3 Start of lecture 10ac

Continuous Time Finance

Incomplete Markets

Ch 15

Tomas Björk

Recall: In a complete market, every dain can be hedged (and thus has a unique price).

Metatheorem: N < R (not sufficiently many risky assets) in incomplete markets.

What else? Typical examples?

Derivatives on Non Financial Underlying

Recall: The Black-Scholes theory assumes that the market for the underlying asset has (among other things) the following properties.

- The underlying is a liquidly traded asset.
- Shortselling allowed.
- Portfolios can be carried forward in time.

There exists a large market for derivatives, where the underlying does not satisfy these assumptions.

Examples: (see wext page)

- Weather derivatives.
- Derivatives on electric energy.
- CAT-bonds.

Tomas Björk, 2017

Typical Contracts

Weather derivatives:

"Heating degree days". Payoff at maturity T is given by

$$\mathcal{Z} = \max\left\{X_T - 30, 0\right\}$$

where X_T is the (mean) temperature at some place.

Electricity option:

The right (but not the obligation) to buy, at time T, at a predetermined price K, a constant flow of energy over a predetermined time interval.

CAT bond:

A bond for which the payment of coupons and nominal value is contingent on some (well specified) natural disaster to take place.

Problems

Weather derivatives:

The temperature is not the price of a traded asset.

Electricity derivatives:

Electric energy cannot easily be stored.

CAT-bonds:

Natural disasters are not traded assets.

We will treat all these problems within a factor model.

for the maeseying

Typical Factor Model Setup

Given:

 \bullet An underlying factor process X, which is **not** the price process of a traded asset, with dynamics under the objective probability measure P as

$$dX_t = \mu(t, X_t) dt + \sigma(t, X_t) dW_t.$$

A risk free asset with dynamics

$$dB_t = rB_t dt,$$

Problem:

Find arbitrage free price $\Pi_t [\mathcal{Z}]$ of a derivative of the form

$$\mathcal{Z} = \Phi(X_T)$$

Note Similarity AND difference with earlier set up.

Tomas Björk, 2017

X is NOT the price of a braded asset

Concrete Examples

Assume that X_t is the temperature at time t at the village of Peniche (Portugal).

Heating degree days:

$$\Phi(X_T) = 100 \cdot \max\{X_T - 30, 0\}$$

Holiday Insurance:

$$\Phi(X_T) = \begin{cases} 1000, & \text{if } X_T < 20 \\ 0, & \text{if } X_T \ge 20 \end{cases}$$

Question

顶分

Is the price $\Pi_t[\Phi]$ uniquely determined by the P-dynamics of X, and the requirement of an arbitrage free derivatives market?

[again a quession that should make you suspicions]

NO!!

WHY?

find the difference(s)
between current and
trevious set ups

Tomas Björk, 2017

Stock Price Model $\stackrel{\sqrt{5}}{\sim}$ Factor Model

Black-Scholes:

$$dS_t = \mu S_t dt + \sigma S_t dW_t,$$

$$dB_t = rB_t dt.$$

Factor Model: (fixilar equain)

$$dX_t = \mu(t, X_t)dt + \sigma(t, X_t)dW_t,$$

$$dB_t = rB_t dt. \qquad \text{(r can be fine dent too!)}$$

What is the difference?

Answer

- X is not the price of a traded asset!
- We can not form a portfolio based on X, hudging this way is Impossible .

298

1. Rule of thumb:

$$N=0,$$
 (no risky asset) $R=1,$ (one source of randomness, W)

We have N < R. The exogenously given market, consisting only of B, is incomplete.

2. Replicating portfolios:

We can only invest money in the bank, and then sit down passively and wait.

We do **not** have **enough underlying assets** in order to price X-derivatives.

- There is **not** a unique price for a **particular** derivative. Hypical for incomplete warkets
- In order to avoid arbitrage, different derivatives have to satisfy internal consistency relations.
- If we take **one** "benchmark" derivative as given, then all other derivatives can be priced in terms of the market price of the benchmark.

We consider two given claims $\Phi(X_T)$ and $\Gamma(X_T)$. We assume they are traded with prices

$$\Pi_t \left[\Phi \right] = f(t, X_t)$$
 $\Pi_t \left[\Gamma \right] = g(t, X_t)$
Same Same Supply for the factor

$$\Pi_t [\Gamma] = g(t, X_t)$$

Program:

grabile process V self fivancing ullet Form portfolio based on Φ and Γ . Use Itô on f and g to get portfolio dynamics

Self-financing
$$dV = V\left\{u^f \frac{df}{f} + u^g \frac{dg}{g}\right\}$$
 relative weights

Usual steps:

• Choose portfolio weights such that the $dW-$ term

• Choose portfolio weights such that the dW- term vanishes. Then we have

$$dV = V \cdot kdt,$$

("synthetic bank" with k as the short rate)

Absence of arbitrage implies

$$k = r$$

Read off the relation k = r!

arrying out the program: Recall III[]=f(t, Xt), assumptim

From Itô:

where

$$df = f\mu_f dt + f\sigma_f dW,$$

$$\begin{cases} df = f\mu_f dt + f\sigma_f dW, \\ \mu_f = \frac{f_t + \mu f_x + \frac{1}{2}\sigma^2 f_{xx}}{f}, \\ \sigma_f = \frac{\sigma f_x}{f}. \end{cases}$$
 see equation for

Portfolio dynamics

$$dV = V \left\{ u^f \frac{df}{f} + u^g \frac{dg}{g} \right\}.$$
 Use also T_t[T'] = g (t, X_t). Perhuffling terms gives us

Reshuffling terms gives us

$$dV = V \cdot \left\{ u^f \mu_f + u^g \mu_g \right\} dt + V \cdot \left\{ u^f \sigma_f + u^g \sigma_g \right\} dW.$$

Let the portfolio weights solve the system

$$\begin{cases} u^f + u^g &= 1, \\ u^f \sigma_f + u^g \sigma_g &= 0. \end{cases} \leftarrow \lim_{g \to g} \int_{\mathbb{R}^n} dy dy$$

$$u^{f} = -\frac{\sigma_{g}}{\sigma_{f} - \sigma_{g}},$$

$$u^{g} = \frac{\sigma_{f}}{\sigma_{f} - \sigma_{g}},$$

Portfolio dynamics

$$dV = V \cdot \left\{ u^f \mu_f + u^g \mu_g \right\} dt. + \mathcal{O}, dW$$

$$dV = V \cdot \left\{ \frac{\mu_g \sigma_f - \mu_f \sigma_g}{\sigma_f - \sigma_g} \right\} dt.$$

i.e.

Absence of arbitrage requires

$$\frac{\mu_g \sigma_f - \mu_f \sigma_g}{\sigma_f - \sigma_g} = r$$

which can be written as

$$\frac{\mu_g - r}{\sigma_g} = \frac{\mu_f - r}{\sigma_f}.$$

Refreat from previous seide:

$$\frac{\mu_g - r}{\sigma_g} = \frac{\mu_f - r}{\sigma_f}.$$

Note!

The quotient does **not** depend upon the particular choice of contract. (Same for $f_{1}g_{1}$)

Consider this as an visternal Consistency relation (See p-300)

This relation should also hold when I is the price of a traded assot.

True? Think of this!

Result

Assume that the market for X-derivatives is free of Then there exists a universal process λ , arbitrage. such that

$$\frac{\mu_f(t) - r}{\sigma_f(t)} = \lambda(t, X_t),$$

holds for all t and for every choice of contract f.

NB: The same λ for all choices of f.

- - Sharpe Ratio

λ = Risk premium per unit of volatility = "Market Price of Risk" (cf. CAPM).

Slogan:

"On an arbitrage free market all X-derivatives have the same market price of risk."

$$\frac{\mu_f - r}{\sigma} = \lambda$$

> Start of lecture 1066

Pricing Equation

Note also that μ [drift of X under P] is present in this equation, not in the Black-Scholes PDE, Why?

P-dynamics:

$$dX = \mu(t, X)dt + \sigma(t, X)dW.$$

Can we solve the PDE?

No!!

Why??

Answer

Recall the PDE (in short hand wolation)

$$\begin{cases} f_t + \{\mu - \lambda \sigma\} f_x + \frac{1}{2} \sigma^2 f_{xx} - rf = 0 \\ f(T, x) = \Phi(x), \end{cases}$$

- In order to solve the PDE we need to know λ .
- λ is not given exogenously.
- λ is not determined endogenously.

looks hopeless, way out?

Question:

Who determines λ ?

Answer:

THE MARKET!

Interpreting λ

Recall that the f dynamics are

$$df = f\mu_f dt + f\sigma_f dW_t$$

and λ is defined as

$$\frac{\mu_f(t) - r}{\sigma_f(t)} = \lambda(t, X_t),$$

- ullet λ measures the aggregate risk aversion in the market.
- If λ is big then the market is highly risk averse.
- If λ is zero then the market is **risk ne** ral.
- If you make an assumption about λ , then you implicitly make an assumption about the aggregate risk aversion of the market. and VVV.: You may than about λ from market (agents) behaviour,

Tomas Björk, 2017 or perhaps in analysing a particularing a particular perhaps in analysing a particular perhaps in a particular

Moral

- Since the market is incomplete the requirement of an arbitrage free market will **not** lead to unique prices for *X*-derivatives.
- Prices on derivatives are determined by two main factors.
 - 1. Partly by the requirement of an arbitrage free derivative market. All pricing functions satisfies the same PDE but with different bandary
 - 2. **Partly** by supply and demand on the market. These are in turn determined by attitude towards risk, liquidity consideration and other factors. All these are aggregated into the particular λ used (implicitly) by the market.

depending on 7!

Risk Neutral Valuation

We recall the PDE

$$\begin{cases} f_t + \{\mu - \lambda \sigma\} f_x + \frac{1}{2} \sigma^2 f_{xx} - rf = 0 \\ f(T, x) = \Phi(x), \end{cases}$$

Using Feynman-Kac we obtain a risk neutral valuation formula.

As always: couples this PDE to an SDE for X.

Risk Neutral Valuation

$$f(t,x)=e^{-r(T-t)}E^Q_{t,x}\left[\Phi(X_T)\right]$$
 Q-dynamics: Note: Huse are not constants,
$$dX_t=\{\mu-\lambda\sigma\}\,dt+\sigma dW^Q_t$$

- Price = expected value of future payments
- The expectation should **not** be taken under the "objective" probabilities P, but under the adjusted" probabilities Q.

adjusted" probabilities Q.

Think of Girsanov. If
$$l_t$$
 (dB on Fz)

satisfies dl_t : l_t (dl_t on Fz)

satisfies dl_t : l_t (dl_t on Fz)

 dl_t : l_t :

(see also pp. 318, 3(g)

Interpretation of the risk adjusted probabilities, i.e. Q

As at the beginning of the course:

- The risk adjusted probabilities can be interpreted as probabilities in a (fictuous) risk neutral world.
- When we compute prices, we can calculate as if we live in a risk neutral world.
- This does **not** mean that we live in, or think that we live in, a risk neutral world.
- The formulas above hold regardless of the attitude towards risk of the investor, as long as he/she prefers more to less.

Market price of risk

Diversification argument about λ

• If the risk factor is **idiosyncratic** and **diversifiable**, then one can argue that the factor should not be priced by the market. Compare with APT Arkibase

priced by the market. Compare with APT, Arbitrage
Pricing Theory, e.g. CAPH

• Mathematically this means that $\lambda=0$, i.e. P=Q, i.e. the risk neutral distribution coincides with the objective distribution.

• We thus have the "actuarial pricing formula"

$$f(t,x)=e^{-r(T-t)}E_{t,x}^{P}\left[\Phi(X_{T})\right] \text{ (so, if PeQ)}$$

where we use the objective probability measure P.

Modeling Issues

Temperature:

mperature:
A standard model is given by Ornskin-Whlenbede

$$dX_t = \{m(t) - bX_t\} dt + \sigma dW_t,$$

where m is the mean temperature capturing seasonal variations. This often works reasonably well. Here Xt has a normal distribution of X, is normal (independent of W)

Electricity:

A (naive) model for the spot electricity price is

 $dS_t = S_t \{m(t) - a \ln S_t\} dt + \sigma S_t dW_t$ Use Itô to show: $\log S_t$ is an OU process This implies lognormal prices (why?). Electricty prices are however very far from lognormal, because of "spikes" in the prices. Complicated. in cality!

CAT bonds:

Here we have to use the theory of point processes and the theory of extremal statistics to model natural disasters. Complicated. yatural concept here, like Poisson process;

beyond scope 317 this course

Tomas Björk, 2017

Martingale Analysis

(like on p.314)

Model: Under P we have

$$dX_t = \mu(t, X_t) dt + \sigma(t, X_t) dW_t,$$

$$dB_t = rB_t dt,$$

We look for martingale measures. Since B is the only traded asset we need to find $Q \sim P$ such that

$$\frac{B_t}{B_t} = 1$$

is a Q martingale.

Result: In this model, every $Q \sim P$ is a martingale measure.

Girsanov

$$dL_t = L_t \varphi_t dW_t$$

P-dynamics

$$dX_{t} = \mu (t, X_{t}) dt + \sigma (t, X_{t}) dW_{t}, \qquad ()$$

$$dL_{t} = L_{t}\varphi_{t}dW_{t}$$

 $dQ = L_t dP$ on \mathcal{F}_t

Girsanov:

$$dW_t = \varphi_t dt + dW_t^Q \tag{b}$$

Martingale pricing: for appropriate T-dain Z

$$F(t,x) = e^{-r(T-t)} E^{Q} \left[Z | \mathcal{F}_t \right]$$

Q-dynamics of X: (Combine (a) and (b)):

$$dX_{t} = \{\mu(t, X_{t}) + \sigma(t, X_{t}) \varphi_{t}\} dt + \sigma(t, X_{t}) dW_{t}^{Q},$$

Result: We have $\lambda_t = -\varphi_t$, i.e,. the Girsanov kernel φ equals minus the market price of risk.

Tomas Björk, 2017

Several Risk Factors

We recall the dynamics of the f-derivative

$$df = f\mu_f dt + f\sigma_f dW_t$$

assort (M+ F4) att

and the Market Price of Risk

$$\frac{\mu_f - r}{\sigma_f} = \lambda,$$
 i.e. $\mu_f - r = \lambda \sigma_f.$

In a multifactor model of the type

$$dX_t = \mu\left(t, X_t\right) dt + \sum_{i=1}^n \sigma_i\left(t, X_t\right) dW_t^i,$$
 for multiple wiener processes (not treated)

it follows from Girsanov that for every risk factor W^i there will exist a market price of risk $\lambda_i = -\varphi_i$ such

that

$$\mu_f - r = \sum_{i=1}^n \lambda_i \sigma_i$$

New equation: $\mu_f - r = \sum_{i=1}^n \lambda_i \sigma_i$ Compare with CAPM. (H you know what that is)

Tomas Björk, 2017 320

End of lecture 1062