— Stoft TF lLckure Lo«
Bege to Linome b

2. Investment Theory
e Problem formulation.
e An extension of HJB.
e The simplest consumption-investment problem.

e The Merton fund separation results.
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Recap of Basic Facts

We consider a market with n assets.

S! = price of asset No 1,

hi = units of asset No ¢ in portfolio g% u}/\
' 0%

w; = portfolio weight on asset No i éﬂg‘/

= portfolio value CF(&"W Ao ted —b_7

t
NU"/ )_ﬁct = consumption rate ()
)

We have the relations

Zh’Sz, wf;: Zwt—l

(m 0- ask& v The L’M\b OCCOUE W] \A’wa —fo’(mﬁ)

Basic equationpsfece concumphim «n ?rescw’c
Dynamics of self financing portfolio in terms of relative
weights

- dSZ
= X, Z wt — cdt

w W
(omvosmbo 0 d/ﬂ:\/\dﬂ/m/b N-Z\?ﬂ 2, W
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Simplest model (MO

Assume a scalar risky asset and a constant short rate.

dSt OéStdt + O'Stth
dBt = TBtdt

We want to maximize expected utility of consumption
time -
over
- ;)

sty tne conter \ w’éwﬁ M?( )

var aloles W)“’ C) . / M [“&d o (I aed
/ F(t, ¢,)dt
0

max E ] @ CTJ ('r)
w',wt,c b"’
Com
Dynamics \/{/\JMM'
< @ (7 U

dXt Xt [’th + wt ] dt — Ctdt + Wy O'Xtth,

(vesy

Constraints

Ct Z O\V/t>0

w) +w; = 1, ¥Vt >0. 7
W(WN"’)?
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Nonsense!
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What are the problems?

e \We can obtain unlimited utility by simply consuming
arbitrary large amounts.

e The wealth will go negative, but there is nothing in
the problem formulations which prohibits this.

mb
e \We would like to impose a constra#éa of type X; > 0

but this is a state constraint and DynP does not

allow this. (See 324 ) Y T —
leading 4o H
Good News: 2 &L@j

DynP can be generalized to handle (some) problems
of this kind.

The wse 3t S—bvrybrvxﬁ & ovnn /&a&ﬁ,sl
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Generalized problem

Let D be a nice open subset of [0, T x R™ and consider
the following problem.
w ViED
Wb

2"

max E[ / Fls, XU u.)ds + ® (r, XY)|
0

ucelU

Dynamics:
dXt = u(t,Xt,ut) dt + O'(t,Xt,ut) th,
Xo = w& D,

The stopping time 7 is defined by

T=inf{t >0 |(t,X;) €D} ANT. £ T *‘
l

AL (Ondow Hunz +

it iy D
Tomas Bjork, 2017 353
fo s b Jos2 o bedfoce ) bk ity

Mferona thak e WB“‘T‘S" .



Generalized HJB

Theorem: Given enough regularity the follc\’/ving hold. %_(L M,( "/
1. The optimal value function satisfies /4 21 o ™
/ s
L- M"J ,\_,4
V(t,x) € D

{ %—‘;(t,x) -+ sgg {F(t,z,u) + A*V(t,x)} = 0
Vit,z) £ ®t,z), YV(t,a:) e éﬂﬂﬂ

2. We have an obvious verification theorem¢ I’éf&»f—@ 6»? -
HCT)'X/) gV 3727(4” La HH)Z): @Z‘bfx’)) /((
Vi) eb
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Reformulated problem 7w W

Co = v OV
L/()(“Y(D\:it&ﬁw Wwﬂ&
T -“ﬂ;ﬂ
max F [/ F(t,c)dt + (I)(XT)] @ z
c>0, wER 0 K/
gets W LoF)?
\
L
(b a2 0
The “ruin time" 7 is defined by EJ;) D 0”)

T =inf{t=0]X, =0} AT. %

A<V = X«L’ZO -~ D w:,x' 6,[0":\’( Co,ao)

£=T o ‘V—‘°

Notation:

1

w = w,
’U]O — 1 — W
( aA?m o?
Thus no constraint on w, W Wk ¢ (O
Dynamics ﬁjr élwxplc, Mol o 13 Y b*?-cowgz

dXt — W¢ [Oé — 7“] Xtdt + (TXt — Ct) dt + ’UJO'Xtth,

wow ¢, W ane, L Cowtat \anadeg
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Rwwl ¢ ‘{/\\) : U,L—VFCJc,ﬁ\—\—\?\I x(m,r\?\,/[..3
> Aoe % L

HJB Equation

oV A% ov 1 °V
— 4+ sup {F(t, ¢) + wz(a — r)— + (rz — ¢)— + —z"w’e” }
Oz or 2

8t c20,weR

ox?

E(__ﬁ:}éw:ﬁ,x) — 0,
V(t,O) 0.

We now specialize (why?) to
and for simplicity we assume that
so we have to maximize

oV ov 1 9%V
e %l + wx(o — r)— + (rz — c)— + = 220202
Ox or 2

Wit 20 ad We K
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Analysis of the HJB Equation

In the embedded static problem we maximize, over c

and w,  ((epest Ko P56 )

1
@(c,w}:e_&c'y + wx(a—1)Ve+ (re —c)V, + §x2w202vm,

First order conditions:

(4) W’C’Y_l = €6th7 (:(:{M / B 03

) _Vx T
. wo= x.vm'a(ﬂr’ [’fm“ %%,"‘0)

A :

Because of the boundary condltlons, we must demand

that
\ gl;c @) (5)

h(T) = 0.

e w10y A&
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Given a V of this form we have (using - to denote the
time derivative)

| [ wot’
Vi = e Othx — 56_6thx7, '6\; «e\,éb)]
Va: — 76_6th$’y_1,
Viee = 7(7 - 1)6_6th$’y_2.
giving us
we P}, Q) w(t,z) = (2‘1_7“ (col/bS‘\’aMf{' )
—)

we P99, W)+ et,x) = zh(t)”YI), M’“\"’” \M‘L>

Plug all this into HJBI (md by o €0V

{
H*) o op TF (V'%{ér”( Qo

one v Lothow i

Q\’ an~ /C\, et
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wl
After rearrangéznts we obtain

~\N\ST

L
— )2 _ )2 1\ aXY”
4 - a—r) +m_17(0é ) g gAY

202(1—v) = TR

B

|

—

|
D

equation is to hold for all x and all ¢, then we

see that h must solve the ODE

h(t) + Ah(t) + Bh(t)/(0=7 = 0,
WT) = 0.

An equation of this kind is known as a Bernoulli
equation, and it can be solved explicitly. <2

B (g-2, L@-%

We are done.
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Merton’s Mutal Fund Theorems
SZeA v \g}

1. The case with no risk free asset
/

We consider n risky assets with dynamics

1xk
wmemy VU
where W is Wiener in R*. @7 vector form:  Counppuews ev?’
dS = D(S)adt + D(S)odW. e alL
M AL rnd
where
A
[y | (Q:AOP,\_—O'l—_ mmx\c
a = : e .0' o : 6
B 079 _ | On — i

D(S) is the diagonal matrix

n

D(S) = diag[Sy, ..., S.]. &
- S @
7 s

Tomas Bjork, 2017 360



Formal problem

max [ / "R ct)dt]

c,w

given the dynamics /(AJ»C Hut T condrbonn MQ ?7"[9)

(?Nm @ZW--D]

dX = Xwozdt—cdt—l—XwadVVc,
RAN R Ay Hee A4S czzu,a{\W‘A

and constraints

wn

2w

=l

w /

[} ..‘/V
:ew=1, ¢>0. w‘k"[wf'-)C)
4 ’ +

Assumptions:

e [he vector ¢ and the matrix o are constant and
deterministic.

e The volatility matrix o has full,\rank SO 00 is p05|t|ve

definite and invertible. ’9 d'é{l,z,/-c \{ N
(g warket

|
Note: S does not turr? up in the X-dynamics so V is
/\
of the form

Vit,z,s) =V(t,x)
N e
Would (Gud 1o Afgt\ ;

P

Sl vt Witwe 124, o Lomalonst & d?h,
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—> Stad 3t leckwve fBe— bo

gee (7 °
The HIB equation is /’ w’(w \ﬁ
Mo T
NO&/ ol L‘.Wr Vi(t,x) + sup {F(t,c)+ A"V (t,x)} = 0O, }W‘é
o‘)\—wm / elw=1, ¢>0 \Qo\pf ot
will dzpend V(T,z) = O, AT
o v | V(t,0) = 0. %Mdo
where Q q?
APV = xw'aV, — cV, + %xzw’Zw Vi, »
ooty 1< \/\f_[ “ ""("f"“s'
The matrix X is given by (A\I\B(éwv ~ jL’k/ dr
= AX 5okt Awedr
> = g 92 [ \
1 o x = X (W) dl dui

§7M\wukﬁc|. L\j%’ wiea'w”



The HJB equation “[,/LJ/V\ be cowes

( / L5
Vi4+ sup F(t,c)+ (zw'a — )V, + 5T W SwVi, = 0,
w’e=1, ¢>0
< V(T,z) = o0,
\ V(t,0) = 0.

where 3 = oo’.

If we relax the constraint w'e = 1, theﬁ.\ag@mction for the static

optimization problem is given by %’f(’;MWﬁQ | R @(A—Q,-ﬁ)‘f
L=F(tc)+ (zw'a—c)V, + 1:102w’E'uﬂ/g[;gg + A (1 —w'e). /
[ .
LC OBWA/%WL\ o U2y
\ineat  fouftraints =

L)W ,'ﬂ
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Kopuarts

L = F(tc)+ (zw'a—c)V,

1
— §x2w’Zme +A(1—w'e).

The first order condition for ¢ is [\Ar(, o wot Specified 52)

B wlw(’}bs:
Fc - Va: rz/&a\\ '('(UW\ 1
PZW )Zw):z 2,
The first order condition for w is W’ o o cow \rukvﬂ

-
'V, + 22V w'S = \e', (\’DV\/ V€(7{,‘B(£>
£> Loy ‘f-')t}f\/f,()L Tw=A& (OS&AWM Ve,(_{—,ors)
so we can solve for w in order to obtain

P TV &] | é;a@uvnw \Iectab

e —_—
22V 22V

Using the relation ¢/w = 1 this gives \ as

\ — 2?Vow + 2Vee'Y e

e/ le

1 _ -l
V[ ¢ 2 X

‘N xelfe
- e < — 4//
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o e

O
R ﬁ/ék <
o

Inserting A gives us, after some manipulation,

R 1 4 Ve L, [ ta
w:e’Z_leZ “Mazv, [6’2_166_&'

e A wotient,
We can write this as \} oU/(IaeM,(,, o+ |

W(t) = g + Y(t)h, \

where the fixed vectors g and h are given by

wet, defwdi _ b v
ow + »a g eyl ©
IS —1
a2
h = X [e’Z‘lee_a] :

whereas Y is given by
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We had
w(t) =g+ Y(b)h,
Thus we see that the optimal portfolio is moving

stochastically along the one-dimensional “optimal
portfolio line”

g + sh,

in the (n — 1)-dimensional “portfolio hyperplane” A,
where
A={weR"|w=1}.

If we fix two points on the optimal portfolio line, say
w® = g 4+ ah and w® = g + bh, then any point w on
the line can be written as an affine combination of the
basis points w® and w®. An easy calculation shows

that if w® = g + sh then we can write 50 .
I Ao )
w® = pw® + (1 — p)w®,
where
8= b
o= a—0b
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gl/l/W\ V\/‘Mg/ :

Mutual Fund Theorem

There exists a family of mutual funds, given by
w?® = g + sh, such that

1. For each fixed s the portfolio w?® stays fixed over
time.

2. For fixed a, b with a # b the optimal portfolio w(t)
is, obtained by allocating all resources between the

fixed funds w® and w?, i.e.

w(t) = p(t)yw® + p’(t)w’,

ey < YO g iltd
\o—* Y

(vt | 1+ 1)

Kom e proiitus case (see the 00/
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$ee %’73{0~}6_?,
f{;\(’r&& cCarhe_
'(W‘tﬂou,(;"

W’h)v\(é \M(NEM

The case risk free asset

Again we consider the standard model
dS = D(S)adt + D(S)adW (t),
We also assume the risk free asset B with dynamics

dB = rBdt.

, W1, ..., w,) where > Jw; = 1.  We then

We denote B = Sy and consider portfolio weights
éminate wq by the relation \

vlo\
_1_Zw“ ( ?Md(ﬂsz)
1 \M@

and use the letter w to denote the portfolio weight
vector for the risky assets only. Thus we use the
notation

w = (wi,...,wy,),
(l i/ Aed
Note: w € R™ without constraints. [WO WW&C@ Wik,
wo'k
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HJB

We obtain [%W Atbn e §F mmw\
dX = X -w'(a—re)dt + (rX —c)dt + X - w'ocdW,

‘ A S we
where e = (1,1,...,1)". (Wabc weFr w geves y
Ve Coumse WO cemoved W,

The HJB equation now becomes

( Vi(t,z)+ sup {F(t,c)+ A"V (t,x)} = 0,
c>0,weR™

\ V(T,z) = O,

\ V(t,O) = 0,

where

AV = zw'(a—re)Vi(t,z) + (rx — )V, (t, )
1
+ §x2w’2wvm(t, T).
- - g
a&w h A
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First order conditions

We maximize

1
F(t,c) +zw'(a —re)Vy + (re — o)V, + §x2w’2wvm

with ¢ > 0 and w € R".

The first order conditions are épma\ldl ‘174 F'}é&/)

Fc — an
Ve

W o= — v Y a —re), :
LVyr e—~—" w 3 L‘\%’d;
_yf 6%, oy sy
with geometrically obvious economic 'nterpretatior}.

bie o P36 by,
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Mutual Fund Separation Theorem

1. The optimal portfolio consists of an allocation
between two fixed mutual funds w® and w/.

2. The fund w" consists only of the risk free asset.

3. The fund w/ consists only of the risky assets, and
is given by
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