T YEY[X]| F),
where the ()-dynamics of .S are given by

dSt — (7“ — Q)Stdt + O'StthQ.

okt Moot ¢ agppancs (snby)
w tha R- A/ﬁwa.wuﬁc,s D:F S{

— A vt L bwre ’—}(0<—/
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2. Forward and Futures Contracts

Tomas Bjork, 2017 232



Forward Contracts

A forward contract on the 7T-claim X, contracted
at ¢, is defined by the following payment scheme.

o-h_’—\

e The holder of the forward contract receives, at time
T, the stochastic amount X from the underwriter.

[9 T - wieapralds
e The holder of the contract pays, at time 7', the
forward price f(¢;7T, X) to the underwriter.

e The forward price f(¢;7T, X) is determined at time
E/wl b S waasuretie

e The forward price f(¢;7T, X) is determined in such
a way that the price of the forward contract equals
zero, at the time ¢ when the contract is made.

at the time€ ¢

— Yok
(wM\WS&";\V‘g coatha _Fﬂowsl Swép b% ‘Ymd:AW
ek 0 2°)
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General Risk Neutral Formula

Suppose we have a bank account B with dynamics
dBt = TtBtdt, BO =1

with a (possibly sE/ch/_agu_".c) short rate rghen
0 appte R
F-(aca,fg

and we have the following risk neutral valuation for a
T-claim X %g/_[; , Bre Ty
,[x] = B9 [e it x| 7] (X
= By E&{Z'_L a5 X lq:’c]
Setting X = 1 we have the price, at time t, of arl’ze/ro\‘

—_—

coupon bondj_maturing at T as
|

t
B, = efo rsds

p(th) = [° [e_ ftT rsds ft} - b‘LE&[ ‘é/c’rjl\qi’]
CQ& sl boll, Sectson 2y ,1'} M\\\/ ;,,&"M%ﬁ‘
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Forward Price Formula

Theorem: The forward price of the claim X is given
by

1
p(t,T)

ft,T) = E9 [e— S reds | X‘ ft}

where p(t,T)
coupon bon

enotes the price at time ¢t of a zero
maturing at time 7.

In particular, if the short rate r is deterministic we have
- ———

f(t.T)=E?[X|F]
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Proof .w"g
Y
(0
The net cash flow at maturity is X — f(¢t,T). @the
value of this at time ¢t equals zero we obtain

IL [ X] =1L [f(¢,T)]
We have (’V""" P 7%4)
I, [X] = E¢ [6_ Ji reds. X‘ ft}

and, since f(t,T') is known at t, we obvioysly (why?)
have (S debwiviun o Pl T )on o/ 234

[} =) e LA )] = (6, T) 10, T

. . . Lot
This proves the main result. If r is deterministic.then

p(t, T) = e~"(T=Y) which gives us/the second formula.

T

T, [fb)] = Feom Ew)\@
~ 1\74_657'3 ’
(d?’}'-m(a‘ok
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Futures Contracts

A futures contract on the T-claim X, is a financial

asset with the following properties.

(i)

1 ~WMasusable

At every point of time ¢t with 0 < ¢ < T, there exists
in the market a quoted object F'(¢;T, X), known as
the futures price for X at ¢, for delivery at T.

At the time T’ of delivery, the holder of the contract

pays F(T; T, X) and receives the claim X, boHn, @,—-

So F(T,7, %) =X Wagu Cable—

During an arbitrary time interval (s,t| the holder

of the contract receives the amount F(t;7T,X) —

F(s;T,X). "The cashflow F(e)w,ﬂ \N!Lo. Wee A
Arndead_

The spot price, at any time ¢ prior to delivery, for

buying or|selling the futures contract, is by definition

equal to rero.

K 0 WE o —Ft,utwwrajrr‘)cz_
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Futures Price Formula (fcf/‘\'w‘ 292)
wh d’)mﬁwém @,w)
From the definition it is clear that a futures contract
is a price-dividend pair (S, D) with
V\D'%m Hee

S = O, th = dF(t, T) %/g‘bﬁt >
D.t: F(b,’(:)
From general theory, the normalized gains process
? ZZ@S y g p

S, t 1
G = — —dD,
t Bﬁ/o B,

is a (Q-martingale.

Since S =0 and dD; = dF(t,T) this implies that

ok M{
Lare,T) . @”M

——— B "
[ ugnally ot tte Lype €, HWd o
is a\martingale increment] which implies (why?) that

3\%}.;\)@‘: dF'(t,T) is a martingale increment. Thus F' is a
v

@—martingale and we have
wa J’Wﬁmglb‘\nt
F(t,T) = E° [F(T,T)| 7] = E?[X| F]

cec P 237 ('W)
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Thin proves:

Theorem: The futures price process is given by

w b \A,\/\"“]‘)

F(t,T)=EY[X|F]. AP

Corollary. [f the short rate is deterministic, then the

futures and forward prices coincide.
— _——
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3. Futures Options
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Futures Options

We denote the futures price process, at time t with
delivery time at 1" by

F(t,T).

When T' is fixed we sometimes suppress it and Wrijc$c ot
F, ie F,=F(T) L vadive (W SPTT
O/ web o portiod gons ¥ )
Definition: X
A European futures call option, with strike price K and

exercise date T', on a futures contract with delivery date
T Wlll’wt T, pay to the holder: T<Tﬂ
e The amount F(T,7T1) — K in cash. ¥

X= (F(rT)—-K)

e A long postition in the underlying futures contract.

NB! The long position above can immediately be
C|8S€d at no cos}, &0 %am v ﬁC"',’Ta)—t)T
AL §pot B of A Lukure Ko B0
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Institutional fact:
The exercise date I' of the futures option is typcally

very close to the date of delivery of the underlying T}
futures contract.
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Why do Futures Options exist?

e On many markets (such as commodity markets)
the futures market is much more liquid than the
underlying market.

e Futures options are typically settled in cash. This
relieves you from handling the underlying (tons of

copper, hundreds of pigs, eKc.)/./Loms ch P0£-oc(2026

e The market place for futures and futures options is
often the same. This facilitates hedging etc.
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Pricing Futures Options — Black-76

We consider a futures contract with delivery date T} (/Hpu()
and use the notation F} = F(t,T1). We assume the
following dynamics for F'.

dFt = /LFtdt + O'Ftth

Now suppose we want to price a derivative with exercise
date 7" with the Ti-futures price F' as underlying, i.e.

a claim of the form
el

®(Fr)

This turns out to be quite easy.
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From risk neutral valuation we know that the price

process 11, [®] is of the form [, Lianae Lo
Wplace $f wikte Fe) g J g

Ht [(I)] — f(tv Ft)

where f is given by 5 W

£t F) = e“T“ B(Fp)

so it only remains to find the ()-dynamics for F'.

We now recall (ﬁ’m (P-Z??)

Proposition: The futures price process F; is a (-
martingale.

Thus the ()-dynamics of F' are given by

A
o ’w\'\
dF, = oFdW® 3  No &%

Node, Huh Hoe difusion coeffioant 1 s
g ’P’( Q,e\/?’ seL 'Prcv‘\ou,sqwﬁb‘
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We thus have
f(t, F) = e "TOER, [@(Fp))
with ()-dynamics

dF, = o F dWE

Aon b.220
Now recall,the formula for a stock with continuous
dividend vyield @

f(t,s)5 e " TTVEL [(ST)]

with ()-dynamics

dSt — (?“ — )St + O'StthQ

Note: If we set ¢ = r the formulas are identical!
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Pricing Formulas

Let f°(t,s) be the pricing function for the contract
®(ST) for the case when S is a stock without dividends.
Let f(¢, F') be the pricing formula for the claim ®(Fr).

Proposition: With notation as above we have
(bode T F 1)
f(t, F) = fo(t, Fe 1)

Moral: Reset today's futures price F to Fe "(T—%)

and use your formulas for stock options.

Guailard cpry, rpU g, Wi ©
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Black-76 Formula

The price of a futures option with exercise date 7" and
exercise price K is given by

c=e "T"D{FN[d] — KN [ds]}.

b= () ehr o}

—5 Bad &) Lcbure 3o -
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Continuous Time Finance

Currency Derivatives

Ch 17

Tomas Bjork

(EOWC”(}W éﬁaﬁw% Mardkebs )
(£X )
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Pure Currency Contracts

Consider two markets, domestic (England) and foreign

(USA).

r? = domestic short rate @,bv\z,mflg,
) ' -

r foreign short rate WL{Z - l
X = exchange rate

NB! The exchange rate X is quoted as

units of the domestic currency

unit of the foreign currency

j{» /lemgg 4‘)0\? M,&D/W
]
X=
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Simple Model (Garman-Kohlhagen)
v-Fw—HAL MM@L T

The P-dynamics are given as:

)(} dXt = XtOédt—l-XtO'th,

g%ﬂ%y { dB} = r'Bfdt,

dB! = r/Bjdt,
® t iy
L, sy
s VRN

Main Problem:
Find arbitrage free price for currency derivative, Z, of
the form

Z =®(Xr)
Typical example: European Call on X.

Z = max [X7 — K, 0]
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Naive idea

For the European Call, use the standard Black-Scholes
formula, with S replaced by X and r replaced by 7.

Is this OK?

W\ . . 1/\
émc'?) TR cLuz}xb\m/\,
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NO!

WHY?
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o
B
Main ldea SgJ(" o
w’*f&“ 7

e When you buy stock you just keep the asset until
you sell it. (o sntovest o M&d:S)

e When you buy dollars, these are put into a bank
account, giving the interest /.

0 S
%“MU(\NL
Moral: /"‘"Mj .

Buying a currency |s_@. buying a /c]wdend—paymg &

stock with dividend yield ¢ = r/. T

(e, leyps fFQuc,hAMV“"a,

0 oud boue oacmont o, the
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Technique

olTransform!aII objects into domestically traded

asset prices.

e Use standard techniques on the transformed model.
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Transformed Market

—

1. Investing foreign currency in the foreign bank gives
value dynamics in foreign currency according to

dB! = /B dt.

il
2. B/ units of the foreign currency is worth X - Bg in
the domestic currency. (Xft p;";)

3. Trading in the foreign currency is equivalent to
trading in a domestic market with the domestic
price process

Sf _ pf <. thuo & T2
Bt - Bt Xt 'be?f'D(W!N{;‘QVI
4. Study the domestic market consisting of
~————
B, B¢
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Market dynamics

S\AVV\\MQ(?N
dXt = Xt()édt + XtO'dW

Bl = B/ X, <. domesic peices

Using 1t6 we have domestic market dynamics

dB] = Bf(a+r)dt+BfadI2/ be QWL
dBy = r'Bidt (X W Mr‘“w
VNW v O\/

Standard results gives us ()-dynamics for domestically

traded t ; o 42 =Y
rade prices: [w(\k Ap e ™ 373

it + B cdW

Rl _
dBt =
fd\ Aﬂv\wsho e est ‘(’j:q’

dB¢ =
It gives us Q-dynamics for X, = B/ /B/:

dXt Xy (rd — rH)dt + XtadWQ
) Jg“c (wo 83 o)
Tomas Bjork, 201@ -
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Risk neutral Valuation
g A Gt ¢ty A2 VeoR ve

Theorem: The arbitrage free price II; [®] is given by
Ht [(I)] = F(t, Xt) where

F(t,z) = e " TDEQ [®(X7),
The ()-dynamics of X are given by[ See qmae ZS'})

dX; = X, (r* — r1)dt + XoodWE

—s) Fbjmvvlwv\.a K&\(/ ((«)-g(/g(,vgl—ai'\m«‘.

fives cdokion 4o PDE
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Pricing PDE

Theorem:The pricing function F' solves the boundary
value problem

P M 2y,
L~
(A )
oF p P OF 1 5 50°F p B
at—l—x(r T)ax—l—zxaax2 r'F = 0,
F(T,z) = ®(x)

o Gwnilartty Wi Tauilo {5 AiA bl |
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Currency vs Equity Derivatives

Proposition: Introduce the notation:

o FU(t,x) = the pricing function for the claim Z =
®(X1), where we interpret X as the price of an

ordinary stock without dividends.

e F(t,x) = the pricing function of the same claim
when X is interpreted as an exchange rate.

Then the following holds

F(t,z) = Fy (t,:ce_rf(T_t)) :

L diidend Case, sw Q22
ke FY (AR amd o by *)
Gan d_ é{/ *((,r)(m,u\ wtle (
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Currency Option Formula

The price of a European currency call is given by

F(t,z) = ze " TN dq] — e TR N o],

where

dy = J\/;i_t{ln(%)+<rd—rf+%a§()(T—t)}

dg — dl(t,x) —O'\/T—t

Appy 2am g e pomktamts, Huo 2
M e fofwnla ar U p-22Y ‘@—(
dwo ke A< .
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S Pok 51’ ‘lLUcww ﬁﬁ,é/

Martingale Analysis

Q¢ = domestic martingale measure

Q/ = foreign martingale measure
dQ’ dQ* dQ’

L, = Q ) L;l — Q ) L{ — Q
dQ“ dP dP

P-dynamics of X
dXt Xt()étdt + XtO'tth
where « and o are arbitrary adapted processes and W

Is P-Wiener.

Problem: How are Q¢ and Q7 related?

rO% Ly ﬂr (PUKSL )
bt aw amc,wg?
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Main ldea

Fix an arbitrary foreign T-claim Z.

e Compute foreign price and change to
currency. The price at t = 0 will be

o [2) = XoB?' [e= o ridsz] - fordhq" ot

. . ”
This can be written as Lot S5 2
My [Z] = XoEQ" [LTe— fo dSZ}
_>2Z2> 32Xt
e Change into domestic currency at T and then
0 ~Nange
_~ computenarbitrage free price. This gives us
Aoweshe

I, [Z] = EQ" [e— fo réds x.. Z}

e These expressions must be equal for all choices of
Z € Fr.
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/)%’@

‘Tﬁm fd:l,mns mf-zaj '
We thus obtain

£’ [e— Jo rids x, . Z} — X,EQ" [LTe— Jo desz}

fo -claims Z. This implies the following result[(eflﬁde

ittt )
Theorem: The exchange rate X is given by
L

X, = Xgelori—rddsp, = B‘ :

B\ L

T \ t
alternatively by ;
D
X¢ = Xthd

where D¢ is the domestic stochaftlc discoun
etc. \}7%?20(1, 5‘0 %/D)

Proof: The last part follows from

L_de_de dQ* _ L"F

- dQd dP/dP ‘L’ﬂr
4

A %(P,b_,d,é(o(ﬁd/)xm
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(Q?-Dynamics of X b

X
In particular, since L is a f%martingale the Q<

dynamics of L are of the form

(4 dL; = Ly dW2
where W< is Q%Wiener. From ZT’@\W\ ow g ,’2,6'43
() x, = xpehitri-rhas,
the (Q%-dynamics of X follows s ff(c\m (ﬁ\\)(é) owd TAO 118

aX, = (4 — ) Xt + x| (G of work)
(ompore 40 0253 (we whwh) ps tondude ot

& the Girsanov kernel ¢ equals the exchange rate
- volatilit nd we have the general Q% dynamics.
fea 7 volatiing? ) general Q" dy

Theorem: The Q% dynamics of X are of the form
_ (pd f d
dXt = (Tt — Ty )Xtdt + XtO'tth )

inown '{'\’ow‘ (? -89
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Market Prices of Risk

A
Recall
Di— o= Jor dsLd = —Efj”
We also have 4 Qd;(a@wtﬂ—m« (Ak( 1))

dL{ = L{p{dW; 4 7. ic\(ww( PSUCess
where —gpt = |s the domestic market price of risk

and similar for ¢/ etc. From Vvau’ WV"‘"V\“\OM
D! (et 0
7 Di %)

© A
we now easily obtain [&%@(M%y\/\ A5t - MW%)

dX; = X,ondt + X, (Af Y ) AW,

where we do not care about the exact shape of a. We

thus have we Ao, b 50’@"5'3 AC

Theorem: The exchange rate volatility is given by



| Siegel’s Paradox

_A.gjm_e_’_c_hat the domestlc/_fand }the foreign markets are /go‘bﬁ/
_risk neutral and assume constant short rates. We now
have the following surprising (?) argument.

NS~

A: Let us consider a T claim of 1 dollar. The arbitrage
free dollar value at £ = 0 is of course

e—rfT

so the Euro value at at ¢ = 0 is given by
—

ot
X06 TT.

The 1-dollar claim is, however, identical to a 7T-claim
of X7 euros. Given domestic risk neutrality, the Euro
value at ¢t = 0O is then

d 9\011 P bﬂ aSumptiovn,
—r"T P
€ E [XT] .

We thus have
—riT 9T P
X0€ —= € E [XT]
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Siegel’s Paradox ct’'d

B: We now consider a T-claim of one Eura and
compute the dollar value of this claim. The Euro
value at ¢t = 0 is of course

so the dollar value is  [pk 4 =0 ‘3

ie—frdT
Xo
The 1-Euro claim is identical to a T-claim of XT_1
Euros so, by foreign risk neutrality, we obtain the
dollar price as ~ oty
) ) [L] &=
X1

which gives us
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Siegel’s Paradox ct’'d

Recall our earlier results [\‘P Loy tmndl ’bb?}

—rfT —rdT P
Xpe = € E XT .
’ Xl [M%P{%j
ie—rdT _ rlTpP b
Xo B X1

Combining these gives us

B [XLT] ~EP %XT]

*
which, by Jensen’s inequality,)is impossible unless X
is determifiistic. This is sometimes referred to as (one
formulation of) “Siegel's paradox.”

It thus seems that Americans cannot be risk neutral at
the same time as Europeans.

) lrWhat is_‘lg&i/rlu on? \
) A Y b Awex _ fe)> %
Vi W

Ey(x)zpler) - sz":zuagy,if

269
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Formal analysis of Siegel’s Paradox

Question: Can we assume that both the domestic and
the foreign markets are risk neutral?

[ . .
Answer: Generally no, becauwse st megov.s M/J%MXI%

Proof: The assumption would be equivalent to
assuming the P = Q4= Q' i.e.

M= =0 (mug e LJCE "(“r)
However, we know that Csoz (P-'lé5~>
o= A — )\

so we would need to have o; = 0 i.e. a non-stochastic

exchange rate, €1 ol I wel e lAGhe
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The previous slide gave us the mathematical result, but
the intuitive question remains why Americans cannot
be risk neutral at the same time as Europeans.

The solution is roughly as follows.

e Risk neutrality (or risk aversion) is always defined
in terms of a given numeraire. %{’t G A gfg )

° L;c Is n ttitude towards risk as such.
Uk @/ﬂ v o s\\L e waaxket

e You can therefore not be risk neutral w.r.t two

different numeraires at the same time unless the
ratio between them is deterministic.

e In particular we cannot have risk neutrality w.r.t.
Dollars and Euros at the same time.

0 ’% ywme s Nsle
COVW'\V\[;\\A% - Wby ol v o

wias et ) yyew coun vat

l(ro&n&»’\’(r&&(“um

r
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: duwe & (own

‘FWMK\ (')?’ tuae
=%l of Lo, qae | o Sl




4

— Stask o e ckute 944/

Continuous Time Finance

Change of Numeraire
Ch 26

Tomas Bjork
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Recap of General Theory

/

Consider a market with asset prices

sy st .. 8N
A 1
Theorem: The market is arbitrage free
iff

there exists an EMM, i.e. a measure () such that

e () and P are equivalent, i.e.

Q~P

e The normalized price processes

55 8¢
A

are (Q-martingales.

Tomas Bjork, 2017
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Recap continued

Recall the normalized market

sy st SN
(Z?,Zg,...ZgV):( L = t)

S_g’ S_g I Sg
e \We obviously have

7} =1

e Thus Z9 is a risk free asset in the normalized
economy.

e 7Y is a bank account in the normalized economy.

e In the normalized economy the short rate is zero:

)
_ 0/ %M /(’CL(/\/\ 1
¥4 A%c’v’“ v ?%::up((a [, d6) =1, ¥£2°
%%2\ = rsr,o/k/s;o'
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Dependence on numeraire

e The EMM (@ will obviously depend on the choice
of numeraire, so we should really write Q° to

emphasize that we are using S” as numeraire.

e So far we have only considered the case when the
numeraire asset is the bank account, i.e. when
S? = DBy;. In this case, the martingale measure
QP is referred to as “the risk neutral martingale
measure’ .

e Henceforth the notation ) (without upper case
index) will only be used for the risk neutral
martingale measure, i.e. Q = QP= &°

e We will now consider the case of a general
numeraire,
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General change of numeraire.

e Consider a financial market, including a bank
account B.

e Assume that the market is using a fi,‘xed risk neutral
measure () as pricing measure. / Sx/@(z e (- Maﬁ,’,%@

4“\6(«.' "1[ &: Q%
M‘N’ Choose a fixed asset S as numeraire, and denote
/ the corresponding martingale measure by Q. 3

-5/,,»“” beimme W Tugalis
< s
Problems: € bnoldt _&/

e Determine Q°, i.e. determine

AL
o I
on F;

dQ® ¢
Lt — %7 Aﬁ- 0"‘(-}-;,
d¥x_

e Develop pricing formulas for contingent claims using
Q” instead of Q.
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Constructing Q°

Fix a T-claim X. From general theory we know that

o),
ﬁ] 'E(; w/d\ﬂ"(‘h"‘a“1 >

the normalized process

I1; [ X] WA Amd
St W canre

is @ Q°-phartingale. We thus have Wi\ L_(_:%wff.

S e - R L

From this we obtain ((L&Q SRV LS WV\/)‘@MJGB

11, [X] = E¥ [LTX'SO] ,

St
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For all X € Fr we thus have

X X-S
EC|=—| =E“|L °
[BT] [ LSy ]

Recall the following basic result from probability theory.
(s<e uamw P 2641')

Proposition: Consider a probability space (2, F, P)
and assume that
X

E[Y-X|=E[Z-X], forall£ecF. st
Lx‘\,t.c’co-ﬁw Lxast
Then we have

~ |
Y =2 P—as ( Prove W»)

From this result we conclude that

1 So
.20
Br TSy

C)ﬂwxﬂ(/ﬂl’(/u, APt _[4(4; WS%M LR
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Main result

Proposition: The likelihood process /é'f e lisuney
S
) R +o Q)
d
Lt = %, on Ft
is given by
L, =2t L
"B S,
p-1sSe

Cerg ol J{«@an?], Sey< L & a R-wmatyd

L S/lf/éo [M".P}af:’>
NS A k= B /Bs
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Easy exercises

1. Convince yourself that L is a ()-martingale.

adpr fo\ows A Atwanles o l"b jond Pty T &)

2. Assume that a process A; has the property that
A¢/B; is a Q martingale. Show that this implies
that A;/S; is a Q°-martingale. Interpret the result.

Trove by Bosps cnle /0%%@7>
Theve n A 9@\«2{»@ mlt  w

. < -
Moo Brectise dody | TG >
wr M M kil sexdiges
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Pricing

Theorem: For every T-claim X we have the pricing
formula
d

Proof: Follows directly from the @Q°-martingale

property of II; [X] /S;. (?m@iu@.}:@ Hoe
winsk prtgerdy ey 8 )

Note 1: We observe S; directly on the market.

X

I, [X] = StES[ST

Note 2: The pricing formula above is particularly
useful when X is of the form

X=587"Y

|

T«L’ {Q—r\ﬂ II; [X] = S;E® D,p Fi]

onlyy One TPmdam
Tomas Bjérk, 2017 G Rl &I’(C/ ’ 281y
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In this case we obtain



Important example

Consider a claim of the form
X =% [S7,57]
We assume that @ is linearly homogeneous, i.e.

O(A\x, A\y) = A®(x,y), forall A >0

4

Sl
= SYE° [<I> (1, —g) ‘ ]-'t]
) E

r&(p IMALM% \/wwogexmow)

Using Q" we obtain
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Important example cnt’d
Proposition: For a claim of the form
X = ®[s9.5%].
where ® is homogeneous, we have
I, [X] = SYE” [ (Z7)| 7]

where
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Exchange option
\f\“j/“.ﬁ&"'—‘lﬁ] Yo o witle  ordhanp RS
Consider an exchange option, i.e. a claim X given by
2pwen oz wamt |
X = max [Silp — 89, 0]

Since ®(x,y) = max|x — y,0] is homogeneous we
obtain

I1, [X] = SYEY [max [Z7 — 1, 0]| F]
"

- »
e This is a European Call on Z with strike price K= -]

o 7
e Zero interest rate. [7] Wt TF ,g‘g't - )
(+]
¢
5
e Piece of cake! % s
/7 Sw

o If SY and S! are both GBM, theano is'ZJ and the
price will be given by the Black-Scholes formula.
. bovduct o T2bRo -
e 0 stalowant o
%Mawf retowmon Fe ") o
o’ Lognarunsls Lo Dyusenel ghm
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Identifying the Girsanov Transformation

Assume the ()-dynamics of S are known as (6 SN L)

dSt — TtStdt -+ StUtthQ
P

¢
. St (A,&, [ B
P ?9 T b S.B, AR t
From this we immediately have / A€ /\B{;q ‘B’tébJ('}
st Lt’UtdW

and we can summarize.

Theorem: The Girsanov kernel is given by the
numeraire volatility vy, i.e.

S st Lt’UtdW
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: 1
. 5 '/G{Wwﬂ{?'%wor'q’%'
i fm on [zero coupon bonds

Recall: A zero coupon T-bond is a contract which
gives you the claim

X =1

at time 7.

The price process II; [1] is denoted by p(t,T),gee olo
P22y

Allowing a stochastic short rate r; we have
dBt = TtBtdt. C{: A/'J au)cq_ ()'{fﬂr)

This gives us t r«(_;égfé '
Bt — efO TSdS: € %'b

and using standard risk neutral valuation we have

]-'t}c BT QET )ﬁ,:/

p(t,T) = EX [6_ I rsds

Note:
p(T,T)=1
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Speciad chmice I eodave leods v

1
The forward measure Q! .

e Consider a fixed T'.

e Choose the bond price process p(t,T') as numeraire.
—_— i —

e The corresponding martingale measure is denoted
by Q1" and referred to as “the T-forward measure” .

/

For any T claim X we obtain

1, [X] = p(t, T)E?" [H

|

We have

Mr[X]=X, p(T,T)=1
\

.a\alﬂ. )
Theorem: For any T-claim X we have o 2
b
L, [X] = p(t, T)E® [X|F] Lok ador
]
Hn 3, TR wote the
betec” oo Y- BE XN | (1R
Tomas Bjork, 2017 287
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A general optlo ricing formula,

\
v
?fl\ 175 Use BF dwy oA~ mmwm(esawl Elaw'ﬂ

European call on asset S with strike price K and maturity 7.

X =max [S7 — K, 0]

;
3 Write X as O A wie  Note 2 o §.23]
{

=S —K) - I{Sp > K}=SpI{Sr > K} - KI{Sr > K}
!W“)
frivtarcds ceiBen ¢ P [ ok

Use ° on the first term and Q on the second.
— (a-r p28¢)

Mo [X] = So - Q5 [Sp > K] — K - p(0,T) - QT [Sr > K]

)(@(Ct?(,. ‘E\VLA A vnlor @‘*\’P{éf?\\w\ *@nf '—A’i' (7(.7
Tomas Bjork, 2017 4}0 k\\l\M *' VV\%M 2§%_
sk Pvwe O

= End ¢ owre Yo o— -




95 Slxt ot lecbune loace—

Continuous Time Finance

Incomplete Markets
Ch 15

Tomas Bjork

. Lw oa WWWW W‘M("’Q/t/ WMH_
Racatl Nt Con Az Redged (onndd

Hors frsr & ww/l:ﬁwc Fﬁz_e_ DB
Mepattigorem: N < R (wob s4fCladwity
W f\Slba a5sckS ) w
mcowm | ele warkes .

i fuak d,sc?
Typical wamnples !
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Derivatives on Non Financial Underlying

Recall: The Black-Scholes theory assumes that the
market for the underlying asset has (among other
things) the following properties.

e The underlying is a liquidly traded asset.
e Shortselling allowed.

e Portfolios can be carried forward in time.

There exists a large market for derivatives, where the
underlying does not satisfy these assumptions.

Examples: Z’\}a/ 3% P“ﬁz‘/\

e \Weather derivatives.

e Derivatives on electric energy.

e CAT-bonds.
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Typical Contracts

Weather derivatives:
“Heating degree days’. Payoff at maturity T is

given by
Z = max {Xr — 30,0}

where X1 is the (mean) temperature at some place.

Electricity option:
The right (but not the obligation) to buy, at time
T, at a predetermined price K, a constant flow of
energy over a predetermined time interval.

CAT bond:
A bond for which the payment of coupons and
nominal value is contingent on some (well specified)
natural disaster to take place.
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Problems

Weather derivatives:
The temperature is not the price of a traded asset.

Electricity derivatives:
Electric energy cannot easily be stored.

CAT-bonds:
Natural disasters are not traded assets.

We will treat all these problems within a factor model.

foe the
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Typical Factor Model Setup

Given:

e An underlying factor process X, which is not the
price process of a traded asset, with dynamics under
the objective probability measure P as

dXt == U (t, Xt) dt + o (t, Xt) th

e A risk free asset with dynamics

dBt = TBtdt,

Problem:
Find arbitrage free price II; [Z] of a derivative of the

form
Z=9(X7)

Caf s N - e
i, Gulaciby AND o ot ager

o 1 NOT e pfi&b?meu:




Concrete Examples

Assume that X; is the temperature at time ¢ at the
village of Peniche (Portugal).

Heating degree days:

®(X7) = 100 - max { X7 — 30,0}

Holiday Insurance:

1000, if X7 <20
O(Xr) =
0, if X7 > 20
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Question
™ (%\
1

Is the price II; |[®] uniquely determined by the P-
dynamics of X, and the requirement of an arbitrage
free derivatives market?

o Yk

VIAS
[”“(VM o g vt |

)\, (va% 7°W %
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AVAS
Stock Price Model ~ Factor Model

Black-Scholes:

dSt uStdt + O'Stth,
dBt = TBtdt.

Factor Model: (ﬁ‘ku(m’ &q/wsm/y

dXt — u(t, Xt)dt + O'(t, Xt)th,
dB; = rBdt. (1 wen ko P
Mhor dtrn ke SO0 =

What is the difference?
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Answer

e X is not the price of a traded asset!

e We can not form a portfolio based on X hu W)g o
— -
WAA], %)
Zlmpoggg},u, :
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1. Rule of thumb:

N = 0, (no risky asset)
R 1, (one source of randomness, W)

We have N < R. The exogenously given market,
consisting only of B, is incomplete.

2. Replicating portfolios:
We can only invest money in the bank, and then sit
down passively and wait.

We do not have enough underlying assets in order
to price X-derivatives.
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e There is not a unique price for a particular

derivative. *7\?’)(%/(. «-@r( vrvxcow\pl,ﬁ_c \/\MF\{_@K

e In order to avoid arbitrage, different derivatives
have to satisfy internal consistency relations.

./__’__

o |f we take one “benchmark’_derivative as given,
then all other derivatives can be prised in terms of ﬂvcu

the market price of the benchmark. "fﬂf(’&%

We consider two given claims <I>(XT) and F(XT) We
assume they are traded with prices Q\

(O] = fLX) gt
L] = gt X)) owc@
/wav/
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sV

— N
Program:ﬂ% /Q\V\MM/"‘@//)\(AQ’
e Form portfolio based on ® and I'.| Use It6 on f and

g to get portfolio dynamlﬂ
X

- < df .
self- oA G odV:V{ 4 92 } PN
UﬂAAL, %kemos

oose portfolio weights such that the dIV — term
vanishes. Then we have

dV =V - kdt,
(“synthetic bank” with & as the short rate)

e Absence of arbitrage implies

k=r

e Read off the relation k = r!
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Mﬂ”‘“ﬁ ODut o ElifOﬁqu ,
Pecatt 1, (9= €04, %¢), G smumphs

From ItO:

where

ofx
.

Portfolio dynamics

rdf
AV — g
V V{ f—l—ug}

We alne T{[V]c % (fb)x_t)é

Reshuffling terms gives us

av =V. {uf,uf +upgt dt+V - {ufaf + uloy} dW.

Let the portfolio weights solve the system

w9 = AV\/
{ufaf—l—ugag = () é/ \M“ \WM
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Portfolio dyngmics

av =V. {ufuf—l—ugug}dt. “+ 0,4W

dV::VW{}@Jf_A”Jg}dt

Of —0yg
Absence of arbitrage requires

HgOf — HfOg
Of —0g

=7

which can be written as

g —T _ pp T

Og Of
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W Feomn brevious  s€ine; :

g =T P

Og gf

Note!
The quotient does not depend upon the particular

choice of contract. (-gamw :fmr {\6" s '\

/)’txﬂ}) el ok v |
%o Yoa o o o EOC
Tﬁm(—) g5 S 't
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Result

Assume that the market for X-derivatives is free of
arbitrage. Then there exists a universal process A\,
such that

:uf(t) - T _ )\(t,Xt),

oy(t)
holds for all ¢t and for every choice of contract f.
—7 —_—
NB: The same A for all choices of f. L

A = Risk premium per unit of volatility Arfnonid
= "Market Price of Risk” (cf. CAPM). | {5 ¢, ol
Sharpe Ratio &7

Slogan:
“On an arbitrage free market all X-derivatives have
the same market price of risk.”

The relation w» shock CSWW%SS pordrull O ’b/ x‘b>
,Uf -

is actually a PDE! ¢ \/w\b 2t Wﬂw P 2oL
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— 5 Stax vt lackone 106 <

Pricing Equation
Note that 0& tuse ,Fw\,.(,t:\w\/) ab,z,rwv\a( oM ‘E/X"

-l
// [ /Azﬂc‘lab)/ﬁﬁﬁ&,%\ Q/’i—C«
- /'ETc,

5
{ ft""{/\f_)\o-}fa:"'_%ozfa:x_rf = 0
f(T,z) = @)

Nober olo tleot  p [dife 5F X wanster P)

et e e Y

P-dynamics:

dX = p(t, X)dt + o(t, X )dW.

Can we solve the PDE?
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No!!

Why??
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Answer

Recall the PDE (i 5otk Gomd wobetrot/ )

ft"‘{/i_)\a}fx_'_%ojfxx_rf = 0
f(Tz) = P(z),

e In order to solve the PDE we need to know ).
e ) is not given exogenously.

e )\ is not determined endogenously.

Reoolx Qnopeless , way pus )
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Question:

Who determines \?
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Answer:

THE MARKET!
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Interpreting A\

[—)—5‘ [EE] S’F/&JXJ{D

df = fupdt + fordW;

Recall that the f dynamics are

and ) is defined as

py(t) —

O'f(t) — )\(tht)a

e )\ measures the aggregate risk aversion in the
market.

e If A\ is big then the market is highly risk averse.
e If )\ is zero then the market is risk ne%ﬁral.

e If you make an assumption about A, then you
implicitly make an assumption about the aggregate
risk aversion of the market.a~A4 V-V i Yo wma

ecin sboout fé?‘mn Wmﬂcb{( £5) bc:amﬂm"f
Tomas Bjork, 201701 ?ﬁ"’(“ﬂ’ by M"@?Q"“é A P"\H"W&ﬁ/l
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Moral

e Since the market is incomplete the requirement of
an arbitrage free market will not lead to unique
prices for X-derivatives.

e Prices on derivatives are determined by two main
factors.

1. Partly by the requirement of an arbitrage free
derivative market. All pricing functions satisfies
th ot wr di{fe/(m’c loaundary

2. Partly by supply and demand on the rharkions
These are in turn determined by attitude towards
risk, liquidity consideration and other factors. All
these are aggregated into the particular A used
(implicitly) by the market.

J
Wwobu'wg ow A
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Risk Neutral Valuation

We recall the PDE

ft"‘{/i_)\a}fx_'_%ojfxx_rf = 0

f(T,x) = ®(x),

Using Feynman-Kac we obtain a risk neutral valuation

formula. \L

wpp Hin PIE 40 an SE fHe XK.
s+ °°

A< a&wo.v
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Risk Neutral Valuation

f(t,x) = e " TTVER, [®(X7)]

ot
Q-dynamics: Note 4, yee e WE U;:L ?27;

g

dX; = {4 — \o}dt + odW S

e Price = expected value of future payments

e [he expectation should not be taken under the 9
“objective” probabilities P, but under W “risk  Enes

adjusted” probabilities ().
Thonl, of Gifsom oY - € e /”%mﬁ)
ok sfus  Als L @AW,
{ AW, = Av\/”,; + (g M 5 A, kmﬂ(\d,t—}oﬁwjf
MCta At T o dwy So pr -7

|Note Hus & Lponds M2 ama o)

$ Tomas Bjork, 2017 ) 314
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Interpretation of the risk adjusted
probabilities , i-<- &
He otk e ugﬁfmvmm-g ‘SF% Course. -

e The risk adjusted probabilities can be interpreted as
probabilities in a (fictuous) risk neutral world.

e When we compute prices, we can calculate as if
we live in a risk neutral world.

e This does not mean that we live in, or think that
we live in, a risk neutral world.

e The formulas above hold regardless of the attitude
towards risk of the investor, as long as he/she prefers
more to less.
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Macteck Plice o Cisk

1

Diversification argument about )\

(0 bl wm.’c,vwb
/ \70\/1/ mmpmya(b&é
e If the risk factor is idiosyncratic and diversifiable,
then one can argue that the factor should not be

priced by the market. Compare with APT, A fb“’b@‘ﬂ/’

?r\du\? %('3/,&3 - GAPH
e Mathematically this means thati =0,1.e. P=0Q,
I.e. the risk neutral distribution coincidesJ/with

the objective distribution. Cee p-HY

e We thus have the “actuarial pricing formula”

~— B

ft,z) = e "TVEL [0(X7)] (50, il Xy

L b
where we use the objective probabiliy measure P.
—— —_

P
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Modeling Issues

Temperature:

A standard model is given by ﬁfm(ﬁw—(l\ﬁwnhcd(/ B
F‘VCQJS

dXt = {m(t) — bXt} dt -+ O'th,

where m is the mean temperature capturing
seasonal variations. This often works reasonably
well.  Mgre Xy o o noxcwal_ AASHY buho
M Xy s wmcwncd (Prdepiusdind of W)
Electricity:
A (naive) model for the spot electricity price is

dSt — St {m(t) —aln St} dt -+ O'Stth
Uge Th 0 svow: |og < 1o an O process
This implies lognormal prices (Why?q. Electricty
prices are however verylfar from lognormall because

of “spikes” in the prices. Complicated\t,v,@aﬂ/&k& )

CAT bonds:

Here we have to use the theory of point processes
and the theory of extremal statistics to modell

natural disasters. Complicated. jabwral CAuegyrt Yere
- fj \ /
(oSS v Plowssy,

Tomas Bjork, 2017 ‘907'0\/1/( SOOPC 31)7:‘-
£ cousse



Martingale Analysis
(ke v p-314)

Model: Under P we have

dXt - (t, Xt) dt + o (t, Xt) th,
dBt = TBtdt,

We look for martingale measures. Since B is the only
traded asset we need to find () ~ P such that

By
1
By

is a () martingale.

Result: In this model, every () ~ P is a martingale
measure.

Girsanov
st = Ltgptth
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P-dynamics
dXy = p(t, Xp) dt + o (£, Xp) dW,, (o)

st Ltgﬁtth
d@Q) = LidP on F;

Girsanov:
AW, = pydt + dWE (Y

Martingale pricing: /gr( obp(pwyﬁc‘tc _'r-dw'tw %
F(ta) = TV E9 2| 7
(Q-dynamics of X: (OOleaA,\/u, &) ama Qé')) °

dX; = {p(t, Xy) + o (t, Xy) @iy dit + o (£, Xy) AWE,

Result: We have \; = —y, i.e,. the Girsanov kernel
¢ equals minus the market price of risk.
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Several Risk Factors

===

We recall the dynamics of the f-derivative

o]
df = fuspdt + fordW, I L™ G?@”gf
LA
and the Market Price of Risk
'uf_T:)\, l.e. ,uf—T:)\Of.
Of

In a multifactor model of the type

dXy = p(t, Xy) dt + Z o (t, Xy) dW},
i—1
~foe Wultiple Wunes pogsees (w0t tceatr 3

it follows from Girsanov that for every risk factor W*

there will exist a market price of risk A\; = —¢; such
that

N 24 uakion s K =T = > Nios
L i=1 .
Compare with CAPM. /\-f o Voo Whet ek w)

Tomas Bjork, 2017 320
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5 Stadt ot leckute Mo«

Continuous Time Finance

Stochastic Control Theory
Ch 19

Tomas Bjork

—= Tyt codasie  powkdl

Fonam el applicatiom
U VAWl omn g Lo v phom)
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Contents

1. Dynamic programming. [MM&L%:QL{!,W&{D

2. Investment theory. (eoomow\‘w applcat lon
WL Kb @_abw«)

/
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1. Dynamic Programming

e T he basic idea.
e Deriving the HJB equation.

e [ he verification theorem.

e The linear quadratic regulator. [ lass\c OXgrpe 'IEBW'
Systome thascy \
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Problem Formulation

T
max E / F(t, Xt, ut)dt + (I)(XT)
v 0
_ w
subject to M koV P{OCQD’S f,iw fired u X%:-b(b
dXti: v (t, Xt, ut) dt + o (t, Xt, ut) th
XO — X0,

Y

w € UEX,). vt o =W (Pralltx)

We will only consider feedback control laws, i.e.

controls of the form bl P ,@7 P(w'(o“,s
':)u.fh L 4
ur = u(t, Xy) Mo sy F“@%\Z«/

Xu sl s ve
Terminology: v
X = state variable X‘UéR\L
u = contr0| Yiribl_e u’be @

RSt U = control constraint U & P

Note: No state space constraints. (4.9. ><£ =z 0)

—_—
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Main idea

e Embedd the problem above in a family of problems
indexed by starting point in time and space. Se= p 23

e Tie all these problems together by a PDE: the
HJ/B Hamilton Jacobi Bellman equation. §<e . 32Y

e The control problem is reduced to the problem of
solving the deterministic HJB equation.

)

Com bt oo Wit bonplr cedmd
%uw(r(cm/

byl wb 6*"03 o ‘”a‘@(‘m

‘ Gwn\the,“—km, ¢fuhion 0

t{mb od%r]m_a\ﬂ, ,F(ObL(,M/l, o d

O u\la.ua, e U om ”e,&SLU(

?(OHJZM

/
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Some notation [ looks \MLSS@/
oud 'Wy

\-EC»-(OU\ZZV )

e For any fixed vector u € R*, the functions u%,
and C“ are défined by

pi(tx) = plta,u), - Ak
oU(tw) = ot,zu), Ktk
Cu(t,x) = (ta:u) (tw,u)y. | O

(—@"I'C- M"(; = u('l" X}

e For any control law u, the functions u*, o%, C'(t, x)

and F“(t x) are defined by (\A, v o —F\zh\m)

Y

RO (it a) = plt e u(t ),

ok SOk B

\‘o,f“"\o o ot x) = ot z,ult, ),

%\}&W Co(t,x) = ot ult,2)olt, o, ult, ),
Y e = P )
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Jeds dff x4 ) W O e fy, (£ X Jofx )W,

7] More notation (4D (,0\/\«(4/\/‘*C you

Wor<

e For any fixe R”, the partial differential

operator A" is defined by

@ = zn:u%‘(

(&gt 5 n& ><“

e For any contr

operator A" is defined by

" 0
Z C (¢, x) @xi(?a:j'

Zj—

the partial differential

Z (t,x) 1 z”: Cii(t, ) o
'uz 2 ; 83328333
1,7=1
e For any control law u, the process X '.is the solution
of the SDE nobekion |

dX;l — U (t, X;l, ut) dt + o (t, X;l, ut) th,
w_oun
where e K )
u = u(t X} )
u
§: Xy = M b, Xt Ut Xy \\M'FU\( )
Tomas Bjork, 2017 \5 O‘F ‘\’C\Q_ W u,)dlv\/f;ﬂ /ﬁ(



Embedding the problem o P-d2Y

Wl o frwily of prodews B

For every fixed (¢, z) the control probles defined
as the problem to maximize [{row’ kil bue b aad
V\N\'\“C‘\AL Uelae « : [Xugx,j
t
F(s, X}, us)ds + @ (X7)

T
E

t,x ’

=% [ iT T @ \dr:t] Xemx = € ETF“@/%%

iven the dynamics
g y me
dXY = pu(s, X us)ds+o(s, X, us)dWs,
7
Xt - X,

and the constraints

u(s,y) e U, V(s,y) €l[t,T] x R".

The original problem was P ;. &) épC(/iM O GHm L

cT—

Tomas Bjérk, 2017 t=0, % - Uy B



The optimal value function

e [he value function
J: Ry xR"xU— R

is defined by ((Z&ML‘L e A Kol vadwe ot
Hiwe T )

T
T(tzu)=E / F(S,X;,us)ds+c1>(x;)]
t

given the dynamlcs above. (oww( XJC )

Note: w fack ;(5 Mo Afumdn on x _(!«wwv%
The optimal value function =~ e ><"" ok
e The optimal value function Werce g5 e

V R_|_ X R" - R
- )
s defined by ((ecall we Wawd MY
V(t, az) = sup j(t, T, u). ng\/ CT‘;(,) 5§ [‘K>
ueld

Owe vinn:
e We want to derive a PDE for V. .
Mo T2V
329

B:F /@ l/s gt
some u/ = UZ“?)%)
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Assumptions

We assume:

e There exists an optimal control law 1. é.» a [«(;,x))

e The optimal value function V is regular in the sense

that V € C12,

e A number of limiting procedures in the following
arguments can be justified. W= Wil wele bw? St

OwA. &8\/1/0(&, V\/\M\a weatluomaticold, Ak onds
it weould, Lpice &#WMO‘@S%,‘ [aeyavw(
e Swpe padl odms ¥ K Coyree,
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Bellman Optimality Principle

Theorem: If a control law 1 is optimal for the time

interval [t,T] then it is also optimal for all smaller
intervals [s, T'| where s > t.

Proof: Exercise. g LL&o a_ Cown testecc. oo
bl Gt ; Q@CVajmy/[W’fs

N

u Swproced 1 Wone o

R
P fg,‘rj%\ma‘
bt Ly

OOW\bC\,Lqﬁ(_,
bm) 2%

/_/

wiwl ol have 4
bekler petfomame.
on (e, 77
COwkY aoh ok o
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Basic strategy
HAI%

To derive the PDE do as follows:

e Fix (t,z) € (0,T) x R™.

e Choose a real number h (interpreted as a “small”
time increment).

e Choose an arbitrary control law u on the time in%rval
/
t,t + hl.

Now define the control law u* by

$,y), (s,y) €[t,t+h]xR"
$,y), (s,y) € (t+hT]xR"

u

u’(s,y) = { o

/N N

In other words, if we use u* then we use the arbitrary
control u during the time interval [t,t + h], and then

we switch to the optimal control law during the rest of

the time period.
: A
Nobe Hb WX & woke o @ gn [&,7]
332
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Basic idea

The whole idea of DynP boils down to the following
procedure. v

e Given the point (t,x) above, we consider the
following two strategies over the time interval [t, T:

I: Use the optimal law 1.

I1: Use the control law u* defined abovesn, | -332
T yow cann]
o g\% the expected utilities obtained by the
respective strategies.
| ok
e Using the obvious fact that u is least as good
as u”, and letting h tend to zero,”we obtain our
fundamental PDE. [A'/vv tevs gw we witl

RS, (ot Ry /Q\w«,dsﬁc,o.lh?r)

Tomas Bjork, 2017 333
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— Borr ot Lcbure Uh

Strategy values
17« Expected utility for u:
J(t,x,0) =V(t, ) Z"[??J% )M"‘.‘m\"
> V)
jL-. Expected utility for u*: gp(j\,-b the Tt WWV%B’_‘_]:

e The expected utility for [t,t 4+ h) is given by

t+h
E / F (s, X" u,)ds
t

t,x

e Conditional expected utility over [t + h,T], given

(t,x): i \\,.,4—
E,, [V(t+h,@] Far’d fm

hdngd 7
e Total expected utility for Strategy Il is g W "v@’ W

t+h
/ F (s, X" u.)ds + V(¢ + h, XHh)]. ©
t

\p = "=
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Comparing strategies

[—I'P/LL watly et in o bt 960!’!’5)
We have trivially (\/ (esulio fﬁpvm Gy‘guw«& &\) hetgy

T % ptind)
t+h
Q’*} V(t,x) > E,, / F(s, X}, us)ds+V(t+h,Xi,)|=
(
Remark (4nvial ) - VJT’

We have equality above if and only if the control law
u is the optimal law 1.

Now use |to to obtain

V(t+h,Xh,) =V(tx)

t+h
+ [ G xn - A xn b
t

t+h

—I—/ V.V(s, XHo"dWs,

W — - E{ ’
Lo condrtimal expeifebm Sl E]’V

and plug into the formula above. gt ,]ﬁ
4+ - ’—"‘/’iév /w\adj'(f'\ms'

._)(ﬁ-)m F%%D/ 335
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We obtain/ ol \Arf’V:/"J (M) /

E

t,x

ot

Going to the limit:
Divide by h, move h within the expectation and let i tend to zero.

We get/ Wiklv o
¥zt F(t,z,u) + —(t, x) + AV (¢, z) <0,
1 oy ot
(L[ gl = g#) £
A €

00\«/4‘:\/‘/“0“'3 2/

Tomas Bjork, 2017

t+h av
/ {F (s, X5, us) + —(s, X3) + A"V (s, X;l)} ds| <0.
¢
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Recall I’F(M ?{(/\[.IOKB mu:

F(t,z,u) + %—‘t/(t, xz)+ AV (t,x) <0,

This holds for all © = u(t, x), with equality if and only

. A ————
if u=nu.

We thus obtain the HJB equation

8—V(t, x) + sup {F(t,z,u) + AV (t,z)} = 0.
ot uelU
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The HJB equation

Theorem:

: : : 0.
Under Wwassumptlons the foH/wmg hold:

I: V satisfies the Hamilton—Jacobi—Bellman equation

O (ta) + sup (F(t2.u) + AV (6,2)} = 0,

0 uelU
V(T,z) = ®(x),

Il: For each (¢,z) € [0,T] x R™ the supremum in the
HJB equation above is attained by v = u(¢, x), i.e. by
the optimal control.
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Logic and problem

Note: We have shown that if V' is the optimal value
function, and if V is regular enough, then V satisfies
the HJB equation. The HJB eqgn is thus derived
as aondition, and requires strong ad hoc
regularity assumptions, alternatively the use of viscosity
solutions techniques.

Problem: Suppose we have solved the HJB equation.
Have we then found the optimal value function and
the optimal control law? In other words, is HIB a
sufficient condition for optimality.

Answer: Yes! This follows from the Verification
Theorem.
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The Verification Theorem

Suppose that we have two functions H (¢, x) and g(t, x), such
that -

e H is sufficiently integrable, and solves the HJB equation

oOH
_(tam) —|—8up{F(t,:L',u) —|—AuH(t,$)} = 0,
ot uelU

H(T,z) = ®(x),
e For each fixed (¢, x), the supremum in the expression

j‘;E{F(t"B’“) + A"H (t,z)} & ‘322; %

is attained by the choice u = g(t, x). endn H’)X‘B

Then the following hold.
mis el

1. The optimal value function V' to the/gontrol problem is given

by |
V(t, @) = H(t,z), L %w%m&%a%

2. There exists an optimal control law 1, and in fact
u(t, z) = g(t, x)

Post qocbeps foce Look 19 291 292)
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Handling the HJB equation («QW”"‘ ‘9’9)

1. Consider the HJB equation for V.
2. Fix (t,xz) € [0, T] x R"™ and solve, the static optimization
problem

[w,af[\w&\by( w'\etsfl) max [F(t,z,u)+ A"V (t, )] /D/’f i de Y40

uelU
Here u is the only variable, whereas t and x are fixed

parameters. The functions F', i, o and V' are considered as
given.

3. The optimal @, will depend on t and x, and on the function
V' and its partial derivatives. We thus write @ as

i=a(tzV). (4)

4. The function G (t,x; V) is our candidate for the optimal
control law, but since we do not know V' this description is

incomplete. Therefore we substitute the expression for 4 into
the PDE , giving us the highly nonlinear (why?) PDE

%_Z<t,w>+Fﬁ(t,as>+Aﬁ tz)V(it,z) = 0,
] V((T,z) = &(x).
s

5. Now we solve the PDE above! Then we put the solution V
into expression (4). Using the verification theorem we can
identify V' as the optimal value function, and 4 as the optimal

control law. i .
Does e Wi . %
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Making an Ansatz

e The hard work of dynamic programming consists in
solving the highly nonlinear HJB equation

e There are no general analytic methods available
for this, so the number of known optimal control

problems with an analytic solution is very small
indeed.

e In an actual case one usually tries to guess a
solution, i.e. we typically make a parameterized
Ansatz for V then use the PDE in order to identify
the parameters.

e Hint: V often inherits some structural properties
from the boundary function ® as well as from ’Ehe
instantaneous utility function F. [% v qEriene )

e Most of the known solved control problems have,
to some extent, been “rigged” in order to be
analytically solvable.
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EYAMPLE

- ¢
/ '?WWWI w (j (owte
N The Linear Quadratic Regulator

Zng.)ﬁuw la'f\
T 1
o) B | [ ey x|, e

with dynamics

dXt = {AXt + But} dt + Cth WAM%DU\MA{\«A(
A o Exid U His gy GEM R o Xt OU prowess
LOG owsmC Prokow,

Er0~pli\Ne want to control a vehicle in such a way that it stays
close to the origin (the terms Qz? and Hz?) while at
the same time keeping the “energy” Ru? small.

Here X; € R and u; € R, and we impose no control
constraints on w.

The real numbers ), R, H, A, B and C are assumed
to be known. We assume that R is strictly positive.

Tomas Bjork, 2017 343



Handling the Problem

e jut bt
The HJB equation becomes [‘M’b e WO‘Z: oﬁ({l “ :ib_’_s-g;\/)

)
%—‘t/(t, r) + infucgr {Q:B2 + Ru? + V,(t,z) [Az + Bu]}
) + %%22(75 r)C?* =0,
| V(T,x) = Ha> '

For each fixed choice of (¢, ) we now have to solve the static unconstrained
optimization problem to minimize

Qx” + Ru® + V,(t, ) [Ax + Bu).
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The problem was:
muin Qx? + Ru? + V,(t,z) [Az + Bu].
Since R > 0 we set the u-derivative to zero and obtain
2Ru = -V, B,

which gives us the optimal u as

Note: This is our candidate of optimal control law,
but it depends on the unkown function V.

We now make an educated guess about the structure
of V.

Tomas Bjork, 2017 345



From the boundary function Hz? and the term Qz? in )
the cost function we make the Ansatz 1,) M

—  Noe VET
V(t,z) = Pt)x* + q(t),

where P(t) and ¢(t) are deterministic function7/{30 %IW

,_/WN./

With this trial solution we have,

%

_ _ P 2 .

ot (t7x) T~ +q,

Vi(t,z) = 2Pz, (P =Pk) erc.)
U = —%PJZ. (}"‘ ¢ - 3‘/{‘)

Inserting these expressions into the HJB equation we
get
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We thus get the following ODE for P

. B2
P = §P2 — 2AP — Q,
P(T) = H. -
| | Lo (TR )
and we can integrate directly for g:
-1
i = L,
q(T) = 0.

The # ODE for P is a Riccati equation. The equation
for g can then be integrated directly,pace you favc P

Final Result for LQ: (Wotb HuA T o wot @ )
(Mz{»a/

Vt,z) = P(t)z / C?p </~V~’/“‘c‘6"

d(tz) = —=P(r, Hr 40 o
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2. Investment Theory
e Problem formulation.
e An extension of HJB.
e The simplest consumption-investment problem.

e The Merton fund separation results.
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Recap of Basic Facts

We consider a market with n assets.

S! = price of asset No 1,

hi = units of asset No ¢ in portfolio g% u}/\
' 0%

w; = portfolio weight on asset No i éﬂg‘/

= portfolio value CF(&"W Ao ted —b_7

t
NU"/ )_ﬁct = consumption rate ()
)

We have the relations

Zh’Sz, wf;: Zwt—l

(m 0- ask& v The L’M\b OCCOUE W] \A’wa —fo’(mﬁ)

Basic equationpsfece concumphim «n ?rescw’c
Dynamics of self financing portfolio in terms of relative
weights

- dSZ
= X, Z wt — cdt

w W
(omvosmbo 0 d/ﬂ:\/\dﬂ/m/b N-Z\?ﬂ 2, W
Tomas Bjork, 2017 \IKMQ o b W\\V\\As WVVI" 349



Simplest model (MD

Assume a scalar risky asset and a constant short rate.

dSt OéStdt + O'Stth
dBt = TBtdt

We want to maximize expected utility of consumption
time -
over
- ;)

- [k
o e cowbcﬁf/\ W’C\Uﬁwﬂ)
vao\ aloes W)‘“’ c / M oo & e
— T
max F / F(t,ct)dt] [ @CT x‘\')
0

(’.W

Dynamics JMM )

wO wl e

dXt Xt [’th + wt ] dt — Ctdt + ’UJ%O'Xtth,

(vesy

Constraints

Ct Z O\V/t>0

w) +w; = 1, ¥Vt >0. 7
W'epvwvbf
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Nonsense!
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What are the problems?

e \We can obtain unlimited utility by simply consuming
arbitrary large amounts.

e The wealth will go negative, but there is nothing in
the problem formulations which prohibits this.

mb
e \We would like to impose a constra#éa of type X; > 0

but this is a state constraint and DynP does not

allow this. (See 324 ) Y T —
leading 4o H
Good News: 2 &L@j

DynP can be generalized to handle (some) problems
of this kind.

The wse 3t S—bvrybrvxﬁ & ovnn /&a&ﬁ,sl

Tomas Bjork, 2017 352



Generalized problem

Let D be a nice open subset of [0, T x R™ and consider
the following problem.
w ViED
Wb

2"

max E[ / Fls, XU u.)ds + ® (r, XY)|
0

ucelU

Dynamics:
dXt = u(t,Xt,ut) dt + O'(t,Xt,ut) th,
Xo = w& D,

The stopping time 7 is defined by

T=inf{t >0 |(t,X;) €D} ANT. £ T *‘
l

AL (Ondow Hunz +

it ey D
Tomas Bjork, 2017 — 353
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Generalized HJB

Theorem: Given enough regularity the follc\’/ving hold. %_(L M,( "/
1. The optimal value function satisfies /4 21 o ™
/ s
L- M"J ,\_,4
V(t,x) € D

{ %—‘;(t,x) -+ sgg {F(t,z,u) + A*V(t,x)} = 0
Vit,z) £ ®(t,z), YV(t,a:) e éﬂﬂﬂ

2. We have an obvious verification theorem¢ I’éf&»f—@ 6»? -
HCT)'X/) gV 3727(4” La HH)Z): @Z‘bfx’)) /((
Vi) eb

Tomas Bjork, 2017 354



Reformulated problem 7w W

Co = v OV
L/()(“Y(D\:it&ﬁw Wwﬂ&
T -“ﬂ’“
max F [/ F(t,c)dt + (I)(XT)] @ ;
c>0, wER 0 K/
0 'l’j ~
ek ) C )
ot
(b a2 +0
The “ruin time" 7 is defined by EJ;) D 0”)

T =inf{t=0]X, =0} AT. %

A<V = X«L’ZO -~ D w:,x' 6,[0":\’( Co,ao)

£=T o ‘V—‘°

Notation:

1

w = w,
’U]O — 1 — W
( aA?m o?
Thus no constraint on w, W Wk ¢ (O
Dynamics ﬁjr élwxplc, Mol o 13 Y b*?-cowgz

dXt — W¢ [Oé — 7“] Xtdt + (TXt — Ct) dt + ’UJO'Xtth,

won ¢ W, ane, L Cowtat \piableg
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3 Ao o@\%uu\w(/ 8‘9\) : V++F(t,2\+\?d 'K(og/(\?\,/[..')

HJB Equation

B + CZSOI,lwaR F(t,c) + wx(a — r)a—w + (rox — C)é?_zr; + 53&' w o

ox?

@(___ﬁ —____Dé\/(T,w) = 0,
V (¢, 0) 0.

oV { oV oV 1 - 282‘/}

? We now specialize (why?) to
NN

and for simplicity we assume that

e

so we have to maximize

2)% ov 1 o’V
e %l + wz(a — r)— + (rz — ¢)— + —z"w’o"
ox or 2

w-t- ¢290 a~d we W .
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Analysis of the HJB Equation

In the embedded static problem we maximize, over c

and w,  ((epest Ko P56 )

1
&(c,w\-.ze_&c'y + wx(a—1)Ve+ (re —c)V, + §az2w202vm,

First order conditions:

(4) 707_1 = €6th7 (:(:{M / B 03

) _Vx T
. wo= x.vm'a(ﬂr’ [’fm‘“ %%,"0)

A :

Because of the boundary condltlons, we must demand

that
\ gl;c @) (5)

h(T) = 0.

\,\Aﬁk)‘dﬁ/ g
Tomas Bjork, 2017 M/’W _&w) = &é’t\fz’ /
gul 4 WAL 05 W ‘
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Given a V of this form we have (using - to denote the
time derivative)

| [ wot’
Vi = e Othx — 56_6thx7, '6\; «e\,éb)]
Va: — 76_6th$’y_1,
Viee = 7(7 - 1)6_6th$’y_2.
giving us
we P}, Q) w(t,z) = (2‘1_7“ (col/bS‘\’aMf{' )
—)

we P99, W)+ et,x) = zh(t)”YI), M’“\"’” \M‘L>

Plug all this into HJBI (md by o €0V

{
H*) o op TF (V'%{ér”( Qo

one v Lothow i

Q\’ an~ /C\, et
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wl
After rearrangéznts we obtain

~\N\ST

L
— )2 _ )2 1\ aXY”
4 - a—r) +m_17(0é ) g gAY

202(1—v) = TR

B

|

—

|
D

equation is to hold for all x and all ¢, then we

see that h must solve the ODE

h(t) + Ah(t) + Bh(t)/(0=7 = 0,
WT) = 0.

An equation of this kind is known as a Bernoulli
equation, and it can be solved explicitly. <2

B (g-2, L@-%

We are done.
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Merton’s Mutal Fund Theorems
SZeA v \g}

1. The case with no risk free asset
/

We consider n risky assets with dynamics

1xk
wmemy VU
where W is Wiener in R*. @7 vector form:  Counppuews ehﬂ’
dS = D(S)adt + D(S)odW. e alL
M AL rnd
where
A
[y | (p:"oﬂ\_—al—_ mmx\c
a = : € .0' p— : 6
B 079 _ | On — i

D(S) is the diagonal matrix

n

D(S) = diag[Sy, ..., S.]. &
- S @
7 s
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Formal problem

max [ / "R ct)dt]

c,w

given the dynamics /(AJ»C Hut T condrbonn MQ ?7"[9)

(?Nm @ZW--D]

dX = Xwozdt—cdt—l—XwadVVc,
RAN R Ay Hee A4S czzu,a{\W‘A

and constraints

w \/
m L 4 ‘ - = ‘” )
Tuts dw=1, ¢>0. y=leg e
=/ t 4 _,6

Assumptions:

e [he vector ¢ and the matrix o are constant and
deterministic.

e The volatility matrix o has full,\rank SO 00 is p05|t|ve

definite and invertible. ’9 d'é{l,z,/-c \{ N
(g warket

|
Note: S does not turr? up in the X-dynamics so V is
AN
of the form
Vit,z,s) =V(t,x)
Wowld (GguiA o gt
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- W
o B
The HIB equation is /’ w’(w \ﬁ
M T
h;;&.,\uL e[ Vi) 4 s AR )+ ATV D)) =0, w,ﬂ“%
il dzpend 9 - V(T.o) = 0, \Q‘Dw};\\;ﬂ’l’
o O | V(t,0) = 0. ti;o\,\ gb
where Q- q?

AV = zw'aV, — cV, + %xzw’Zw Vs »
et pf W (o
The matrix ¥ is given by (OMW\,\/\' ~ jEk/ dr

o AX 2 odbt x;v“w\w?
Y = o0’ 2 2, (M) T w
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The HJB equation “[,/LJ/V\ be cowes

( / L5
Vi4+ sup F(t,c)+ (zw'a — )V, + 5T W SwVi, = 0,
w’e=1, ¢>0
< V(T,z) = o0,
\ V(t,0) = 0.

where 3 = oo’.

If we relax the constraint w'e = 1, theﬁ.\ag@mction for the static

optimization problem is given by %’f(’;MWﬁQ | R @(A—Q,-ﬁ)‘f
L=F(tc)+ (zw'a—c)V, + 1:102w’E'uﬂ/g[;gg + A (1 —w'e). /
[ .
LC OBWA/%WL\ o U2y
\ineat  fouftraints =

L)W ,'ﬂ

Tomas Bjork, 2017




Kopuarts

L = F(tc)+ (zw'a—c)V,

1
— §x2w’Zme +A(1—w'e).

The first order condition for ¢ is [\Ar(, o wot Specified 52)

B wlw(’}bs:
Fc - Va: rz/&a\\ '('(UW\ 1
PZW )Zw):z 2,
The first order condition for w is W’ o o cow \rukvﬂ

-
'V, + 22V w'S = \e', (\’DV\/ V€(7{,‘B(£>
£> Loy ‘f-')t}f\/f,()L Tw=A& (OS&AWM Ve,(_{—,ors)
so we can solve for w in order to obtain

P TV &] | é;a@uvnw \Iectab

e —_—
22V 22V

Using the relation ¢/w = 1 this gives \ as

\ — 2?Vow + 2Vee'Y e

e/ le

1 _ -l
V[ ¢ 2 X

‘N xelfe
- e < — 4//
Tomas le(l){rk, 2017 — ., OC 364\/Z¢'
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o e

O
R ﬁ/ék <
o

Inserting A gives us, after some manipulation,

R 1 4 Ve L, [ ta
w:e’Z_leZ “Mazv, [6’2_166_&'

e A wotient,
We can write this as \} oU/(IaeM,(,, o+ |

W(t) = g + Y(t)h, \

where the fixed vectors g and h are given by

wet, defwdi _ b v
ow + »a g eyl ©
IS —1
a2
h = X [e’Z‘lee_a] :

whereas Y is given by

Tomas Bjork, 2017 365



We had
w(t) =g+ Y(b)h,
Thus we see that the optimal portfolio is moving

stochastically along the one-dimensional “optimal
portfolio line”

g + sh,

in the (n — 1)-dimensional “portfolio hyperplane” A,
where
A={weR"|w=1}.

If we fix two points on the optimal portfolio line, say
w® = g 4+ ah and w® = g + bh, then any point w on
the line can be written as an affine combination of the
basis points w® and w®. An easy calculation shows

that if w® = g + sh then we can write 50 .
I Ao )
w® = pw® + (1 — p)w®,
where
8= b
o= a—0b
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gM/W\ VVW\%/ :

Mutual Fund Theorem

There exists a family of mutual funds, given by
w?® = g + sh, such that

1. For each fixed s the portfolio w?® stays fixed over
time.

2. For fixed a, b with a # b the optimal portfolio w(t)
is, obtained by allocating all resources between the
fixed funds w® and w?, i.e.

e

W(t) = p(t)w® + p’(t)w’,

ey < YO g iltd
\o—* Y

(vt | 1+ 1)

Rewadde - 4o sGtor s 8{,0\4/1,&%6(, &,\WPT(J':@W

(<o odpo Pyh6 ) 1 R KUK ousy s (V"%) oo
Tomas Bjork, 2017 {, o, WL’\'&-&? 'é’(/V"\Uhsvui: ok Jee -
e BRual vafme framermsom V. 5’”%85«7.’,



%%

$ee %’73{0~}6_?,
f{;\(’r&& cCarhe_
'(W‘tﬂou,(;"

W’h)v\(é \M(NEM

The case risk free asset

Again we consider the standard model
dS = D(S)adt + D(S)adW (t),
We also assume the risk free asset B with dynamics

dB = rBdt.

, W1, ..., w,) where > Jw; = 1.  We then

We denote B = Sy and consider portfolio weights
éminate wq by the relation \

vlo\
_1_Zw“ ( ?Md(ﬂsz)
1 \M@

and use the letter w to denote the portfolio weight
vector for the risky assets only. Thus we use the
notation

w = (wi,...,wy,),
(l i/ Aed
Note: w € R™ without constraints. [WO WW&C@ Wik,
wo'k
Tomas Bjork, 2017 172 V\l v — 363
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HJB

We obtain [%W Atbn e §F mmw\
dX = X -w'(a—re)dt + (rX —c)dt + X - w'ocdW,

‘ A S we
where e = (1,1,...,1)". (Wabc weFr w geves y
Ve Coumse WO cemoved W,

The HJB equation now becomes

( Vi(t,z)+ sup {F(t,c)+ A"V (t,x)} = 0,
c>0,weR™

\ V(T,z) = O,

\ V(t,O) = 0,

where

W
AV = zw'(a—re)Vi(t,z) + (rx — c)Vy(t, )
1
+ §x2w’2wvm(t, T).
- _ G—'o’
A&W T/
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First order conditions

We maximize

1
F(t,c) +zw'(a —re)Vy + (re — o)V, + §x2w’2wvm

with ¢ > 0 and w € R".

The first order conditions are épmau& ‘174 F'}é&/)

Fc — an
. Ve
v - _ZIZVM; %]/1\(2';56)("/ \‘&“ !

Yk 6%y A

. . = pf ~.
with geometrically obviooas economic nterpretatlor}

Ut on (P’}éé ﬁuf\“"““‘) W
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Mutual Fund Separation Theorem

1. The optimal portfolio consists of an allocation
between two fixed mutual funds w® and w/.

2. The fund w" consists only of the risk free asset.

3. The fund w/ consists only of the risky assets, and
is given by

Rowandle: Tase wapdty do uot  follow
Loom K, cope wWMhowd Adlie asvot (Fee Hue Qool&).
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Continuous Time Finance

The Martingale Approach to Optimal

Investment Theory

Ch 20

Tomas Bjork
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Contents

_—V.w the wealth profile from the portfolio

choice.

e Lagrange relaxation. RQ’Z@N\{ \chw, ,(Pw" wi L be
e Solving the general wealth problem.

e Example: Log utility.

e Example: The numeraire portfolio.
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Problem Formulation

Standard model with internal filtration (See ve %60) %Q)

dSt = D(St)()étdt + D(St)Jtth,
dBt = TBtdt.

Assumptions:

e Drift and diffusion terms are allowed to be arbitrary
adapted processes.

n
e The market is complete. 'N=e )
.

e \We have a given initial wealth x

Problem: Gv% ‘
max  EP [®(X7) (%B

heH
where

H = {self financing portfolios}

given the initial wealth Xy = xg.
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Some observations

e In a complete market, there is a unique martingale
measure ().

e Every claim Z satisfying the budget constraint

m—————— e

G_TTEQ [Z] — Xy,

IS attaineg;Ie by an h € H and vice v A $,
. lt'%@-é*“”“““zz TR

A
e We can thus write our problem as %M W et v
P P celf - ® Wé—
/ ]
Note: £ mgx BRI peles o
W‘
M 2
subject to the constraint

Notw - E& e "TE?[Z] = xo.

e We can forget the wealth dynamics! ({D{M

Tomai%m) 7L 97{102. WW} 375



Basic ldeas

Our problem was

max EY [®(2)]

subject to T FQ 7] = 0.

Idea |:

We can decouple the optimal portfolio problem into:

1. Finding the optimal wealth profile Z.

2. Given Z, find the replicating portfolio. [H.QM/ .

ng PwaL (MB
Idea Il:
e Rewrite the constraint under the measure P(W\&U”‘ of QB'

—_——

e Use Lagrangian techniques to relax the constraint.

e S— e
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Lagrange formulation

Recaly

Problem:

max B [®(Z)] 2e S

subject to
e "' EY [L1Z] = .

Now: (Oncvawmwt na rws “Df WLodUA € ?l

Here L is the likelihood process, i.e.

Lt:_7 Onfta OStSTIa/V\A—

(etage €82 < €F( L]
The Lagrangian of the problem is

L=E"[®Z)+ A xzog—e ""E" [LrZ]}

L=E"[®(Z)— X e ""LrZ] + Az

Tomas Bjork, 2017 (/UBJUZ. . \00'\‘6\J 377 (
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The optimal wealth profile

Given enough convexity and regularity we now expect,
given the W A, to find the optimal Z by
maximizing

L=E"[®(Z)— X e ""LrZ] + Axo

over unconstrained Z, i.e. to maximize Afwe L@beﬁguﬂ \;v%?jmﬁ

/Q [B(Z(w)) - Ae T Lr(w)Z(w)} dP(w)

This is a trivial problem! (\{ you (o, ot i Wﬁﬁ(ﬁﬁ

Wa >
We can simply maximize Z(w) for each w separately. J
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The optimal wealth profile

Our problen‘((&\—»@a\k /H’svv\ d\%(’/\f@w& iz )

max {®(z) — Ae "' Lrz}

z

First order condition
®'(2) = e 'Ly

The optimal Z is thus given by \

N
7 = G( _TTLT):ZMW
(,mn
where “{ 5 j
Gly) = 0] (). I aeme

v

The dual vargiable A is determinedby{c;nstraint
e TE” | LrZ| = mo A“I/deé’/

You Wawe o glie )
Tomas Bjérk, 2017 /Fm,\ M 2q wakon, %&Ww)/
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Gloure of (Lot wre >0
Example — log utility

Assume that

o) =In@@) , G )=t =

Then Jmmmxé?;',in .
9= Ao all 420

Thus |
7 =G ()\e_TTLT) — XeTTL:Fl

Finally A\ is determined by

e "TEY [LTZA} = x0.

1
e "TEY [LTXeTTL:Fl] = xg.

Tomas Bjork, 2017 v
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The optimal wealth process

e \WWe have computed the optimal terminal wealth
profile

7 = )/(\'T = erTTLZFl ( l )

e \What does the optimal wealth process X’t look like?

] sl NyoadeA 05SeLs
We have (why?) [MSOO:ZM 2 ,«ma,vl-;uéa (S )

P

X, = e (TR [X'T‘ ]-"t} cz)

so we obtain {1 pm {'ﬂ ord (2 &in W iknr

Lpse wers©
)/(:t — et E¥ [L:Fl‘ ft] Y/

o Ao Hagocn LT = &P/dQ_"W(‘FT
But L=1! is a Q-martingale (why?) so we obtain

—

v rtr—1
Xt =xpe' "Ly .
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The Optimal Portfolio

e We have computed the optlmal wealth process: )<’/7/

e How do we compute the optimal portfolio?

Assume for simplicity that we have a standard Black-
Scholes model [Wd')[,ck W\OMCLS

dSt — uStdt + O'Stth,
dBt = TBtdt

Recall that R
X, = zoe™ L7

g e
Sovkscftn (& \C Sdineed {4@(3 ) A L/

4 —
Upirbon. Ll ”“/i" Th \M
/

/’\

sows

= \dl{a"' l/kﬂ'/ % w %)
e WNAWQ~( Ak + Vl/
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A
Basic Program n ’%zﬂ Lt J
/ \/011:/\ ‘WV\’ (46

1. Use Ito and the formula for )/(\'t to compute d)?t like

dX, = X,( )dt 4 X, 8,dW, (/éw)%k
t@ Roer )

where we do not care about )_!
v AW
2. Recall that [pe dwee Uy, '?N*Q“\“ /%IVQN:) -

\ AL
d)?t — )/(\Pt {(1 - /&t)% —|‘ ’&t S‘/b Q

which we write as

dX; = Xt oW,
3. We can AS
ﬂt:@ C‘{'MWNG’E’
o See ,{fu,f(s?/uz’v AWMU
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We recall R /Y
(1) X, = xoe™ L

We also recall that

(l/,{, ) _..o %’k) dLy = LypdWy,

A
where . r— /W\d/"“f& 3

o
From this we have [j;l;é‘ for L_{'

A
(L) dL;7' = Lt — L pd Wy = ‘d’ﬂcdv‘i

and we obtain <& (’) ) ol (2) AR Tt wﬁKMQ«M),

AR =R Yt - Rupaw, —> [7 T

€
Result: The optimal portfolio is given by M’—L—"‘ @’

N wii M&WS@V\
o2 0,y Marleet FM”F'“‘*)

Note that u is a “myopic” portfolio in the sense that
it does not depend on the time horizon T'.
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(wotas exanate)

A Digression: The Numeraire Portfolio

Standard approach:
e Choose a fixed numeraire (portfolio) V.

e Find the corresponding martingale measure, i.e. find Q" s.t.

B S
—, and —
N N

are QY -martingales.

T

Alternative approach“"\lwm we Gw(rs oo \ N (hopel2
N\~ &
e Choose a fixed measure Q ~ P. ét %) @ - )\
e Find numeraire N such that Q = Q"; Ne 5 ‘e

Special case:
o Set Q =P, our Mo\
e Find numeraire N such that Q¥ = P i.e. such that
B S
—, and —
T N N
]
are QN—martingaIes under the objective measure P.

e This N is called the numeraire portfolio.
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Log utility and the numeraire portfolio
Definition:

The growth optimal portfolio (GOP) is the portfolio
which is optimal for log utility (for arbltrary terminal

55
date T'. U&" Y(Cd ej’\’\/lg (Pﬁ,’)

s
Theorem: ) v = 0
Assume that X is GOP. Then X is the numeraire

portfolio.

Proof: e pbi6
We have to show that the process

o=+ 4
| | g o)
Is a P martingale. (ﬂ/vw(. Lo X/b .

We have (sec & 1)

’C
—t = 1€_Tt5@

which is a @nartingale, since x; e S, is a@
martingale. ch"%oy%" (Aou,‘«’(imc(/ LA ASE D =
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