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Contents

• Decoupling the wealth profile from the portfolio
choice.

• Lagrange relaxation.

• Solving the general wealth problem.

• Example: Log utility.

• Example: The numeraire portfolio.
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Problem Formulation

Standard model with internal filtration

dSt = D(St)αtdt + D(St)σtdWt,

dBt = rBtdt.

Assumptions:

• Drift and diffusion terms are allowed to be arbitrary
adapted processes.

• The market is complete.

• We have a given initial wealth x0

Problem:
max
h∈H

EP [Φ(XT )]

where
H = {self financing portfolios}

given the initial wealth X0 = x0.
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Some observations

• In a complete market, there is a unique martingale
measure Q.

• Every claim Z satisfying the budget constraint

e−rTEQ [Z] = x0,

is attainable by an h ∈ H and vice versa.

• We can thus write our problem as

max
Z

EP [Φ(Z)]

subject to the constraint

e−rTEQ [Z] = x0.

• We can forget the wealth dynamics!
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Basic Ideas

Our problem was

max
Z

EP [Φ(Z)]

subject to e−rTEQ [Z] = x0.

Idea I:

We can decouple the optimal portfolio problem into:

1. Finding the optimal wealth profile Ẑ.

2. Given Ẑ, find the replicating portfolio.

Idea II:

• Rewrite the constraint under the measure P .

• Use Lagrangian techniques to relax the constraint.
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Lagrange formulation

Problem:
max

Z
EP [Φ(Z)]

subject to
e−rTEP [LTZ] = x0.

Here L is the likelihood process, i.e.

Lt =
dQ

dP
, on Ft, 0 ≤ t ≤ T

The Lagrangian of the problem is

L = EP [Φ(Z)] + λ
{
x0 − e−rTEP [LTZ]

}

i.e.
L = EP

[
Φ(Z) − λe−rTLTZ

]
+ λx0
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The optimal wealth profile

Given enough convexity and regularity we now expect,
given the dual variable λ, to find the optimal Z by
maximizing

L = EP
[
Φ(Z) − λe−rTLTZ

]
+ λx0

over unconstrained Z, i.e. to maximize

∫

Ω

{
Φ(Z(ω)) − λe−rTLT (ω)Z(ω)

}
dP (ω)

This is a trivial problem!

We can simply maximize Z(ω) for each ω separately.

max
z

{
Φ(z) − λe−rTLTz

}
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The optimal wealth profile

Our problem:

max
z

{
Φ(z) − λe−rTLTz

}

First order condition

Φ′(z) = λe−rTLT

The optimal Z is thus given by

Ẑ = G
(
λe−rTLT

)

where
G(y) = [Φ′]

−1
(y).

The dual varaiable λ is determined by the constraint

e−rTEP
[
LT Ẑ

]
= x0.
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Example – log utility

Assume that
Φ(x) = ln(x)

Then

g(y) =
1

y
Thus

Ẑ = G
(
λe−rTLT

)
=

1

λ
erTL−1

T

Finally λ is determined by

e−rTEP
[
LT Ẑ

]
= x0.

i.e.

e−rTEP

[
LT

1

λ
erTL−1

T

]
= x0.

so λ = x−1
0 and

Ẑ = x0e
rTL−1

T
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The optimal wealth process

• We have computed the optimal terminal wealth
profile

Ẑ = X̂T = x0e
rTL−1

T

• What does the optimal wealth process X̂t look like?

We have (why?)

X̂t = e−r(T−t)EQ
[
X̂T

∣∣∣Ft

]

so we obtain

X̂t = x0e
rtEQ

[
L−1

T

∣∣Ft

]

But L−1 is a Q-martingale (why?) so we obtain

X̂t = x0e
rtL−1

t .

Tomas Björk, 2017 381








































































































I

discounted traded assets

are Q martingales
Z

from H and 12

fiasiniate

fathers tf dildo on Ft



The Optimal Portfolio

• We have computed the optimal wealth process.

• How do we compute the optimal portfolio?

Assume for simplicity that we have a standard Black-
Scholes model

dSt = µStdt + σStdWt,

dBt = rBtdt

Recall that
X̂t = x0e

rtL−1
t .
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Basic Program

1. Use Ito and the formula for X̂t to compute dX̂t like

dX̂t = X̂t( )dt + X̂tβtdWt

where we do not care about ( ).

2. Recall that

dX̂t = X̂t

{
(1 − ût)

dBt

Bt
+ ût

dSt

St

}

which we write as

dX̂t = X̂t { } dt + X̂tûtσdWt

3. We can identify û as

ût =
βt

σ
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We recall
X̂t = x0e

rtL−1
t .

We also recall that

dLt = LtϕdWt,

where
ϕ =

r − µ

σ
From this we have

dL−1
t = ϕ2L−1

t dt − L−1
t ϕdWt

and we obtain

X̂t = X̂t { } dt − X̂tϕdWt

Result: The optimal portfolio is given by

ût =
µ − r

σ2

Note that û is a “myopic” portfolio in the sense that
it does not depend on the time horizon T .
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A Digression: The Numeraire Portfolio

Standard approach:

• Choose a fixed numeraire (portfolio) N .

• Find the corresponding martingale measure, i.e. find QN s.t.

B

N
, and

S

N

are QN -martingales.

Alternative approach:

• Choose a fixed measure Q ∼ P .

• Find numeraire N such that Q = QN .

Special case:

• Set Q = P

• Find numeraire N such that QN = P i.e. such that

B

N
, and

S

N

are QN-martingales under the objective measure P .

• This N is called the numeraire portfolio.
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Log utility and the numeraire portfolio

Definition:
The growth optimal portfolio (GOP) is the portfolio
which is optimal for log utility (for arbitrary terminal
date T .

Theorem:
Assume that X is GOP. Then X is the numeraire
portfolio.

Proof:
We have to show that the process

Yt =
St

Xt

is a P martingale.

We have

St

Xt
= x−1

0 e−rtStLt

which is a P martingale, since x−1
0 e−rtSt is a Q

martingale.
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