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1. Dynamic Programming

e T he basic idea.
e Deriving the HJB equation.

e [ he verification theorem.

e The linear quadratic regulator. [ lass\c OXgrpe 'IEBW'
Systome thascy \
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Problem Formulation

T
max E / F(t, Xt, ut)dt + (I)(XT)
v 0
_ w
subject to M koV P{OCQD’S f,iw fired u X%:-b(b
dXti: v (t, Xt, ut) dt + o (t, Xt, ut) th
XO — X0,

Y

w € UEX,). vt o =W (Pralltx)

We will only consider feedback control laws, i.e.

controls of the form bl P ,@7 P(w'(o“,s
':)u.fh L 4
ur = u(t, Xy) Mo sy F“@%\Z«/

Xu sl s ve
Terminology: v
X = state variable X‘UéR\L
u = contr0| Yiribl_e u’be @

RSt U = control constraint U & P

Note: No state space constraints. (4.9. ><£ =z 0)

—_—
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Main idea

e Embedd the problem above in a family of problems
indexed by starting point in time and space. Se= p 23

e Tie all these problems together by a PDE: the
HJ/B Hamilton Jacobi Bellman equation. §<e . 32Y

e The control problem is reduced to the problem of
solving the deterministic HJB equation.

)

Com bt oo Wit bonplr cedmd
%uw(r(cm/

byl wb 6*"03 o ‘”a‘@(‘m

‘ Gwn\the,“—km, ¢fuhion 0

t{mb od%r]m_a\ﬂ, ,F(ObL(,M/l, o d
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/
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Some notation [ looks \MLSS@/
oud 'Wy

\-EC»-(OU\ZZV )

e For any fixed vector u € R*, the functions u%,
and C“ are défined by

pi(tx) = plta,u), - Ak
oU(tw) = ot,zu), Ktk
Cu(t,x) = (ta:u) (tw,u)y. | O

(—@"I'C- M"(; = u('l" X}

e For any control law u, the functions u*, o%, C'(t, x)

and F“(t x) are defined by (\A, v o —F\zh\m)

Y

RO (it a) = plt e u(t ),

ok SOk B

\‘o,f“"\o o ot x) = ot z,ult, ),

%\}&W Co(t,x) = ot ult,2)olt, o, ult, ),
Y e = P )
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Jeds dff x4 ) W O e fy, (£ X Jofx )W,

7] More notation (4D (,0\/\«(4/\/‘*C you

Wor<

e For any fixe R”, the partial differential

operator A" is defined by

@ = zn:u%‘(

(&gt 5 n& ><“

e For any contr

operator A" is defined by

" 0
Z C (¢, x) @xi(?a:j'

Zj—

the partial differential

Z (t,x) 1 z”: Cii(t, ) o
'uz 2 ; 83328333
1,7=1
e For any control law u, the process X '.is the solution
of the SDE nobekion |

dX;l — U (t, X;l, ut) dt + o (t, X;l, ut) th,
w_oun
where e K )
u = u(t X} )
u
§: Xy = M b, Xt Ut Xy \\M'FU\( )
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Embedding the problem o P-d2Y

Wl o frwily of prodews B

For every fixed (¢, z) the control probles defined
as the problem to maximize [{row’ kil bue b aad
V\N\'\“C‘\AL Uelae « : [Xugx,j
t
F(s, X}, us)ds + @ (X7)

T
E

t,x ’

=% [ iT T @ \dr:t] Xemx = € ETF“@/%%

iven the dynamics
g y me
dXY = pu(s, X us)ds+o(s, X, us)dWs,
7
Xt - X,

and the constraints

u(s,y) e U, V(s,y) €l[t,T] x R".

The original problem was P ;. &) épC(/iM O GHm L

cT—
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The optimal value function

e [he value function
J: Ry xR"xU— R

is defined by ((Z&ML‘L e A Kol vadwe ot
Hiwe T )

T
T(tzu)=E / F(S,X;,us)ds+c1>(x;)]
t

given the dynamlcs above. (oww( XJC )

Note: w fack ;(5 Mo Afumdn on x _(!«wwv%
The optimal value function =~ e ><"" ok
e The optimal value function Werce g5 e

V R_|_ X R" - R
- )
s defined by ((ecall we Wawd MY
V(t, az) = sup j(t, T, u). ng\/ CT‘;(,) 5§ [‘K>
ueld

Owe vinn:
e We want to derive a PDE for V. .
Mo T2V
329

B:F /@ l/s gt
some u/ = UZ“?)%)

Tomas Bjork, 2017



Assumptions

We assume:

e There exists an optimal control law 1. é.» a [«(;,x))

e The optimal value function V is regular in the sense

that V € C12,

e A number of limiting procedures in the following
arguments can be justified. W= Wil wele bw? St

OwA. &8\/1/0(&, V\/\M\a weatluomaticold, Ak onds
it weould, Lpice &#WMO‘@S%,‘ [aeyavw(
e Swpe padl odms ¥ K Coyree,
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Bellman Optimality Principle

Theorem: If a control law 1 is optimal for the time

interval [t,T] then it is also optimal for all smaller
intervals [s, T'| where s > t.

Proof: Exercise. g LL&o a_ Cown testecc. oo
bl Gt ; Q@CVajmy/[W’fs

N

u Swproced 1 Wone o

R
P fg,‘rj%\ma‘
bt Ly

OOW\bC\,Lqﬁ(_,
bm) 2%

/_/

wiwl ol have 4
bekler petfomame.
on (e, 77
COwkY aoh ok o
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Basic strategy
HAI%

To derive the PDE do as follows:

e Fix (t,z) € (0,T) x R™.

e Choose a real number h (interpreted as a “small”
time increment).

e Choose an arbitrary control law u on the time in%rval
/
t,t + hl.

Now define the control law u* by

$,y), (s,y) €[t,t+h]xR"
$,y), (s,y) € (t+hT]xR"

u

u’(s,y) = { o

/N N

In other words, if we use u* then we use the arbitrary
control u during the time interval [t,t + h], and then

we switch to the optimal control law during the rest of

the time period.
: A
Nobe Hb WX & woke o @ gn [&,7]
332
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Basic idea

The whole idea of DynP boils down to the following
procedure. v

e Given the point (t,x) above, we consider the
following two strategies over the time interval [t, T:

I: Use the optimal law 1.

I1: Use the control law u* defined abovesn, | -332
T yow cann]
o g\% the expected utilities obtained by the
respective strategies.
| ok
e Using the obvious fact that u is least as good
as u”, and letting h tend to zero,”we obtain our
fundamental PDE. [A'/vv tevs gw we witl

RS, (ot Ry /Q\w«,dsﬁc,o.lh?r)
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— Borr ot Lcbure Uh

Strategy values
17« Expected utility for u:
J(t,x,0) =V(t, ) Z"[??J% )M"‘.‘m\"
> V)
jL-. Expected utility for u*: gp(j\,-b the Tt WWV%B’_‘_]:

e The expected utility for [t,t 4+ h) is given by

t+h
E / F (s, X" u,)ds
t

t,x

e Conditional expected utility over [t + h,T], given

(t,x): i \\,.,4—
E,, [V(t+h,@] Far’d fm

hdngd 7
e Total expected utility for Strategy Il is g W "v@’ W

t+h
/ F (s, X" u.)ds + V(¢ + h, XHh)]. ©
t

\p = "=
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Comparing strategies

[—I'P/LL watly et in o bt 960!’!’5)
We have trivially (\/ (esulio fﬁpvm Gy‘guw«& &\) hetgy

T % ptind)
t+h
Q’*} V(t,x) > E,, / F(s, X}, us)ds+V(t+h,Xi,)|=
(
Remark (4nvial ) - VJT’

We have equality above if and only if the control law
u is the optimal law 1.

Now use |to to obtain

V(t+h,Xh,) =V(tx)

t+h
+ [ G xn - A xn b
t

t+h

—I—/ V.V(s, XHo"dWs,

W — - E{ ’
Lo condrtimal expeifebm Sl E]’V

and plug into the formula above. gt ,]ﬁ
4+ - ’—"‘/’iév /w\adj'(f'\ms'

._)(ﬁ-)m F%%D/ 335
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We obtain/ ol \Arf’V:/"J (M) /

E

t,x

ot

Going to the limit:
Divide by h, move h within the expectation and let & tend to zero.

We get/ Wiklv o
¥zt F(t,z,u) + —(t, x) + AV (¢, z) <0,
1 oy ot
(L[ gl = g#) £
A €

00\«/4‘:\/‘/“0“'3 2/
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t+h av
/ {F (s, X5, us) + —(s, X3) + A"V (s, X;l)} ds| <0.
¢

336



Recall I’F(M ?{(/\[.IOKB mu:

F(t,z,u) + %—‘t/(t, xz)+ AV (t,x) <0,

This holds for all © = u(t, x), with equality if and only

. A ————
if u=nu.

We thus obtain the HJB equation

8—V(t, x) + sup {F(t,z,u) + AV (t,z)} = 0.
ot uelU
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The HJB equation

Theorem:

: : : 0.
Under Wwassumptlons the foH/wmg hold:

I: V satisfies the Hamilton—Jacobi—Bellman equation

O (ta) + sup (F(t2.u) + AV (6,2)} = 0,

0 uelU
V(T,z) = ®(x),

Il: For each (¢,z) € [0,T] x R™ the supremum in the
HJB equation above is attained by v = u(¢, x), i.e. by
the optimal control.
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Logic and problem

Note: We have shown that if V' is the optimal value
function, and if V is regular enough, then V satisfies
the HJB equation. The HJB eqgn is thus derived
as aondition, and requires strong ad hoc
regularity assumptions, alternatively the use of viscosity
solutions techniques.

Problem: Suppose we have solved the HJB equation.
Have we then found the optimal value function and
the optimal control law? In other words, is HIB a
sufficient condition for optimality.

Answer: Yes! This follows from the Verification
Theorem.
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The Verification Theorem

Suppose that we have two functions H (¢, x) and g(t, x), such
that -

e H is sufficiently integrable, and solves the HJB equation

oOH
_(tam) —|—8up{F(t,:L',u) —|—AuH(t,$)} = 0,
ot uelU

H(T,z) = ®(x),
e For each fixed (¢, x), the supremum in the expression

j‘;E{F(t"B’“) + A"H (t,z)} & ‘322; %

is attained by the choice u = g(t, x). endn H’)X‘B

Then the following hold.
mis el

1. The optimal value function V' to the/gontrol problem is given

by |
V(t, @) = H(t,z), L %w%m&%a%

2. There exists an optimal control law 1, and in fact
u(t, z) = g(t, x)

Post qocbeps foce Look 19 291 292)
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Handling the HJB equation («QW”"‘ ‘9’9)

1. Consider the HJB equation for V.
2. Fix (t,xz) € [0, T] x R"™ and solve, the static optimization
problem

[w,af[\w&\by( w'\etsfl) max [F(t,z,u)+ A"V (t, )] /D/’f i de Y40

uelU
Here u is the only variable, whereas t and x are fixed

parameters. The functions F', i, o and V' are considered as
given.

3. The optimal @, will depend on t and x, and on the function
V' and its partial derivatives. We thus write @ as

i=a(tzV). (4)

4. The function G (t,x; V) is our candidate for the optimal
control law, but since we do not know V' this description is

incomplete. Therefore we substitute the expression for 4 into
the PDE , giving us the highly nonlinear (why?) PDE

%_Z<t,w>+Fﬁ(t,as>+Aﬁ tz)V(it,z) = 0,
] V((T,z) = &(x).
s

5. Now we solve the PDE above! Then we put the solution V
into expression (4). Using the verification theorem we can
identify V' as the optimal value function, and 4 as the optimal

control law. i .
Does e Wi . %
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Making an Ansatz

e The hard work of dynamic programming consists in
solving the highly nonlinear HJB equation

e There are no general analytic methods available
for this, so the number of known optimal control

problems with an analytic solution is very small
indeed.

e In an actual case one usually tries to guess a
solution, i.e. we typically make a parameterized
Ansatz for V then use the PDE in order to identify
the parameters.

e Hint: V often inherits some structural properties
from the boundary function ® as well as from ’Ehe
instantaneous utility function F. [% v qEriene )

e Most of the known solved control problems have,
to some extent, been “rigged” in order to be
analytically solvable.
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EYAMPLE

- ¢
/ '?WWWI w (j (owte
N The Linear Quadratic Regulator

Zng.)ﬁuw la'f\
T 1
o) B | [ ey x|, e

with dynamics

dXt = {AXt + But} dt + Cth WAM%DU\MA{\«A(
A o Exid U His gy GEM R o Xt OU prowess
LOG owsmC Prokow,

Er0~pli\Ne want to control a vehicle in such a way that it stays
close to the origin (the terms Qz? and Hz?) while at
the same time keeping the “energy” Ru? small.

Here X; € R and u; € R, and we impose no control
constraints on w.

The real numbers ), R, H, A, B and C are assumed
to be known. We assume that R is strictly positive.
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Handling the Problem

e jut bt
The HJB equation becomes [‘M’b e WO‘Z: oﬁ({l “ :ib_’_s-g;\/)

)
%—‘t/(t, r) + infucgr {Q:B2 + Ru? + V,(t,z) [Az + Bu]}
) + %%22(75 r)C?* =0,
| V(T,x) = Ha> '

For each fixed choice of (¢, ) we now have to solve the static unconstrained
optimization problem to minimize

Qx” + Ru® + V,(t, ) [Ax + Bu).
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The problem was:
muin Qx? + Ru? + V,(t,z) [Az + Bu].
Since R > 0 we set the u-derivative to zero and obtain
2Ru = -V, B,

which gives us the optimal u as

Note: This is our candidate of optimal control law,
but it depends on the unkown function V.

We now make an educated guess about the structure
of V.
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From the boundary function Hz? and the term Qz? in )
the cost function we make the Ansatz 1,) M

—  Noe VET
V(t,z) = Pt)x* + q(t),

where P(t) and ¢(t) are deterministic function7/{30 %IW

,_/WN./

With this trial solution we have,

%

_ _ P 2 .

ot (t7x) T~ +q,

Vi(t,z) = 2Pz, (P =Pk) erc.)
U = —%PJZ. (}"‘ ¢ - 3‘/{‘)

Inserting these expressions into the HJB equation we
get
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We thus get the following ODE for P

. B2
P = §P2 — 2AP — Q,
P(T) = H. -
| | Lo (TR )
and we can integrate directly for g:
-1
i = L,
q(T) = 0.

The # ODE for P is a Riccati equation. The equation
for g can then be integrated directly,pace you favc P

Final Result for LQ: (Wotb HuA T o wot @ )
(Mz{»a/

Vt,z) = P(t)z / C?p </~V~’/“‘c‘6"

d(tz) = —=P(r, Hr 40 o
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