Continuous Time Finance

Black-Scholes

(Ch 6-7)

Tomas Björk

-> Start of lecture 1, 2025 A

slides 42-97

Contents

- 1. Introduction.
- 2. Portfolio theory.
- 3. Deriving the Black-Scholes PDE
- 4. Risk neutral valuation
- 5. Appendices.

Tomas Björk, 2017

1.

Introduction

Tomas Björk, 2017

European Call Option

The holder of this paper has the right, not the obligation

to buy

1 ACME INC

on the date

June 30, 2017 (or any other future date)

at the price

\$100

Financial Derivative

• A financial asset which is defined in terms of some underlying asset.

• Future stochastic claim.

Examples

- European calls and puts
- American options
- Forward rate agreements
- Convertibles
- Futures
- Bond options
- Caps & Floors
- Interest rate swaps
- CDO:s
- CDS:s

Main problems

- What is a "reasonable" price for a derivative?
- How do you hedge yourself against a derivative.

Natural Answers

Consider a random cash payment \mathcal{Z} at time T.

What is a reasonable price $\Pi_0[\mathcal{Z}]$ at time 0?

Natural answers: (possibly incorrect)

1. Price = Discounted present value of future payouts.

$$\Pi_0\left[\mathcal{Z}\right]=\stackrel{e^{-rT}}{e^{-rT}}E\left[\mathcal{Z}\right]$$
 interest rate in [

2. The question is meaningless.

Both answers are incorrect!

- Given some assumptions we **can** really talk about "the correct price" of an option.
- The correct pricing formula is **not** the one on the previous slide.

Philosophy

- The derivative is **defined in terms of** underlying.
- The derivative can be priced in terms of underlying price.
- Consistent pricing.
- **Relative** pricing.

Before we can go on further we need some simple portfolio theory

2.

Portfolio Theory

Portfolios

We consider a market with N assets.

$$S_t^i = \text{price at } t, \text{ of asset No } i.$$

A portfolio strategy is an adapted vector process

$$h_t = (h_t^1, \cdots, h_t^N)$$

where

 h_t^i = number of units of asset i,

 V_t = market value of the portfolio

$$V_t = \sum_{i=1}^N h_t^i S_t^i$$

The portfolio is typically of the form

$$h_t = h(t, S_t)$$

i.e. today's portfolio is based on today's prices.

(Sometimes also on prices from Tomas Björk, 2017 the past)

Self financing portfolios

We want to study self financing portfolio strategies, i.e. portfolios where purchase of a "new" asset must be financed through sale of an "old" asset.

How is this formalized?

Definition:

The strategy h is **self financing** if

$$dV_t = \sum_{i=1}^{N} h_t^i dS_t^i$$

Interpret!

See Appendix B for details. $(P^{\circ}9^{\circ})$

and motivation from discrete time Accept this definition for the time being.

Relative weights

Definition:

 ω_t^i = relative portfolio weight on asset No i.

We have

when have
$$\omega_t^i = \frac{h_t^i S_t^i}{V_t}$$
 and then
$$h_t^i = w_t^i \frac{V_t}{S_t^i}$$
 Insert this into the self financing con

Insert this into the self financing condition

$$dV_t = \sum_{i=1}^{N} h_t^i dS_t^i$$

We obtain

Portfolio dynamics:

nics: equivalent to
$$dV_t = V_t \sum_{i=1}^N \omega_t^i \frac{dS_t^i}{S_t^i}, \quad \underbrace{\forall t}_{t} \stackrel{\text{index}}{S_t^t}$$

Interpret!

(also p. 94)

Deriving the Black-Scholes PDE

Back to Financial Derivatives

Consider the Black-Scholes model

$$dS_t = \mu S_t dt + \sigma S_t dW_t,$$

$$B_t = e^{rt} B_0, \qquad dB_t = rB_t dt. \quad \text{bank account}$$
 usually $B_0=1$ (normalization)

We want to price a European call with strike price K and exercise time T. This is a stochastic claim on the future. The future pay-out (at T) is a stochastic variable, \mathcal{Z} , given by

$$\mathcal{Z} = \max[S_T - K, 0],$$

= $(S_T - K)^+$, in different votation.

More general:

$$\mathcal{Z} = \Phi(S_T)$$

for some contract function Φ .

Main problem: What is a "reasonable" price, $\Pi_t[\mathcal{Z}]$, for \mathcal{Z} at t?

Main Idea

- We demand **consistent** pricing between derivative and underlying.
- No mispricing between derivative and underlying.
- No arbitrage possibilities on the market (B, S, Π)

i.e., a viable market

Arbitrage

The portfolio ω is an **arbitrage** portfolio if

- The portfolio strategy is self financing.
- $V_0 = 0$.
- $V_T > 0$ with probability one.

(or, weaker, $V_{+} > 0$ wp. 1, and $P(V_{+} > 0) > 0$) See lutier

Moral:

- Arbitrage = Free Lunch
- No arbitrage possibilities in an efficient market.

arbitrage possibility only in a market with "wrong" prices

Arbitrage test

Suppose that a portfolio ω is self financing whith dynamics

$$dV_t = kV_t dt$$

- No driving Wiener process
- Risk free rate of return.
- "Synthetic bank" with rate of return k.

If the market is free of arbitrage we must have:

$$k = r$$

Main Idea of Black-Scholes

- Since the derivative is defined in terms of the underlying, the derivative price should be highly correlated with the underlying price.
- We should be able to balance dervative against underlying in our portfolio, so as to cancel the randomness.
- ullet Thus we will obtain a riskless rate of return k on our portfolio.
- Absence of arbitrage must imply

$$k = r$$
 (or $k_{t} = r_{t}$)

-> End of lecture la <-

Two Approaches

The program above can be formally carried out in two slightly different ways:

- The way Black-Scholes did it in the original paper.
 This leads to some logical problems.
- A more conceptually satisfying way, first presented by Merton.

Here we use the Merton method. You will find the original BS method in Appendix C at the end of this lecture.

Formalized program a la Merton (outline)

Assume that the derivative price is of the form

$$\Pi_t\left[\mathcal{Z}\right] = f(t, S_t).$$

self financing

ullet Form a portfolio based on the underlying S and the derivative f, with portfolio dynamics

$$dV_t = V_t \left\{ \underbrace{\omega_t^S} \cdot \frac{dS_t}{S_t} + \underbrace{\omega_t^f} \cdot \frac{df}{f} \right\} \quad \text{fix the definition of the general case}$$

Choose ω^S and ω^f such that the dW-term is wiped out. This gives us

$$dV_t = V_t \cdot kdt$$

Absence of arbitrage implies

$$k = r$$

This relation will say something about f.

Back to Black-Scholes

$$dS_t = \mu S_t dt + \sigma S_t dW_t,$$

$$\Pi_t [\mathcal{Z}] = f(t, S_t)$$

Itô's formula gives us the f dynamics as

official gives us the
$$f$$
 dynamics as
$$df = \left\{ \frac{\partial f}{\partial t} + \mu S \frac{\partial f}{\partial s} + \frac{1}{2} S^2 \sigma^2 \frac{\partial^2 f}{\partial s^2} \right\} dt + \sigma S \frac{\partial f}{\partial s} dW$$

Write this as

$$df = \mu_f \cdot f dt + \sigma_f \cdot f dW$$

where

$$\mu_{f} = \frac{\frac{\partial f}{\partial t} + \mu S \frac{\partial f}{\partial s} + \frac{1}{2} S^{2} \sigma^{2} \frac{\partial^{2} f}{\partial s^{2}}}{f}$$

$$\sigma_{f} = \frac{\sigma S \frac{\partial f}{\partial s}}{f}$$

$$\sigma_{f} = \frac{\sigma f \frac{\partial f}{\partial s}}{f}$$

$$\sigma_{f} = \frac{\sigma f \frac{\partial f}{\partial s}}{f}$$

Recall from previous pages:
$$df = \mu_f \cdot f dt + \sigma_f \cdot f dW$$

$$\begin{split} dV &= V \left\{ \omega^S \cdot \frac{dS}{S} + \omega^f \cdot \frac{df}{f} \right\} \\ &= V \left\{ \omega^S (\mu dt + \sigma dW) + \omega^f (\mu_f dt + \sigma_f dW) \right\} \\ dV &= V \left\{ \omega^S \mu + \omega^f \mu_f \right\} dt + V \left\{ \omega^S \sigma + \omega^f \sigma_f \right\} dW \end{split}$$

Now we kill the dW-term!

Choose (ω^S, ω^f) such that

$$\omega^S \sigma + \omega^f \sigma_f = 0$$
$$\omega^S + \omega^f = 1$$

Linear system with solution (if you don't divide by zero!)

$$\omega^{S} = \frac{\sigma_{f}}{\sigma_{f} - \sigma}, \quad \omega^{f} = \frac{-\sigma}{\sigma_{f} - \sigma}$$

Plug into dV!

We obtain

$$dV = V \left\{ \omega^S \mu + \omega^f \mu_f \right\} dt$$

This is a risk free "synthetic bank" with short rate

$$\left\{\omega^S \mu + \omega^f \mu_F\right\}$$

Absence of arbitrage implies

$$\left\{\omega^S \mu + \omega^f \mu_f\right\} = r$$

Plug in the expressions for ω^S , ω^f , μ_f and simplify. This will give us the following result.

that involve partial derivatives Ser pp. 64, 65

you do the computations!

Black-Schole's PDE

The price is given by

$$\Pi_t \left[\mathcal{Z} \right] = f \left(t, S_t \right)$$

where the pricing function f satisfies the PDE (partial differential equation)

$$\begin{cases} \frac{\partial f}{\partial t}(t,s) + rs\frac{\partial f}{\partial s}(t,s) + \frac{1}{2}\sigma^2 s^2 \frac{\partial^2 f}{\partial s^2}(t,s) - rf(t,s) &= 0\\ f(T,s) &= \Phi(s) \end{cases}$$

Theorem!

There is a unique solution to the PDE so there is a unique arbitrage free price process for the contract.

Black-Scholes' PDE ct'd

$$\begin{cases} \frac{\partial f}{\partial t} + rs \frac{\partial f}{\partial s} + \frac{1}{2}\sigma^2 s^2 \frac{\partial^2 f}{\partial s^2} - rf & = & 0\\ f(T, s) & = & \Phi(s) \end{cases}$$

 The price of all derivative contracts have to satisfy the same PDE

$$\frac{\partial f}{\partial t} + rs \frac{\partial f}{\partial s} + \frac{1}{2}\sigma^2 s^2 \frac{\partial^2 f}{\partial s^2} - rf = 0$$

otherwise there will be an arbitrage opportunity.

• The only difference between different contracts is in the boundary value condition

$$f(T,s) = \Phi(s)$$

Data needed

- The contract function Φ .
- Today's date *t*.
- Today's stock price S.
- Short rate r.
- Volatility σ .

Note: The pricing formula does **not** involve the mean rate of return μ !

miracle??

Black-Scholes Basic Assumptions

Assumptions:

- The stock price is Geometric Brownian Motion
- Continuous trading.
- Frictionless efficient market.
- Short positions are allowed.
- Constant volatility σ .
- Constant short rate r.
- Flat yield curve.

Black-Scholes' Formula **European Call**

T=date of expiration, t=today's date, K=strike price, r=short rate, s=today's stock price, σ =volatility.

$$f(t,s) = sN[d_1] - e^{-r(T-t)}KN[d_2].$$

 $N[\cdot]$ =cdf for N(0,1)-distribution.

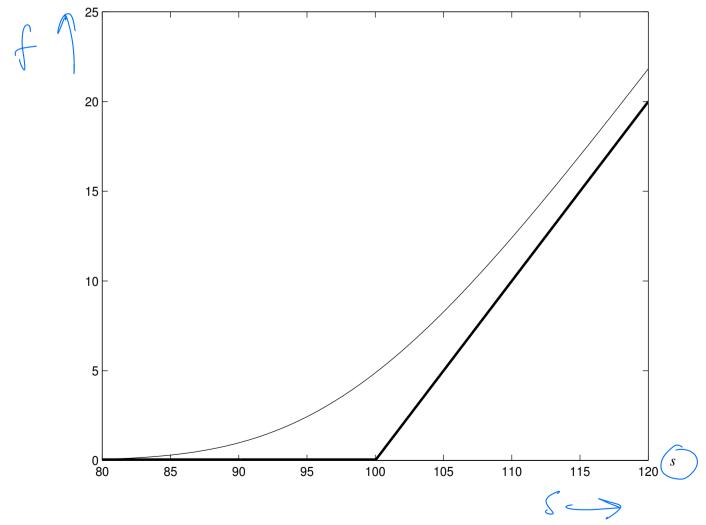
$$d_1 = \frac{1}{\sigma\sqrt{T-t}} \left\{ \ln\left(\frac{s}{K}\right) + \left(r + \frac{1}{2}\sigma^2\right) (T-t) \right\},\,$$

$$d_2=d_1-\sigma\sqrt{T-t}.$$
 Comes out If the blue for the Aime Tomas Björk, 2017 being; but this FDE (diecles) the Blade-Scholes PDE (diecles) But, see also p. 77

Black-Scholes

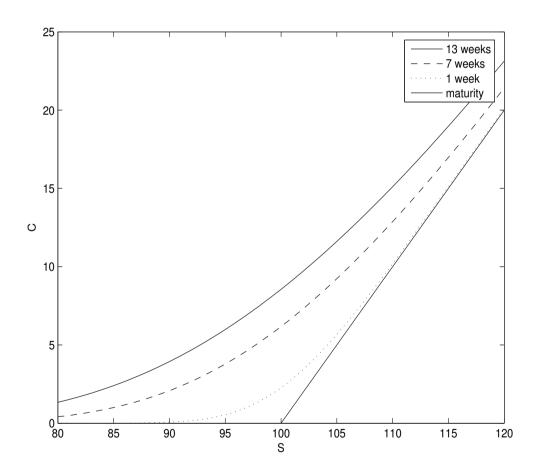
European Call,

$$K = 100, \quad \sigma = 20\%, \quad r = 7\%, \quad T - t = 1/4$$

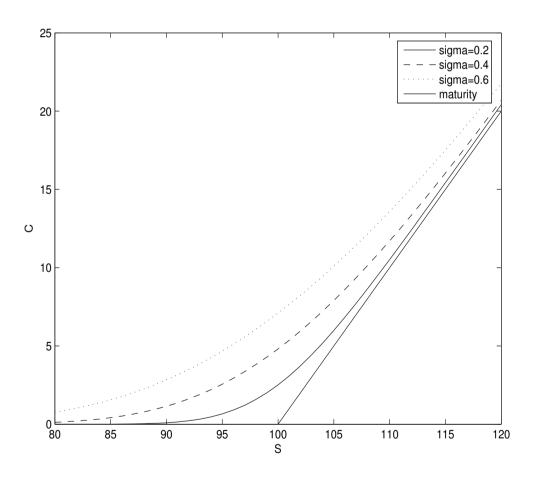


Tomas Björk, 2017

Dependence on Time to Maturity



Dependence on Volatility



4.

Risk Neutral Valuation

Risk neutral valuation

Appplying Feynman-Kac to the Black-Scholes PDE we obtain

 $\Pi[t;X] = e^{-r(T-t)} E_{t,s}^{Q}[X],$ conditional expectation at time t, with $S_{t}=S$, under the measure Q.

Qdynamics:

$$\begin{cases} dS_t = rS_t dt + \sigma S_t dW_t^Q, \\ dB_t = rB_t dt. \end{cases}$$

- Price = Expected discounted value of future payments.
- The expectation shall **not** be taken under the "objective" probability measure P, but under the "risk adjusted" measure ("martingale measure") Q.

Note: $P \sim Q$ (Girsanov), equivalence of the two probability measures on \mathcal{F}_{T} . Tomas Björk, 2017 See later)

Concrete formulas

$$\label{eq:definition} \Pi\left[0;\Phi\right] = e^{-rT} \int_{-\infty}^{\infty} \Phi(se^z) f(z) dz$$

$$f(z) = \frac{1}{\sqrt{2\pi T}} \exp\left\{-\frac{\left[z - (r - \frac{1}{2}\sigma^2)T\right]^2}{2\sigma^2 T}\right\}$$

$$density \text{ of } N\left(\left[r - \frac{1}{2}\sigma^2\right]T\right), \text{ of } T$$

$$variance$$

$$Note: St = S_0 \exp\left(\left(r - \frac{1}{2}\sigma^2\right)T\right) + \sigma \text{ who } T$$

$$For the European with strike K we get (see p.57)$$

$$Tr\left(O, \Phi\right) = e^{-rT} \int_{-\infty}^{\infty} (se^{\frac{3}{2}} - K)^{\frac{1}{2}} f(z) dz$$

$$= e^{-rT} \int_{-\infty}^{\infty} \frac{K}{s} f(z) dz, \text{ do the } T$$

$$Tomas Björk, 2017$$

$$Tomas Björk, 2017$$

Interpretation of the risk adjusted measure

- **Assume** a risk neutral world.
- Then the following must hold

$$s = S_0 = e^{-rt} E[S_t]$$

In our model this means that

$$dS_t = rS_t dt + \sigma S_t dW_t^Q$$

• The risk adjusted probabilities can be intrepreted as probabilities in a fictuous risk neutral economy.

Moral

- When we compute prices, we can compute **as if** we live in a risk neutral world.
- This does **not** mean that we live (or think that we live) in a risk neutral world.
- The formulas above hold regardless of the investor's attitude to risk, as long as he/she prefers more to less.
- The valuation formulas are therefore called "preference free valuation formulas".

Properties of Q

- $P \sim Q$ (Girsanov)
- For the price pricess π of any traded asset, derivative or underlying, the process

$$Z_t = \frac{\pi_t}{B_t}$$

is a Q-martingale. (details later)

• Under Q, the price pricess π of any traded asset, derivative or underlying, has (r) as its local rate of return:

$$d\pi_t = \widehat{r}\pi_t dt + \widehat{\sigma}_{\pi}\pi_t dW_t^Q$$

• The volatility of π is the same under Q as under P.

-> end of lecture 16 [or after next selle] < Tomas Björk, 2017

A Preview of Martingale Measures

Consider a market, under an objective probability measure P, with underlying assets

$$B, S^1, \dots, S^N$$

A probability measure Q is called a **Definition:** martingale measure if

- $P \sim Q$
- For every *i*, the process

$$Z_t^i = \frac{S_t^i}{B_t}$$

is a Q-martingale.

Theorem: The market is arbitrage free **iff** there exists a martingale measure. FTAP 1

1st fundamental theorem of asset pricing
Tomas Björk, 2017

Send of lecture 1be