-> start of Cecture 13a € More (alternative) theory

Continuous Time Finance

The Martingale Approach to Optimal Investment Theory

Ch 20

Tomas Björk

essential ingredient is Completeness of the market

Contents

- Decoupling the wealth profile from the portfolio choice.
 - Lagrange relaxation. (Seen befole, but vill be explained again)
 - Solving the general wealth problem.
 - Example: Log utility.
 - Example: The numeraire portfolio.

Tomas Björk, 2017 373

Problem Formulation

Standard model with internal filtration (See 170, 360, 360)

$$dS_t = D(S_t)\alpha_t dt + D(S_t)\sigma_t dW_t,$$

$$dB_t = rB_t dt.$$

Assumptions:

- Drift and diffusion terms are allowed to be arbitrary adapted processes.
- (" N = 2") • The market is **complete**.
- We have a given initial wealth x_0

Problem:

$$\max_{h \in \mathcal{H}} E^P \left[\Phi(X_T) \right]$$

 $\max_{h \in \mathcal{H}} E^{P} \left[\Phi(X_T) \right] \qquad \begin{array}{c} \text{only} \\ \text{terminal} \\ \text{wealth} \end{array}$

where

$$\mathcal{H} = \{\text{self financing portfolios}\}$$

given the initial wealth $X_0 = x_0$.

Some observations

- In a complete market, there is a unique martingale measure Q.
- ullet Every claim Z satisfying the budget constraint

$$e^{-rT}E^Q[Z] = x_0,$$

 $e^{-rT}E^Q[Z]=x_0, \qquad \text{is attainable by an } h\in \mathcal{H} \text{ and vice versal-his-ertehical}$ is attainable by an $h\in \mathcal{H}$ and vice versal-his-ertehical}. We can thus write our problem as $E^P = \max_Z E^P[\Phi(Z)]$ subject to the constraint

$$\max_{Z} \quad E^{P}\left[\Phi(Z)\right]$$

subject to the constraint

$$e^{-rT}E^Q[Z] = x_0.$$

We can forget the wealth dynamics!

Aine being, see Ap2 below) Tomas Björk, 2017

Basic Ideas

Our problem was

$$\max_{Z} \quad E^{P}\left[\Phi(Z)\right]$$

subject to

$$e^{-rT}E^Q[Z] = x_0.$$

Idea I:

We can decouple the optimal portfolio problem into:

- 1. Finding the optimal wealth profile \hat{Z} .
- 2. Given \hat{Z} , find the replicating portfolio. (Here the dynamics come in)

Idea II:

- Rewrite the constraint under the measure P(incread of Q).
- Use Lagrangian techniques to relax the constraint.

Lagrange formulation

Recall

Problem:

$$\max_{Z} \quad E^{P}\left[\Phi(Z)\right]$$
 Ze Fr

subject to

$$e^{-rT}E^P\left[L_TZ\right] = x_0.$$

Now: constraint in terms of measure P!

Here L is the likelihood process, i.e.

$$L_t = \frac{dQ}{dP}, \quad \text{on } \mathcal{F}_t, \quad 0 \leq t \leq T$$
 , and recall the first

The Lagrangian of the problem is

$$\mathcal{L} = E^{P} \left[\Phi(Z) \right] + \lambda \left\{ x_0 - e^{-rT} E^{P} \left[L_T Z \right] \right\}$$

i.e.

$$\mathcal{L} = E^P \left[\Phi(Z) - \lambda e^{-rT} L_T Z \right] + \lambda x_0$$

Tomas Björk, 2017

expectations under P.

The optimal wealth profile

Given enough convexity and regularity we now expect, given the dual variable λ , to find the optimal Z by maximizing

$$\mathcal{L} = E^{P} \left[\Phi(Z) - \lambda e^{-rT} L_{T} Z \right] + \lambda x_{0}$$

over unconstrained Z, i.e. to maximize the lebesgue integral

$$\int_{\Omega} \left\{ \Phi(Z(\omega)) - \lambda e^{-rT} L_T(\omega) Z(\omega) \right\} dP(\omega)$$

This is a trivial problem! (if you (which at if the right Way) We can simply maximize $Z(\omega)$ for each ω separately.

$$\max_{z} \quad \left\{ \Phi(z) - \lambda e^{-rT} L_{T} z \right\}, \text{ with } L_{T} = L_{T}(\omega),$$
 where the integral $z = Z(\omega)$

Tomas Björk, 2017

The optimal wealth profile

Our problem: (liplat from previous slide)

$$\max_{z} \quad \left\{ \Phi(z) - \lambda e^{-rT} L_{T} z \right\}$$

First order condition

$$\Phi'(z) = \lambda e^{-rT} L_T$$

The optimal Z is thus given by

 $\hat{Z}=G\left(\lambda e^{-rT}L_{T}\right)^{2}$ reputation λ . $G(y)=\left[\Phi'\right]^{-1}(y).$ (if Φ than the property with Φ in its armain) Φ in its armain.

where

$$G(y) = \left[\Phi'\right]^{-1}(y).$$

The dual varaiable λ is determined by the constraint

$$e^{-rT}E^P\left[L_T\hat{Z}\right]=x_0.$$

Tomas Björk, 2017 from this equation, 2 depends on 2,

and hope/prove that a unique

Jend of lecture 13a & golution exists

-start of lecture 136

Example – log utility

Assume that

Then where
$$f$$
 is $g(y) = \frac{1}{y}$, for all $y > 0$

Thus

$$\hat{Z} = G\left(\lambda e^{-rT} L_T\right) = \frac{1}{\lambda} e^{rT} L_T^{-1}$$

Finally λ is determined by

$$e^{-rT}E^P\left[L_T\hat{Z}\right] = x_0.$$

i.e.

$$e^{-rT}E^P\left[L_T\frac{1}{\lambda}e^{rT}L_T^{-1}\right] = x_0.$$

so $\lambda = x_0^{-1}$ and

$$\hat{Z}=x_0e^{rT}L_T^{-1},$$
 to be interpreted as optimal wealth at time T, given the budget constraint.

The optimal wealth process

• We have computed the optimal terminal wealth profile

(1) $\widehat{Z} = \widehat{X}_T = x_0 e^{rT} L_T^{-1}$

• What does the optimal wealth **process** \widehat{X}_t look like?

We have (why?) (discounted traded assets one B-martingales)

$$\widehat{X}_t = e^{-r(T-t)} E^Q \left[\widehat{X}_T \middle| \mathcal{F}_t \right] \tag{7}$$

 $\hat{X}_t = x_0 e^{rt} E^Q \left[L_T^{-1} \middle| \mathcal{F}_t \right]$ base weasure $\frac{abstract}{Q} \text{ theory } \mathcal{F}_t = \frac{df}{dQ} \text{ on } \mathcal{F}_t$ But L^{-1} is a Q-martingale (why?) so we obtain

$$\widehat{X}_t = x_0 e^{rt} L_t^{-1}.$$

The Optimal Portfolio

- We have computed the optimal wealth process: χ_{t}
- How do we compute the optimal portfolio?

Assume for simplicity that we have a standard Black-Scholes model (complete model)

$$dS_t = \mu S_t dt + \sigma S_t dW_t,$$

$$dB_t = rB_t dt$$

Recall that

1. Use Ito and the formula for \hat{X}_t to compute $d\hat{X}_t$ like

$$d\widehat{X}_t = \widehat{X}_t(\)dt + \widehat{X}_t\beta_t dW_t$$
 (find βt later)

where we do not care about θ

2. Recall that (for some
$$\hat{u}_t$$
, post-following dW_t)
$$d\hat{X}_t = \hat{X}_t \left\{ (1 - \hat{u}_t) \frac{dB_t}{B_t} + \hat{u}_t \frac{dS_t}{S_t} \right\}$$

which we write as

$$d\widehat{X}_t = \widehat{X}_t \{ \} dt + \widehat{X}_t \widehat{u}_t \sigma dW_t$$

3. We can dentify \hat{u} as

$$\hat{u}_t = \frac{\beta_t}{\sigma}$$
 (if we know β_t , see further down)

Yt on proses is term We recall $\widehat{X}_t = x_0 e^{rt} L_t^{-1}.$ We also recall that $dL_t = L_t \varphi dW_t,$ where $\varphi = \frac{r-\mu}{\sigma} \qquad \text{(many lactures)}$ From this we have (III) for L_t $(2) dL_t^{-1} = \varphi^2 L_t^{-1} dt - L_t^{-1} \varphi dW_t = -i \varphi L_t^{-1} dW_t^{-1}$ and we obtain from (1) and (2), as the calculus!, $d\widehat{X}_t = \widehat{X}_t \left\{ \right\} dt - \widehat{X}_t \varphi dW_t \rightarrow \mathcal{Y}$ **Result:** The optimal portfolio is given by $\frac{\beta \epsilon}{\epsilon}$

Note that \hat{u} is a "myopic" portfolio in the sense that it does not depend on the time horizon T.

 $\hat{u}_t = \frac{\mu - r}{\sigma^2} \qquad \text{(which we have seen as Market price of risk)}$

(Arrother example)

A Digression: The Numeraire Portfolio

Standard approach:

- Choose a fixed numeraire (portfolio) N.
- ullet Find the corresponding martingale measure, i.e. find Q^N s.t.

$$\frac{B}{N}$$
, and $\frac{S}{N}$

are Q^N -martingales.

Alternative approach (Swap the two steps above) • Choose a fixed measure $Q \sim P$. • Find numeraire N such that $Q = Q^N$: Ne if x is value of traded asset

Special case:

- Set Q = P, ow choice
- \bullet Find numeraire N such that $Q^N=P$ i.e. such that

$$\frac{B}{N}, \quad \text{and} \quad \frac{S}{N}$$

are Q^N -martingales under the **objective** measure P.

• This N is called the **numeraire portfolio**.

Specialize further:

Log utility and the numeraire portfolio

Definition:

The growth optimal portfolio (GOP) is the portfolio weath process and trary terminal (p-381) which is optimal for log utility (for arbitrary terminal date T.

Assume that X is GOP. Then X is the numeraire portfolio.

Proof:

We have to show that the process

$$Y_t = \frac{S_t}{X_t}$$

$$Y_t = \frac{1}{X_t}$$
 is a P martingale. (and Likewise is $\frac{Bt}{X_t} = X_0$ by We have (see ρ -381)
$$\frac{S_t}{X_t} = x_0^{-1} e^{-rt} S(L_t)$$
 where $\frac{S_t}{X_t} = x_0^{-1} e^{-rt} S(L_t)$

which is a P martingale, since $x_0^{-1}e^{-rt}S_t$ is a Qmartingale. Use Bayes" (Additional exercise 3 = exercise C.g in the book)

Tomas Björk, 2017

7 End of lecture 1362