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Derivatives on Non Financial Underlying

Recall: The Black-Scholes theory assumes that the
market for the underlying asset has (among other
things) the following properties.

• The underlying is a liquidly traded asset.

• Shortselling allowed.

• Portfolios can be carried forward in time.

There exists a large market for derivatives, where the
underlying does not satisfy these assumptions.

Examples:

• Weather derivatives.

• Derivatives on electric energy.

• CAT-bonds.
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Typical Contracts

Weather derivatives:
“Heating degree days”. Payoff at maturity T is
given by

Z = max {XT − 30, 0}
where XT is the (mean) temperature at some place.

Electricity option:
The right (but not the obligation) to buy, at time
T , at a predetermined price K, a constant flow of
energy over a predetermined time interval.

CAT bond:
A bond for which the payment of coupons and
nominal value is contingent on some (well specified)
natural disaster to take place.
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Problems

Weather derivatives:
The temperature is not the price of a traded asset.

Electricity derivatives:
Electric energy cannot easily be stored.

CAT-bonds:
Natural disasters are not traded assets.

We will treat all these problems within a factor model.
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Typical Factor Model Setup

Given:

• An underlying factor process X, which is not the
price process of a traded asset, with dynamics under
the objective probability measure P as

dXt = µ (t,Xt) dt + σ (t,Xt) dWt.

• A risk free asset with dynamics

dBt = rBtdt,

Problem:
Find arbitrage free price Πt [Z] of a derivative of the
form

Z = Φ(XT )
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Concrete Examples

Assume that Xt is the temperature at time t at the
village of Peniche (Portugal).

Heating degree days:

Φ(XT ) = 100 · max {XT − 30, 0}

Holiday Insurance:

Φ(XT ) =






1000, if XT < 20

0, if XT ≥ 20
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Question

Is the price Πt [Φ] uniquely determined by the P -
dynamics of X, and the requirement of an arbitrage
free derivatives market?
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NO!!

WHY?
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Stock Price Model ∼ Factor Model

Black-Scholes:

dSt = µStdt + σStdWt,

dBt = rBtdt.

Factor Model:

dXt = µ(t, Xt)dt + σ(t, Xt)dWt,

dBt = rBtdt.

What is the difference?
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Answer

• X is not the price of a traded asset!

• We can not form a portfolio based on X.
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1. Rule of thumb:

N = 0, (no risky asset)
R = 1, (one source of randomness, W )

We have N < R. The exogenously given market,
consisting only of B, is incomplete.

2. Replicating portfolios:
We can only invest money in the bank, and then sit
down passively and wait.

We do not have enough underlying assets in order
to price X-derivatives.
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• There is not a unique price for a particular
derivative.

• In order to avoid arbitrage, different derivatives
have to satisfy internal consistency relations.

• If we take one “benchmark” derivative as given,
then all other derivatives can be priced in terms of
the market price of the benchmark.

We consider two given claims Φ(XT ) and Γ(XT ). We
assume they are traded with prices

Πt [Φ] = f(t, Xt)

Πt [Γ] = g(t, Xt)
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Program:

• Form portfolio based on Φ and Γ. Use Itô on f and
g to get portfolio dynamics.

dV = V

{
uf df

f
+ ugdg

g

}

• Choose portfolio weights such that the dW− term
vanishes. Then we have

dV = V · kdt,

(“synthetic bank” with k as the short rate)

• Absence of arbitrage implies

k = r

• Read off the relation k = r!
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From Itô:
df = fµfdt + fσfdW,

where {
µf =

ft+µfx+1
2σ2fxx

f ,

σf = σfx
f .

Portfolio dynamics

dV = V

{
uf df

f
+ ugdg

g

}
.

Reshuffling terms gives us

dV = V ·
{
ufµf + ugµg

}
dt+V ·

{
ufσf + ugσg

}
dW.

Let the portfolio weights solve the system

{
uf + ug = 1,

ufσf + ugσg = 0.
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uf = − σg

σf − σg
,

ug =
σf

σf − σg
,

Portfolio dynamics

dV = V ·
{
ufµf + ugµg

}
dt.

i.e.

dV = V ·
{

µgσf − µfσg

σf − σg

}
dt.

Absence of arbitrage requires

µgσf − µfσg

σf − σg
= r

which can be written as

µg − r

σg
=

µf − r

σf
.
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µg − r

σg
=

µf − r

σf
.

Note!
The quotient does not depend upon the particular
choice of contract.
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Result

Assume that the market for X-derivatives is free of
arbitrage. Then there exists a universal process λ,
such that

µf(t) − r

σf(t)
= λ(t, Xt),

holds for all t and for every choice of contract f .

NB: The same λ for all choices of f .

λ = Risk premium per unit of volatility
= “Market Price of Risk” (cf. CAPM).
= Sharpe Ratio

Slogan:
“On an arbitrage free market all X-derivatives have
the same market price of risk.”

The relation
µf − r

σf
= λ

is actually a PDE!
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Pricing Equation





ft + {µ − λσ} fx +

1

2
σ2fxx − rf = 0

f(T, x) = Φ(x),

P -dynamics:

dX = µ(t, X)dt + σ(t, X)dW.

Can we solve the PDE?
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No!!

Why??
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Answer

Recall the PDE





ft + {µ − λσ} fx +

1

2
σ2fxx − rf = 0

f(T, x) = Φ(x),

• In order to solve the PDE we need to know λ.

• λ is not given exogenously.

• λ is not determined endogenously.
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Question:

Who determines λ?
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Answer:

THE MARKET!
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Interpreting λ

Recall that the f dynamics are

df = fµfdt + fσfdWt

and λ is defined as

µf(t) − r

σf(t)
= λ(t, Xt),

• λ measures the aggregate risk aversion in the
market.

• If λ is big then the market is highly risk averse.

• If λ is zero then the market is risk netural.

• If you make an assumption about λ, then you
implicitly make an assumption about the aggregate
risk aversion of the market.
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Moral

• Since the market is incomplete the requirement of
an arbitrage free market will not lead to unique
prices for X-derivatives.

• Prices on derivatives are determined by two main
factors.

1. Partly by the requirement of an arbitrage free
derivative market. All pricing functions satisfies
the same PDE.

2. Partly by supply and demand on the market.
These are in turn determined by attitude towards
risk, liquidity consideration and other factors. All
these are aggregated into the particular λ used
(implicitly) by the market.
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Risk Neutral Valuation

We recall the PDE





ft + {µ − λσ} fx +

1

2
σ2fxx − rf = 0

f(T, x) = Φ(x),

Using Feynman-Kac we obtain a risk neutral valuation
formula.
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Risk Neutral Valuation

f(t, x) = e−r(T−t)EQ
t,x [Φ(XT )]

Q-dynamics:

dXt = {µ − λσ} dt + σdWQ
t

• Price = expected value of future payments

• The expectation should not be taken under the
“objective” probabilities P , but under the “risk
adjusted” probabilities Q.
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Interpretation of the risk adjusted
probabilities

• The risk adjusted probabilities can be interpreted as
probabilities in a (fictuous) risk neutral world.

• When we compute prices, we can calculate as if
we live in a risk neutral world.

• This does not mean that we live in, or think that
we live in, a risk neutral world.

• The formulas above hold regardless of the attitude
towards risk of the investor, as long as he/she prefers
more to less.
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Diversification argument about λ

• If the risk factor is idiosyncratic and diversifiable,
then one can argue that the factor should not be
priced by the market. Compare with APT.

• Mathematically this means that λ = 0, i.e. P = Q,
i.e. the risk neutral distribution coincides with
the objective distribution.

• We thus have the “actuarial pricing formula”

f(t, x) = e−r(T−t)EP
t,x [Φ(XT )]

where we use the objective probabiliy measure P .
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Modeling Issues
Temperature:

A standard model is given by

dXt = {m(t) − bXt} dt + σdWt,

where m is the mean temperature capturing
seasonal variations. This often works reasonably
well.

Electricity:
A (naive) model for the spot electricity price is

dSt = St {m(t) − a lnSt} dt + σStdWt

This implies lognormal prices (why?). Electricty
prices are however very far from lognormal, because
of “spikes” in the prices. Complicated.

CAT bonds:
Here we have to use the theory of point processes
and the theory of extremal statistics to model
natural disasters. Complicated.
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Martingale Analysis

Model: Under P we have

dXt = µ (t,Xt) dt + σ (t,Xt) dWt,

dBt = rBtdt,

We look for martingale measures. Since B is the only
traded asset we need to find Q ∼ P such that

Bt

Bt
= 1

is a Q martingale.

Result: In this model, every Q ∼ P is a martingale
measure.

Girsanov
dLt = LtϕtdWt
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P -dynamics

dXt = µ (t,Xt) dt + σ (t,Xt) dWt,

dLt = LtϕtdWt

dQ = LtdP on Ft

Girsanov:
dWt = ϕtdt + dWQ

t

Martingale pricing:

F (t, x) = e−r(T−t)EQ [Z| Ft]

Q-dynamics of X:

dXt = {µ (t,Xt) + σ (t, Xt) ϕt} dt + σ (t,Xt) dWQ
t ,

Result: We have λt = −ϕt, i.e,. the Girsanov kernel
ϕ equals minus the market price of risk.
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Several Risk Factors

We recall the dynamics of the f -derivative

df = fµfdt + fσfdWt

and the Market Price of Risk

µf − r

σf
= λ, i.e. µf − r = λσf .

In a multifactor model of the type

dXt = µ (t,Xt) dt +
n∑

i=1

σi (t,Xt) dW i
t ,

it follows from Girsanov that for every risk factor W i

there will exist a market price of risk λi = −ϕi such
that

µf − r =
n∑

i=1

λiσi

Compare with CAPM.

Tomas Björk, 2017 320

also

Gt IT

formultiplewienerprocesses not treated

New equation
if youknowwhat

that is

End of lecture to be


