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Appendices

Tomas Bjork, 2017 82



Appendix A: Black-Scholes vs ?mmial
N Yo Vuow

Consider a binomial model for an option with a fixed
time to maturity 1" and a fixed strike price K.

e Build a binomial model with n periods for each
n=12,...

e Use the standard formulas for scaling the jumps:

u:ea\qm d:e_(“/A_: At:T/n) >0,
ALl <in
e For a large n, the stock price at time 1" will then

be a product of a large number of i.i.d. random

variables.
WO{)@SW‘M

e More precisely \—y—ﬁ—wrﬁt—%—l—t"vﬁr_wfg =

@)
St = S0Z125- -+ Zy,

where n is the number of periods in the binomial
model and Z; = u,d. T, & wiwleer H U<
omd  A'¢ wabtes N@y/\/}ﬂi' He oer >
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Recall (/f/(/u/\n Ao Hae OUX—%Q?WMW MM)
St = S02125 -+ Zy,

e The stock price at time 1" will be a product of a
large number of i.i.d. random variablés.

o The)%/t:lrn will be a large sum of i.i.d. variables.
Loy STSUDQSO% 5 ﬁog >
e The Central Limit Theorem will kick in. /mm
OWutded

e In the limit, returns will be normally distributed. =
e Stock prices will be lognormally distributed.
e We are in the Black-Scholes model.

e The binomial price will converge to the Black-

Scholes price. /T )
L e v
oo (K;:@(n )
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Binomial convergence to Black-Scholes
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Binomial ~ Black-Scholes

The intuition from the Binomial model carries over to
Black-Scholes.

e The B-S model is “just” a binomial model where
we rebalance the portfolio infinitely often.

M ~

N ) \
e\ The B-S model is /’c\%’complete. Wefon Covug s

Latet)

e (Completeness explains the unique prices for options
N / -_—
in the B-S model.

e /The B-S price for a derivative is the limit of the
binomial price when the number of periods is very
large.

/WQQ S{%W\/&U) o~e a,(/{ww\u(ﬁ +Hw o< ewms.

0 Rawma (W 'BKMW.»L wvoobten Dode |l uéeC

M gRO N (evon on Exced )
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Appendix B: Portfolio theory
(Hir &9 o Logyy 5t (gmag, 5%)

We consider a market with /N assets.

S’ = price at ¢, of asset No i.

A portfolio strategy is an adapted vector process

hy = (hivvhiv)
where

h; = number of units of asset 1,

Vi = market value of the portfolio

N
Vi =Y hiS]
i=1
The portfolio is typically of the form
ht — h(t, St)
I.e. today’s portfolio is based on today's prices.

Tomas Bjork, 2017
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Self financing portfolios

We want to study self financing portfolio strategies,
I.e. portfolios where

e There is now external infusion and/or withdrawal of
money to/from the portfolio.

e Purchase of a “new” asset must be financed through
sale of an “old” asset.

How is this formalized? s ”24‘
/7 o ‘)

Problem: Derive an expression for dV; for a self
financing portfolio.

We analyze in discrete time, and then go to the

continuous time |limi
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Discrete time portfolios

We trade at discrete points in time t =0,1,2,....

Price vector process:

Sp=(St ---,8Y), n=0,1,2,...

n

Portfolio process:

hy=(ht, - RY), n=0,1,2,...

Interpretation: At time n we buy the portfolio h,, at
the price S,,, and keep it until time n + 1.

Value process:
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The self financing condition

e At time n—1 we buy the portfolio h,,_1 at the price

S,_1.
Fﬂ ce) (}"W"W S
i ém-—(—h'gw

n at the price

o At time@this portfolio is worth h,,_1

e At time n we buy the new portfolio
Sh.

e The cost of this new portfolio |

e The self financing condition” is the budget

hn—lsn — hnSn
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The self financing condition

Recall:

Definition: For any sequence 1, xo, ... we define the
sequence Ax,, by

Problem: Derive an expression for AV, for a self
financing portfolio.

Lemma: For any pair of sequences x1,x5,... and
Y1,Y2, ... we have the relation

A(xY)n = Tn-1AYn + ynAz,
(Ab&{l S Tuvmhn e /ehfwxu,u

- eny 4 —'7(» - Z X - —f ~ )
Do it yourself. o -0 28, 8¢

Tomas Bjork, 2017
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Recall

From the Lemma we have

AV, = A(hS)p = hn_1ASp + SuAh,,

Recall the self financing condition
hp—1Sn = hnSn
which we can write as
SnAh, =0

Inserting this into the expression for AV,, gives us.

Proposition: The dynamics of a self financing portfolio
are given by

AV, = h,_1AS,

Note the forward increments!

Tomas Bjork, 2017 92



Portfolios in continuous time

P —

Price process:
S! = price at ¢, of asset No 1.
Portfolio:

he = (hiv"'vhiv)
Value process

N
V=) hiS;
i=1
From the self financing condition in discrete time
AV, = h, 1AS,

)
we are led to the following definition. (lDy W(pﬁ% >

Definition: The portfolio A is self financing if and only

if N
Hor owe dV, =) hydS;
MM"/ =) ¢ o
ok T2
Tomas Bjork, 2017 w? \V\A-ﬁ(h \Lg'&‘("(/)
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[5%ﬂm%(%l
Relative weights

Definition:

w! = relative portfolio weight on asset No i.

We have .
. hySy

()
0y
t
Vi

Insert this into the self financing condition
N
dV, =) hjdS;
i=1

We obtain

Portfolio dynamics:

N .

-dS?

dv, =V, E w; Sj
i=1 t

Interpret!

Tomas Bjork, 2017
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Cecollo woo aLl Aét-/kgtahe 4 G‘St dcvxlb

Appendix C:
The original Black-Scholes PDE
argument

Consider the following portfolio.

ubo((owu
e Short one unit of the derivative, with pricing
function f(t,s): you Mo =1 as A gpuomtity

e Hold = units of the underlying S. CW @&* e JD)
[l-,p.ka we frud 4 fgond o]

The portfolio value is given by

V=—ft,S)+aS (-
v St bl Wh‘ua
The object is to choose xssuch that the portfolio is
risk free for an infinitesimal ipterval of length dt.

w{l %}wm H
We have dV =+ —df Wand from@m
i’“ il

_ fof of 1., ,0%f e
AV = {at+“sas+25"as2 At
of

— JSa—dW + zpSdt + xoSdW
S —
L, ASy
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@mww%i
of of 1 0% f

_ 0] 9] Ll 207
av = {xuS 5 S(?s 250 832}dt

+ JS{x—g}dW
0s

We obtain a risk free partfolio if we choose x as
Iashiahads

x—g (%&&pam&x}

GE

and then we have, after simplification, (vv\ Sé/‘*\‘“?) Ct

e (‘N\d\vj
[ Of 14 ,0°f
dV—{ o= oSt

Using V = — f + x5 and x as above, the return dV/V
is thus given by

2
v 41525221

052
= dt
9
v ~f+ 5%
« . u
Reoacl: wot  doar whet the (/0245;1, peddems
a3t Vey 62 ore -
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\Nehai(%@“@wkm%’\

2
AV a{ 152 28f

83
= dt
4 —f+ 53
This portfolio is risk free, so absence of arbitrage
implies that
_9f _ 1g2,20°f l
ot 2 9s? _ r (5& Péo)
—f+ 53

Simplifying this expression gives us the Black-Scholes
PDE.

of of 5 282f
7*”%*‘ 952

|
o

—rf

f(T,s) = ®(s).
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Continuous Time Finance

Completeness and Hedging

(Ch 8-9)

Tomas Bjork

Tomas Bjork, 2017
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Problems around Standard Black-Scholes

e \We assumed that the derivative was traded. How
do we price |OT C|products?
e Why is the option price independent of the expected

rate of return «a of the underlying stock?
F ?{@J\OM’M \we u,ggd/u/ \/\/\Q@@Cg Q/? VI/O'\’,A#\M

e Suppose that we have sold a call option. Then we

face financial risk, so how do we hedge against that
risk?

All this has to do with completeness.

b AS{‘“%%*O—iJW{‘/
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Definition:

We say that a T-claim X can be replicated,
alternatively that it is reachable or hedgeable, if
there exists a self financing portfolio / such that

\/:% c \}‘l_/ -

V=X, P—a.s. ;,Q\%Qb,)gé‘r

In this case we say that A is a hedge against X.
Alternatively, h is called a replicating or hedging
portfolio. If every contingent claim is reachable we say
that the market is complete

Basic Idea: [f X can be replicated by a portfolio A
then the arbitrage free price for X is given by

arbrtrage
L, [X] = V"

[fémjﬁbw M}MB

b e Y© .
Cié ﬁt('d< Vi 9™ o os-‘\fe- por A
Ao o purt e 4"‘&?. ond Y
Tomas Bjork, 2017 yw . .
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Consider a replicable claim X which we want to sell at
t=0..

e Compute the price Ily [X] and sell X at a slightly
(well) higher price. [ﬁwrpo;& yow are able 9 Aottt |

e Buy the hedging portfolio and invest the surplus in
the bank.

e Wait until expiration date 7'

e The liabilities stemming from X is exactly matched
by V{f, and we have our surplus in the bank.
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Completeness of Black-Scholes

Theorem: The Black-Scholes model is complete.

“M‘o'vbmffj" Lomckrory
Proof. Fix a _claim 7). We want to find
processes V/, @@such that FM\F@ 7
sitrlroS o

/“ﬁﬁ/&v_u {UthBt+ SdSt}

By e St

&;t+¢€ AW B

dVy = %{ufr—l—ufoz}dt—l—%ufadwt,

—7 %8 4 LS, =
Vr = (I)(ST). \/t:/& B t 'e",tg.k 7
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Heuristics:
Let us assume that X is replicated by % B )

with value process V. §[
Ansatz: (F%W(O%f fosed > K= gT WWB

‘/t:F(t,St)

lto gives us

1
dV = {Ft + aSF, + 502521783} dt + o SF,dW,

Write this as

F; + aSF, + 15282 F,, F,
dV—V{ o ;20 }dt+V@adW. (%)

Compare with X
dV:V{uBT—I—uSoz}dt—l— odW

fd\/\/] i db e R0y 4 (}OU/L&ZOCZ:Z
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| wr'rbtem)
. - Aax £t omd é‘t expliatly
Define u° by [’k“’”" W
S _ StFS(tv St)

T TRR, S,

This gives us the eqn //FOVV) (# ) ow (?-103/

% t02S?F,,
dV =V {C—W/F T-I-usa}dt—l- VuodW.
r

booin
Compare with

dV =V {uPr + v’a} dt + VuiocdW
Natural choice for u” is given by (vwd'd'\, e dE WMS}

5 F+50°5°Fy,
- rF ’

u
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L/\

The relation u” + 4 = 1 gives us_the Black-Scholes
PDE "

1
Fy +rSF, + §J2S2F88 —rF =0.

The condition
Vi =®(Sr)

gives us the boundary condition
F(T,s) = ®(s)

e /

Moral: The model is complete and we/\have explicit
formulas for the replicating portfolio.

"tt""-’\)/l/t6 a \/Lg < P 1A

Tomas Bjork, 2017 105



b,
‘QA/)(;

Main Result

Theorem: Define F' as the solution to the boundary
value problem

1
Fy +rsF, + 50232}788 —rF = 0,
F(T,s) = ®(s).

4(&( St )

Then X can be replicated by the relative portfolio

(A’i’aw ALA
e

B — TS5 — SiFi(t, S) o, Y2 PE
g F(t,S;) ’

& _ SE(S)

! (ta St) .

The corresponding absolute portfolio is given by

&)
\}&\l*' \B el

'“’)o

hB . F(tv St) St (t St)
t _ Bt )

he = Fu(t,S),

and the value process V" is given by

VI =F(t,Sy).
[%@/ clx \oﬁ'ﬂo LQ/\/VMA&\ Y- L/)
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Notes %,

W
GkKC

/’7
e Completeness explains unique price - the claim is
superfluous! wekvwg wen” Guapared S and §
T Ca Ml wmadeet
e Replicating the claim P — a.s. <= Replicating the
claim Q — a.s. for any (Q ~ P. Thus the price only

depends on the support of P. W\/\/\/—L\/\Qﬁl \%i?

e Thus (Girsanov) it will not depend on the driftJ& of
the state equation.

e The completeness theorem is a nice theoretical
result, but the replicating portfolio is continuously
rebalanced. Thus we are facing very high
transaction costs.

o Aef suby e v b T
e Q&) amd wmdn WW@Q, rc&u:‘U«\
%V\,_gﬁié%} \[{74 Fé—t‘gfs . V'V;t(:/&ﬁw -~ « PVV\a dﬂ"‘w‘

Medge A
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Completeness vs No Arbitrage

Question:
When is a model arbitrage free and/or complete?

Answer:
Count the number of risky assets, and the number of
random sources.

R = number of random sources

N = number of risky assets

Intuition:
If N is large, compared to R, you have lots of
possibilities of forming (clever )portfolios. Thus lots
of chances of making arpitrage profits. Also many
chances of replicating a given claim.

- &:T/@

wt - 4 (£6

(bW
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Meta-Theorem W

CC/OW(?M&JC@ st A=l Wt AE -

Vi CU/\/MW\ ot UN\/? Y EN C\f \Zj/\/l/\\cn
Generically, the following hold. T WAW“M;)

e The market is arbitrage free if and only if

N <R

e The market is complete if and only if

N>R

Example:
The Black-Scholes model. R=N=1. Arbitrage free
and complete.

— tod v kwe Qo <
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