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Appendix A: Black-Scholes vs Binomial

Consider a binomial model for an option with a fixed
time to maturity T and a fixed strike price K.

• Build a binomial model with n periods for each
n = 1, 2, ....

• Use the standard formulas for scaling the jumps:

u = eσ
√

∆t d = e−σ
√

∆t ∆t = T/n

• For a large n, the stock price at time T will then
be a product of a large number of i.i.d. random
variables.

• More precisely

ST = S0Z1Z2 · · ·Zn,

where n is the number of periods in the binomial
model and Zi = u, d
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Recall
ST = S0Z1Z2 · · ·Zn,

• The stock price at time T will be a product of a
large number of i.i.d. random variables.

• The return will be a large sum of i.i.d. variables.

• The Central Limit Theorem will kick in.

• In the limit, returns will be normally distributed.

• Stock prices will be lognormally distributed.

• We are in the Black-Scholes model.

• The binomial price will converge to the Black-
Scholes price.
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Binomial convergence to Black-Scholes
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Binomial ∼ Black-Scholes

The intuition from the Binomial model carries over to
Black-Scholes.

• The B-S model is “just” a binomial model where
we rebalance the portfolio infinitely often.

• The B-S model is thus complete.

• Completeness explains the unique prices for options
in the B-S model.

• The B-S price for a derivative is the limit of the
binomial price when the number of periods is very
large.
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Appendix B: Portfolio theory

We consider a market with N assets.

Si
t = price at t, of asset No i.

A portfolio strategy is an adapted vector process

ht = (h1
t , · · · , hN

t )

where

hi
t = number of units of asset i,

Vt = market value of the portfolio

Vt =
N∑

i=1

hi
tS

i
t

The portfolio is typically of the form

ht = h(t, St)

i.e. today’s portfolio is based on today’s prices.
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Self financing portfolios

We want to study self financing portfolio strategies,
i.e. portfolios where

• There is now external infusion and/or withdrawal of
money to/from the portfolio.

• Purchase of a “new” asset must be financed through
sale of an “old” asset.

How is this formalized?

Problem: Derive an expression for dVt for a self
financing portfolio.

We analyze in discrete time, and then go to the
continuous time limit.
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Discrete time portfolios

We trade at discrete points in time t = 0, 1, 2, . . ..

Price vector process:

Sn = (S1
n, · · · , SN

n ), n = 0, 1, 2, . . .

Portfolio process:

hn = (h1
n, · · · , hN

n ), n = 0, 1, 2, . . .

Interpretation: At time n we buy the portfolio hn at
the price Sn, and keep it until time n + 1.

Value process:

Vn =
N∑

i=1

hi
nSi

n = hnSn
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The self financing condition

• At time n−1 we buy the portfolio hn−1 at the price
Sn−1.

• At time n this portfolio is worth hn−1Sn.

• At time n we buy the new portfolio hn at the price
Sn.

• The cost of this new portfolio is hnSn.

• The self financing condition is the budget
constraint

hn−1Sn = hnSn
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The self financing condition

Recall:
Vn = hnSn

Definition: For any sequence x1, x2, . . . we define the
sequence ∆xn by

∆xn = xn − xn−1

Problem: Derive an expression for ∆Vn for a self
financing portfolio.

Lemma: For any pair of sequences x1, x2, . . . and
y1, y2, . . . we have the relation

∆(xy)n = xn−1∆yn + yn∆xn

Proof: Do it yourself.
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Recall
Vn = hnSn

From the Lemma we have

∆Vn = ∆(hS)n = hn−1∆Sn + Sn∆hn

Recall the self financing condition

hn−1Sn = hnSn

which we can write as

Sn∆hn = 0

Inserting this into the expression for ∆Vn gives us.

Proposition: The dynamics of a self financing portfolio
are given by

∆Vn = hn−1∆Sn

Note the forward increments!
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Portfolios in continuous time

Price process:

Si
t = price at t, of asset No i.

Portfolio:
ht = (h1

t , · · · , hN
t )

Value process

Vt =
N∑

i=1

hi
tS

i
t

From the self financing condition in discrete time

∆Vn = hn−1∆Sn

we are led to the following definition.

Definition: The portfolio h is self financing if and only
if

dVt =
N∑

i=1

hi
tdSi

t
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Relative weights

Definition:

ωi
t = relative portfolio weight on asset No i.

We have

ωi
t =

hi
tS

i
t

Vt

Insert this into the self financing condition

dVt =
N∑

i=1

hi
tdSi

t

We obtain

Portfolio dynamics:

dVt = Vt

N∑

i=1

ωi
t
dSi

t

Si
t

Interpret!
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Appendix C:
The original Black-Scholes PDE

argument

Consider the following portfolio.

• Short one unit of the derivative, with pricing
function f(t, s).

• Hold x units of the underlying S.

The portfolio value is given by

V = −f(t, ST ) + xSt

The object is to choose x such that the portfolio is
risk free for an infinitesimal interval of length dt.

We have dV = −df + xdS and from Itô we obtain

dV = −
{

∂f

∂t
+ µS

∂f

∂s
+

1

2
S2σ2∂2f

∂s2

}
dt

− σS
∂f

∂s
dW + xµSdt + xσSdW
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dV =

{
xµS − ∂f

∂t
− µS

∂f

∂s
− 1

2
S2σ2∂

2f

∂s2

}
dt

+ σS

{
x − ∂f

∂s

}
dW

We obtain a risk free portfolio if we choose x as

x =
∂f

∂s

and then we have, after simplification,

dV =

{
−∂f

∂t
− 1

2
S2σ2∂

2f

∂s2

}
dt

Using V = −f +xS and x as above, the return dV/V
is thus given by

dV

V
=

−∂f
∂t −

1
2S

2σ2∂2f
∂s2

−f + S∂f
∂s

dt
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We had
dV

V
=

−∂f
∂t −

1
2S

2σ2∂2f
∂s2

−f + S∂f
∂s

dt

This portfolio is risk free, so absence of arbitrage
implies that

−∂f
∂t −

1
2S

2σ2∂2f
∂s2

−f + S∂f
∂s

= r

Simplifying this expression gives us the Black-Scholes
PDE.

∂f

∂t
+ rs

∂f

∂s
+

1

2
σ2s2∂2f

∂s2
− rf = 0,

f(T, s) = Φ(s).
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Continuous Time Finance

Completeness and Hedging

(Ch 8-9)

Tomas Björk
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Problems around Standard Black-Scholes

• We assumed that the derivative was traded. How
do we price OTC products?

• Why is the option price independent of the expected
rate of return α of the underlying stock?

• Suppose that we have sold a call option. Then we
face financial risk, so how do we hedge against that
risk?

All this has to do with completeness.
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Definition:
We say that a T -claim X can be replicated,
alternatively that it is reachable or hedgeable, if
there exists a self financing portfolio h such that

V h
T = X, P − a.s.

In this case we say that h is a hedge against X.
Alternatively, h is called a replicating or hedging
portfolio. If every contingent claim is reachable we say
that the market is complete

Basic Idea: If X can be replicated by a portfolio h
then the arbitrage free price for X is given by

Πt [X] = V h
t .
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Trading Strategy

Consider a replicable claim X which we want to sell at
t = 0..

• Compute the price Π0 [X] and sell X at a slightly
(well) higher price.

• Buy the hedging portfolio and invest the surplus in
the bank.

• Wait until expiration date T .

• The liabilities stemming from X is exactly matched
by V h

T , and we have our surplus in the bank.
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Completeness of Black-Scholes

Theorem: The Black-Scholes model is complete.

Proof. Fix a claim X = Φ (ST ). We want to find
processes V , uB and uS such that

dVt = Vt

{
uB

t
dBt

Bt
+ uS

t
dSt

St

}

VT = Φ(ST ).

i.e.

dVt = Vt

{
uB

t r + uS
t α
}

dt + Vtu
S
t σdWt,

VT = Φ(ST ).
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Heuristics:
Let us assume that X is replicated by h = (uB, uS)
with value process V .

Ansatz:
Vt = F (t, St)

Ito gives us

dV =

{
Ft + αSFs +

1

2
σ2S2Fss

}
dt + σSFsdW,

Write this as

dV = V

{
Ft + αSFs + 1

2σ
2S2Fss

V

}

dt + V
SFs

V
σdW.

Compare with

dV = V
{
uBr + uSα

}
dt + V uSσdW
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Define uS by

uS
t =

StFs(t, St)

F (t, St)
,

This gives us the eqn

dV = V

{
Ft + 1

2σ
2S2Fss

rF
r + uSα

}

dt + V uSσdW.

Compare with

dV = V
{
uBr + uSα

}
dt + V uSσdW

Natural choice for uB is given by

uB =
Ft + 1

2σ
2S2Fss

rF
,
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The relation uB + uS = 1 gives us the Black-Scholes
PDE

Ft + rSFs +
1

2
σ2S2Fss − rF = 0.

The condition
VT = Φ (ST )

gives us the boundary condition

F (T, s) = Φ(s)

Moral: The model is complete and we have explicit
formulas for the replicating portfolio.
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Main Result
Theorem: Define F as the solution to the boundary
value problem





Ft + rsFs +

1

2
σ2s2Fss − rF = 0,

F (T, s) = Φ(s).

Then X can be replicated by the relative portfolio

uB
t =

F (t, St) − StFs(t, St)

F (t, St)
,

uS
t =

StFs(t, St)

F (t, St)
.

The corresponding absolute portfolio is given by

hB
t =

F (t, St) − StFs(t, St)

Bt
,

hS
t = Fs(t, St),

and the value process V h is given by

V h
t = F (t, St).
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Notes

• Completeness explains unique price - the claim is
superfluous!

• Replicating the claim P − a.s. ⇐⇒ Replicating the
claim Q − a.s. for any Q ∼ P . Thus the price only
depends on the support of P .

• Thus (Girsanov) it will not depend on the drift α of
the state equation.

• The completeness theorem is a nice theoretical
result, but the replicating portfolio is continuously
rebalanced. Thus we are facing very high
transaction costs.
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Completeness vs No Arbitrage

Question:
When is a model arbitrage free and/or complete?

Answer:
Count the number of risky assets, and the number of
random sources.

R = number of random sources

N = number of risky assets

Intuition:
If N is large, compared to R, you have lots of
possibilities of forming clever portfolios. Thus lots
of chances of making arbitrage profits. Also many
chances of replicating a given claim.
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Meta-Theorem

Generically, the following hold.

• The market is arbitrage free if and only if

N ≤ R

• The market is complete if and only if

N ≥ R

Example:
The Black-Scholes model. R=N=1. Arbitrage free
and complete.
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