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Parity Relations

Let ® and ¥ be contract functions for the T'-claims
= ®(S7) and Y = U(Sy). Then for any real
numbers a and 3 we have the following price relation.
II; [a® + Y| = oll; [®] + GI1; [¥] .
P ¥€/j\/\\/\4&v\~* \Ca q?';}é D‘f Lic @

Proof. Linearity of mathematlcal a‘bl’mj{/

M@“’W«w{?
Consider the following “basic” contract functions.

Ps(zr) = =, H@AA\L.D‘(L L o o
Pp(z) = 1, Volue o 1)
Qo x(z) = max|z— K,0].
Prices:
_ \ L]
IT; [®s] = S, i o o
Ht [(I)B _ e—r(T—t)’
I [Pc k] = c(t, Sy; K, T).
gt/I\woJcashm 0 %& %T/)
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, L e
If we have /Gﬂ R Gt A S Wkt §trike =

® = adbg + BPp + Z viPo K,
i=1
then
I1; [®] = ol [®g] + BIL [P 5] + Z Yille [P, K]

1=1

We may replicate the claim & using a portfolio
consisting of basic contracts that is constant over
time, i.e. a buy-and hold portfolio:

e o3, ()

e « shares of the underlying stock,

e [3 zero coupon T-bonds with face value $1,

—

e v, European call options with strike price K;, all
maturing at 7'

fﬂ-
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Put-Call Parity

Consider a European put contract
(I)p’K(S) — INax [K — S, O]

It is easy to see (draw a figure) that
(¢ unple alytlra, )

(I)p,K(JZ) = (I)C,K(JZ) —s+ K
- %K(x) — Bg(z) + Bpz) K

We immediately get

_ ~v(T-t)
Put-call parity: 7

p(t, s; KiJ = c(t, s; Ky — s + l@

Thus you can construct a synthetic put option, using
a buy-and-hold portfolio. [, dt4 oo call @@hm\

- " \‘5 : ‘e \ﬂ O(Z, )
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Delta/Hedging

Wil Wou kg do st e “6—{@\&5“, fer
Consider a fixed claim ‘FW{‘\’W Adowin

X = &(Sy)

with pricing function

F(t,s). (7¢ T ¥ G ) vk %59>

Setup:

We are at time ¢, and have a short (interpret!) position
in the contract. (Aot Fur covaty auct )
Goal:

Offset the risk in the derivative by buying (or selling)
the (highly correlated) underlyingf %WA o Mch 7

Definition: LS o [’“5”/%%
A m in the undeﬂ?ing is a delta hedge against
the derivative if the portfolio (underlying + derivative)

iIs immune against small changes in the underlying
e coallle b pfletediation )

ALOWeAS ey v Heo Seuge H (2200 LanS .
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Formal Analysis

L
S e T
e
(<

f fr0
—1 = number of units of the derivative product

x = number of units of the underlying

s = today's stock price

t = today's date ;&7 S

Value of the portfolio:
V=-1-F(,s)+x-s
A delta hedge is characterized by the property that

v _, Z\/LA gengs e 0

B g )

OF
—%+$—O

We obtain

Solve for z!

Tomas Bjork, 2017 114



Result: /

We should have
oF

ds
shares of the underlying in the delta hedged portfolio.

T =

Definition:
For any contract, its “delta” is defined by

RocodX -
(;K/:;ZFO C/JM/\” >
Result:

We should have
r=A

shares of the underlying in the delta hedged portfolio.

Warning:
The delta hedge must be rebalanced over time. (why?)

/\ @1,/; ‘
( e = AJO = ’@zlhg&\ , MPWJ;>
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Black Scholes

For a European Call in the Black-Scholes model we

have
A = N(dy] = 7{ N[o") 20 )
g1, B
NB This is not a trivial result! %ngi@ﬁ sl

From put call parity it follows (how?) that A for a
European Put is given by

A= Nld] -1
_ _?[N[OJ1>>0M < 0

Check signs and interpret!
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Rebalanced Delta Hedge

e Sell one call option attime ¢ = 0 at the B-S price F'.

e Compute A and by A shares. (Use the income
from the sale of the option, and borrow money if
necessary. )

e Wait one day (week, minute, second..). The stock
price has now changed.

e Compute the new value of A, and borrow money in
order to adjust your stock holdings.

e Repeat this procedure until ¢ =71'. Then the value
of your portfolio (B+S) will match the value of the

option almost exactly.
P IC y %
u”

| g

ot ool
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e Lack of perfection comes from discrete, instead of
continuous, trading.

e You have created a “synthetic” option.
(Replicating portfolio).

Formal result:
The relative weights in the replicating portfolio are

S-A

us =—

up =

[ﬁ& (p'\oé,\mjfCL A‘Fsé%g%B)

Tomas Bjork, 2017 118



Portfolio Delta

Assume that you have a portfolio consisting of
derivatives

®;(Sty), i=1,--,n
all written on the same underlying stock S.

F;(t,s) = pricing function for i:th derivative [Sjcrfs)
OF;
A; = -
0s
h; = units of i:th derivative

Portfolio value: N
1= Z h;F,
i=1

Portfolio delta:

Ap = zn: hil;
1=1
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Gamma

A problem with discrete delta-hedging is.

e As time goes bij will change.

e This will cause A = %—Z to changei Ceo Fag{, (€

e : It L
e Thus you are sitting with the wrong value of delta.

[w% o Loty Hw wistands)
Moral:

e |f delta is sensitive to changes in .S, then you have
to rebalance often.

e |f delta is insensitive to changes in S you do not
need to rebalance so often, o« Y“QWM woe Ak all
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Definition:
Let II be the value of a derivative (or portfolio).
Gamma (I') is defined as

oA
0s
l.e. . M.r.,aw,
2
F:(?H/ T it {ﬂo‘/‘gﬁ
0s? = phtew T
Gamma is a measure of the sensitivity of A to changes
in S.

I —

Result: For a European Call in a Black-Scholes model,
I' can be calculated as

/B@W\é@v)

SJT

Important fact:
For a position in the underlying stock itself we have

r—o (towial 1)
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Gamma Neutrality

A portfolio II is said to be gamma neutral if its
gamma equals zero, i.e.

I'm=20

e Since I' = 0 for a stock you can not gamma-hedge
using only stocks. 4##&# Typically you use some
derivative to obtain gamma neutrality.

— Gt 71 Wkt Do o
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General procedure

Given a portfolio IT with underlying S. Consider two
derivatives with pricing functions F' and G.

rr = number of units of F

rca = number of units of G

)

Problem: 0
Choose xr and zg such that thportfolio is
delta- and gamma-neutral.

Value of hedged portfolio:

V=I+zr - F+acg-G
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(¢ :
%Que of hedged portfolio:

V=Il4+zrp-F+2c-G

We get the equations

A% 0. / M/L&u \/LQ/V"WQ’Q’)

0s
; N Wbmf/\
oV _ o WM
0s?
l.e.
An+2rpArp+2cAg = 0,
I'n+zpl'r+2cl’'e = 0

Solve for xr and z! /@W gy5amn \novn ouv
Uiyl Gvton ) )
Vo geatgol 905 \f G in
N,F(:'\"uj(w\'ha, M.Q‘&(m& .-@MF
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Particular Case

so0bt
e In many,cases the original portfolio II is already
delta neutral.

e [hen it is natural to use a derivative to obtain
gamma-neutrality.

e This will destroy the delta-neutrality. j@ﬁ( Hre no
poctA v
e Therefore we use the underlying stock (with zero
gamma!) to delta hedge in the end? viost UD%
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ﬂk

8w
. ;(,(a\*]
Formally: M"’”
V=T+a2p F+as- 8 (@<
Ang+zrArp+2sAs = 0,
I'm+zplp+2sl's = 0
We have a,%VV‘""Y’bM w ? y
Ag = 1
's = 0.
l.e.
Aq+xzrAr+xs = 0,
I'm+axpl'yr = 0
SOMQ'M-(/) Tr — _F_H
I'r
Arl
Ls = = H_AH

Tomas Bjork, 2017 126



Further Greeks

oIl
@_E’
oIl
V—a—a,
_ om
'0_87“

V is pronounced “Vega".

NB!

e A delta hedge is a hedge against the movements in
the underlying stock, given a fixed model.

e A Vega-hedge is not a hedge against movements of
the underlying asset. It is a hedge against a change
of the model itself: ¢ » » wwel Pafounstor
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Continuous Time Finance

The Martingale Approach

I: Mathematics
(Ch 10-12)

Tomas Bjork

a pw% Howreheal Lochuwre

Tomas Bjork, 2017
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Introduction ?fow%

In order to understand and“to apply the martingale
approach to derivative pricing and hedging we will
need to some basic concepts and results from measure
theory. These will be introduced below in an informal
manner - for full details see the textbook.

Many propositions below will be proved but we will
also present a couple of central results without proofs,
and these must then be considered as dogmatic truths.
You are of course not expected to know the pToofs of
such results (this is outside the scope of this course)
but you are supposed to be able to use the results in
an operational manner.

S buowledge,
poct 5f youwr +toolktt .
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Contents

1. Events and sigma-algebras

2. Conditional expectations

3. Changing measures

4. The Martingale Representation Theorem

5. The Girsanov Theorem
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Events and sigma-algebras
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Events and sigma-algebras

. \ A
C bOO]/(/- 54%0\/2/ A~ BCQ\M}M"W 4
" oo "t pudonar s

Consider a probability measure P on a sample space.
2. An event is/s\i/% a subset A C Q and P(A) is
the probability that th&event A occurs.

For technical reasons, a\probability measure can only
be defined for a certain ‘p\ig\e;’:/c\lg\s; F of events, so for
A € F we are allowed to write P(A) as the probability
for the event A.

For technical reasons the class F must be a sigma-
algebra, which means that F is closed under the usual

set theoretic operations like complements, countable f
intersections and countable_ unions. ’

Interpretation: We can view a o-algebra F as
formalizing the idea of information. More precisely: A
o-algebra F is a collection of events, and if we assume
that we have access to the information contained in F,
this means that for every A € F we know exactly if A
has occured or not.

7{0\0ﬁ‘o‘§6ﬁj SPace U e APl (‘SZ)T_)/P)
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Borel sets

Definition: The Borel algebra B is the smallest
sigma-algebra on R which contains all intervals. A set
B in B is called a Borel set. ‘

Remark: There is no constructivé definition of B, but
almost all subsets of R that you will ever see will in
fact be Borel sets, so the reader can without danger

think about a Borel set as “an arbitrary subset of R".
o~V

T .0

gl Ryl , Ao 4 cloed =24

s
[;OMA@ ¢ ‘506”6076(’&1’ wwbﬁ?‘%)
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Random variables
gé%axu -1

An F-measurable random variable X is a a mapping
X:Q— R

such that {X € B} = {w e Q: X(w) € B} belongs
to JF for all Borel sets B. This guarantees that we are
allowed to write P(X € B). Instad of writing “X is
F-measurable” we will often write X € F.

This means that if X € F then the value of X is
completely determined by the information contained in

F.

If we have another og-algebra G with G C F then we
interpret this as “G contains less information than F.

5 Gud o (pbte Boe—
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