-> Start of lecture 2 (or wife p.81)

5.

Appendices

Appendix A: Black-Scholes vs Binomial

If you know this

Consider a binomial model for an option with a fixed time to maturity T and a fixed strike price K.

- ullet Build a binomial model with n periods for each n = 1, 2,
- Use the standard formulas for scaling the jumps:

$$u=e^{\sigma\sqrt{\Delta t}} \quad d=e^{-\sigma\sqrt{\Delta t}} \quad \Delta t=T/n, \quad \text{for all } t < 0,$$

- ullet For a large n, the stock **price** at time T will then be a **product** of a large number of i.i.d. random variables.
- More precisely

T=not [=7] $S_T = S_0 Z_1 Z_2 \cdots Z_n$

where n is the number of periods in the binomial model and $Z_i=u,d$. In Symmetric of u's

and d's matters only not the order >
Tomas Björk, 2017 books like Successes/failures 83
in Binomial models

Recall (this is the Cox-Ross Rubiustein model) $S_T = S_0 Z_1 Z_2 \cdots Z_n,$

- The stock **price** at time T will be a **product** of a large number of i.i.d. random variables.
- The **return** will be a large **sum** of i.i.d. variables.

 Wy St = log Sot Ziel log Zi
- The Central Limit Theorem will kick in. details omitted
- In the limit, returns will be normally distributed.
- Stock **prices** will be **lognormally** distributed.
- We are in the Black-Scholes model.
- The binomial price will converge to the Black-Scholes price.

 Converge to the Black-Scholes price.

 **Conver

Binomial convergence to Black-Scholes

Binomial \sim Black-Scholes

The intuition from the Binomial model carries over to Black-Scholes.

- The B-S model is "just" a binomial model where we rebalance the portfolio infinitely often.
- The B-S model is thus complete. (notion comes
- Completeness explains the unique prices for options in the B-S model.
- The B-S price for a derivative is the limit of the binomial price when the number of periods is very large.

These statements are actually theorems.

Take them for granted.

Remark: Binomial models have been used in practice (even in Excel)

Appendix B: Portfolio theory

(this is a copy of page 53)

We consider a market with N assets.

$$S_t^i = \text{price at } t, \text{ of asset No } i.$$

A portfolio strategy is an adapted vector process

$$h_t = (h_t^1, \cdots, h_t^N)$$

where

 $h_{\scriptscriptstyle +}^i = \text{number of units of asset } i,$

 $V_t = \text{market value of the portfolio}$

$$V_t = \sum_{i=1}^N h_t^i S_t^i$$

The portfolio is typically of the form

$$h_t = h(t, S_t)$$

i.e. today's portfolio is based on today's prices.

Self financing portfolios

We want to study **self financing** portfolio strategies, i.e. portfolios where

- There is now external infusion and/or withdrawal of money to/from the portfolio.
- Purchase of a "new" asset must be financed through sale of an "old" asset.

How is this formalized?

Problem: Derive an expression for dV_t for a self financing portfolio.

2 on p.54

We analyze in discrete time, and then go to the continuous time limit.

Discrete time portfolios

We trade at discrete points in time $t = 0, 1, 2, \ldots$

Price vector process:

$$S_n = (S_n^1, \dots, S_n^N), \quad n = 0, 1, 2, \dots$$

Portfolio process:

$$h_n = (h_n^1, \dots, h_n^N), \quad n = 0, 1, 2, \dots$$

Interpretation: At time n we buy the portfolio h_n at the price S_n , and keep it until time n+1.

Value process:

$$V_n = \sum_{i=1}^N h_n^i S_n^i = \underbrace{h_n S_n}_{\text{inner}}$$
 product notation

The self financing condition

• At time n-1 we buy the portfolio h_{n-1} at the price S_{n-1} .

- At time n we buy the new portfolio h_n at the price S_n .
- The cost of this new portfolio is $h_n S_n$.
- The <u>self financing</u> condition is the **budget** constraint

$$h_{n-1}S_n \stackrel{\not\cong}{=} h_n S_n$$

The self financing condition

Recall:

$$V_n = h_n S_n$$

Definition: For any sequence x_1, x_2, \ldots we define the sequence Δx_n by

$$\Delta x_n = x_n - x_{n-1}$$

Derive an expression for ΔV_n for a self **Problem:** financing portfolio.

Lemma: For any pair of sequences x_1, x_2, \ldots and y_1, y_2, \ldots we have the relation

$$\Delta(xy)_n = x_{n-1}\Delta y_n + y_n\Delta x_n$$

$$Abel' 5 \text{ Summation formula:}$$

$$Proof: Do it yourself.$$

$$\text{Tomas Björk, 2017}$$

$$\text{Tomas Björk, 2017}$$

91

Recall

$$V_n = h_n S_n$$

From the Lemma we have

$$\Delta V_n = \Delta (hS)_n = h_{n-1} \Delta S_n + S_n \Delta h_n$$

Recall the self financing condition

$$h_{n-1}S_n = h_n S_n$$

which we can write as

$$S_n \Delta h_n = 0$$

Inserting this into the expression for ΔV_n gives us.

Proposition: The dynamics of a self financing portfolio are given by

$$\Delta V_n = h_{n-1} \Delta S_n$$

Note the forward increments!

Tomas Björk, 2017 92

Portfolios in continuous time

Price process:

 $S_t^i = \text{price at } t, \text{ of asset No } i.$

Portfolio:

$$h_t = (h_t^1, \cdots, h_t^N)$$

Value process

$$V_t = \sum_{i=1}^{N} h_t^i S_t^i$$

From the self financing condition in discrete time

$$\Delta V_n = h_{n-1} \Delta S_n$$

we are led to the following definition. (by analogy)

Definition: The portfolio h is self financing if and only

$$dV_t = \sum_{i=1}^N h_t^i dS_t^i$$
 where the state of the s

Definition:

 $\omega_t^i = \text{relative portfolio weight on asset No } i.$

We have

$$\omega_t^i = \frac{h_t^i S_t^i}{V_t}$$

Insert this into the self financing condition

$$dV_t = \sum_{i=1}^{N} h_t^i dS_t^i$$

We obtain

Portfolio dynamics:

$$dV_t = V_t \sum_{i=1}^{N} \omega_t^i \frac{dS_t^i}{S_t^i}$$

Interpret!

recall model: ds= mst dx + rs, dwx.

Appendix C: The original Black-Scholes PDE argument

Consider the following portfolio.

DOTTOW

- Short one unit of the derivative, with pricing function f(t,s): you have -1 as a quantity
- Hold x units of the underlying S. (or x) that the t)

The portfolio value is given by

$$V = -f(t, S_T) + xS_t$$
 ($x_t = x$)

Short hand votation

The object is to choose x_t such that the portfolio is

risk free for an infinitesimal interval of length dt. We have dV = -df + x dS and from Itô we obtain

have
$$dV = -df + x_{\ell}dS$$
 and from Itô we obtain
$$dV = -\left\{\frac{\partial f}{\partial t} + \mu S \frac{\partial f}{\partial s} + \frac{1}{2}S^2 \sigma^2 \frac{\partial^2 f}{\partial s^2}\right\} dt$$

$$- \sigma S \frac{\partial f}{\partial s} dW + x \mu S dt + x \sigma S dW$$
Right 2017

Rearrange:

$$dV = \left\{ x\mu S - \frac{\partial f}{\partial t} - \mu S \frac{\partial f}{\partial s} - \frac{1}{2} S^2 \sigma^2 \frac{\partial^2 f}{\partial s^2} \right\} dt$$
$$+ \sigma S \left\{ x - \frac{\partial f}{\partial s} \right\} dW$$

We obtain a risk free portfolio if we choose \boldsymbol{x} as

$$x = \frac{\partial f}{\partial s}$$
 (the good x)

and then we have, after simplification, (in serting thin)

$$dV = \left\{ -\frac{\partial f}{\partial t} - \frac{1}{2}S^2\sigma^2 \frac{\partial^2 f}{\partial s^2} \right\} dt$$

Using V=-f+xS and x as above, the return dV/V is thus given by

$$\frac{dV}{V} = \frac{-\frac{\partial f}{\partial t} - \frac{1}{2}S^2\sigma^2\frac{\partial^2 f}{\partial s^2}}{-f + S\frac{\partial f}{\partial s}}dt$$

Remark: not clear what the "logical problems"

of page 62 are.

We had (previous page)
$$\frac{dV}{V} = \frac{-\frac{\partial f}{\partial t} - \frac{1}{2}S^2\sigma^2\frac{\partial^2 f}{\partial s^2}}{-f + S\frac{\partial f}{\partial s}}dt$$

This portfolio is risk free, so absence of arbitrage implies that

$$\frac{-\frac{\partial f}{\partial t} - \frac{1}{2}S^2\sigma^2\frac{\partial^2 f}{\partial s^2}}{-f + S\frac{\partial f}{\partial s}} = r \qquad \text{(see p.60)}$$

Simplifying this expression gives us the Black-Scholes PDE.

$$\frac{\partial f}{\partial t} + rs \frac{\partial f}{\partial s} + \frac{1}{2}\sigma^2 s^2 \frac{\partial^2 f}{\partial s^2} - rf = 0,$$

$$f(T, s) = \Phi(s).$$

Tomas Björk, 2017

97

gend of lecture 2a x

Continuous Time Finance

Completeness and Hedging

(Ch 8-9)

Tomas Björk

Problems around Standard Black-Scholes

"over the counter"

- We assumed that the derivative was traded. How do we price OTC products?
- Why is the option price independent of the expected —rate of return α of the underlying stock?

previously, we used in instead of or as notation

 Suppose that we have sold a call option. Then we face financial risk, so how do we hedge against that risk?

All this has to do with completeness.

) dSt= x St dt + T & dWt

Definition:

We say that a T-claim X can be **replicated**, alternatively that it is reachable or hedgeable, if

there exists a self financing portfolio
$$h$$
 such that
$$V_T^h = X, \quad P-a.s.$$

In this case we say that h is a **hedge** against X. Alternatively, h is called a **replicating** or **hedging** portfolio. If every contingent claim is reachable we say that the market is complete

Basic Idea: If X can be replicated by a portfolio hthen the arbitrage free price for X is given by

$$\Pi_t [X] = V_t^h.$$

(law of one price for reachable claim)

(If $\Pi_{t}(X) < V_{t}$, you sell the portfolio, by the claim and put the Surplus aside. At time T claim and put the Surplus and buy the portfolio Tomas Björk, 2017 you sell the claim and buy the portfolio back: not cost is zero.]

100

Similar Consider the following congunant for t=0

Trading Strategy

Consider a replicable claim X which we want to sell at t = 0...

- ullet Compute the price $\Pi_0\left[X\right]$ and sell X at a slightly (well) higher price. [Suppose you are able to do that]
- Buy the hedging portfolio and invest the surplus in the bank.
- Wait until expiration date T.
- The liabilities stemming from X is exactly matched by V_T^h , and we have our surplus in the bank.

Completeness of Black-Scholes

Theorem: The Black-Scholes model is complete.

Proof. Fix a claim $X = \Phi(S_T)$. We want to find processes V, u^B and u^S such that $V_t = V_t \left\{ u_t^B \frac{dB_t}{B_t} + u_t^S \frac{dS_t}{S_t} \right\}$

$$\frac{\partial}{\partial V_t} = V_t \left\{ u_t^B \frac{dB_t}{B_t} + u_t^S \frac{dS_t}{S_t} \right\}$$

$$V_T = \Phi(S_T).$$

i.e. (recall dB=1Btdt, dSt= &Stdt+TStdWt)

$$dV_t = V_t \left\{ u_t^B r + u_t^S \alpha \right\} dt + V_t u_t^S \sigma dW_t,$$

$$V_T = \Phi(S_T).$$

Heuristics:

Let us **assume** that X is replicated by \mathcal{H}_{Ξ} (u^B, u^S) with value process V. Ansatz: (reasonable, based on K= \$\int_{\text{LG}}\) and X in Marker)

$$V_t = F(t, S_t)$$
 for F to be found

Ito gives us

$$dV = \left\{ F_t + \alpha S F_s + \frac{1}{2} \sigma^2 S^2 F_{ss} \right\} dt + \sigma S F_s dW,$$

Write this as

$$dV = V \left\{ \frac{F_t + \alpha S F_s + \frac{1}{2} \sigma^2 S^2 F_{ss}}{V} \right\} dt + V \frac{\widehat{SF_s}}{V} \sigma dW.$$
 Compare with
$$dV = V \left\{ u^B r + u^S \alpha \right\} dt + V u^S \sigma dW$$

$$[dN] \text{ and } dt, \text{ terms should winder}]$$

Define u^S by (time index t and ξ_t explicitly written)

$$u_t^S = \frac{S_t F_s(t, S_t)}{F(t, S_t)},$$

This gives us the eqn (*) on (*) on (*)

$$dV = V \left\{ \underbrace{F_t + \frac{1}{2}\sigma^2 S^2 F_{ss}}_{rF} r + u^S \alpha \right\} dt + V u^S \sigma dW.$$

Again Compare with

$$dV = V \left\{ u^B r + u^S \alpha \right\} dt + V u^S \sigma dW$$

Natural choice for u^B is given by (match the at terms)

$$u^B = \frac{F_t + \frac{1}{2}\sigma^2 S^2 F_{ss}}{rF},$$

with UB and Us & p.104

The relation $u^B + u^S = 1$ gives us the Black-Scholes PDE

$$F_t + rSF_s + \frac{1}{2}\sigma^2 S^2 F_{ss} - rF = 0.$$

The condition

$$V_T = \Phi(S_T)$$

gives us the boundary condition

$$F(T,s) = \Phi(s)$$

even

Moral: The model is complete and we have explicit formulas for the replicating portfolio.

they B and us of p. 104

Main Result

Theorem: Define F as the solution to the boundary value problem

$$\begin{cases} F_t + rsF_s + \frac{1}{2}\sigma^2 s^2 F_{ss} - rF & = 0, \\ F(T,s) & = \Phi(s). \end{cases}$$

Then X can be replicated by the relative portfolio

$$u_t^B = \frac{F(t,S_t) - S_t F_s(t,S_t)}{F(t,S_t)}, \quad \text{we if on } \mathbb{P}^{109}$$

$$u_t^S = \frac{S_t F_s(t,S_t)}{F(t,S_t)}.$$

The corresponding absolute portfolio is given by

$$h_t^S = \frac{F(t,S_t) - S_t F_s(t,S_t)}{B_t},$$

$$h_t^S = F_s(t,S_t),$$

and the value process V^h is given by

$$V_t^h = F(t,S_t). \label{eq:Vhat}$$
 (See also book lemma 8-4), Tomas Björk, 2017

Notes

es we the pole

- Completeness explains unique price the claim is superfluous! wathing "new" compared to Sand & in the market
- Replicating the claim $P-a.s. \iff$ Replicating the claim Q-a.s. for any $Q\sim P.$ Thus the price only depends on the support of P.
- Thus (Girsanov) it will not depend on the drift $\stackrel{\checkmark}{\alpha}$ of the state equation.
- The completeness theorem is a nice theoretical result, but the replicating portfolio is continuously rebalanced. Thus we are facing very high transaction costs.

o Proof only given for claims of the type $\mathbb{P}(S_T)$ and under the first result for general result forms Björk, 2017

Tomas Björk, 2017

Can be hedged

107

Completeness vs No Arbitrage

Question:

When is a model arbitrage free and/or complete?

Answer:

Count the number of risky assets, and the number of random sources.

R = number of random sources

N = number of risky assets

Intuition:

If N is large, compared to R, you have lots of possibilities of forming clever portfolios. Thus lots of chances of making arbitrage profits. Also many chances of replicating a given claim.

Tomas Björk, 2017 108

Meta-Theorem

Compare to some An=6, note AER stewhen (unique) solution? men (if you
enerically, the following hold.

ignore "rank"

ignore

ignore Generically, the following hold.

The market is arbitrage free if and only if

$$N \leq R$$

The market is complete if and only if

$$N \ge R$$

Example:

The Black-Scholes model. R=N=1. Arbitrage free and complete.

-> End of lecture 26 e