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Conditional Expectation
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Conditional Expectation

If X ∈ F and if G ⊆ F then we write E [X| G] for
the conditional expectation of X given the information
contained in G. Sometimes we use the notation EG [X].

The following proposition contains everything that we
will need to know about conditional expectations within
this course.
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Main Results

Proposition 1: Assume that X ∈ F, and that G ⊆ F .
Then the following hold.

• The random variable E [X| G] is completely determined by
the information in G so we have

E [X| G] ∈ G

• If we have Y ∈ G then Y is completely determined by G so
we have

E [XY | G] = Y E [X| G]

In particular we have

E [Y | G] = Y

• If H ⊆ G then we have the “law of iterated expectations”

E [E [X| G]|H] = E [X|H]

• In particular we have

E [X] = E [E [X| G]]
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3.

Changing Measures
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Changing Measures

Consider a probability measure P on (Ω,F), and
assume that L ∈ F is a random variable with the
properties that

L ≥ 0

and
EP [L] = 1.

For every event A ∈ F we now define the real number
Q(A) by the prescription

Q(A) = EP [L · IA]

where the random variable IA is the indicator for A,
i.e.

IA =

{
1 if A occurs

0 if Ac occurs
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Recall that
Q(A) = EP [L · IA]

We now see that Q(A) ≥ 0 for all A, and that

Q(Ω) = EP [L · IΩ] = EP [L · 1] = 1

We also see that if A ∩ B = ∅ then

Q(A ∪ B) = EP [L · IA∪B] = EP [L · (IA + IB)]

= EP [L · IA] + EP [L · IB]

= Q(A) + Q(B)

Furthermore we see that

P (A) = 0 ⇒ Q(A) = 0

We have thus more or less proved the following
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Proposition 2: If L ∈ F is a nonnegative random
variable with EP [L] = 1 and Q is defined by

Q(A) = EP [L · IA]

then Q will be a probability measure on F with the
property that

P (A) = 0 ⇒ Q(A) = 0.

I turns out that the property above is a very important
one, so we give it a name.
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Absolute Continuity

Definition: Given two probability measures P and Q
on F we say that Q is absolutely continuous w.r.t.
P on F if, for all A ∈ F , we have

P (A) = 0 ⇒ Q(A) = 0

We write this as
Q << P.

If Q << P and P << Q then we say that P and Q
are equivalent and write

Q ∼ P
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Equivalent measures

It is easy to see that P and Q are equivalent if and
only if

P (A) = 0 ⇔ Q(A) = 0

or, equivalently,

P (A) = 1 ⇔ Q(A) = 1

Two equivalent measures thus agree on all certain
events and on all impossible events, but can disagree
on all other events.

Simple examples:

• All non degenerate Gaussian distributions on R are
equivalent.

• If P is Gaussian on R and Q is exponential then
Q << P but not the other way around.
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Absolute Continuity ct’d

We have seen that if we are given P and define Q by

Q(A) = EP [L · IA]

for L ≥ 0 with EP [L] = 1, then Q is a probability
measure and Q << P . .

A natural question is now if all measures Q << P
are obtained in this way. The answer is yes, and the
precise (quite deep) result is as follows. The proof is
difficult and therefore omitted.
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The Radon Nikodym Theorem

Consider two probability measures P and Q on (Ω,F),
and assume that Q << P on F . Then there exists a
unique random variable L with the following properties

1. Q(A) = EP [L · IA] , ∀A ∈ F

2. L ≥ 0, P − a.s.

3. EP [L] = 1,

4. L ∈ F

The random variable L is denoted as

L =
dQ

dP
, on F

and it is called the Radon-Nikodym derivative of Q
w.r.t. P on F , or the likelihood ratio between Q and
P on F .
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A simple example

The Radon-Nikodym derivative L is intuitively the local
scale factor between P and Q. If the sample space Ω
is finite so Ω = {ω1, . . . ,ωn} then P is determined by
the probabilities p1, . . . , pn where

pi = P (ωi) i = 1, . . . , n

Now consider a measure Q with probabilities

qi = Q(ωi) i = 1, . . . , n

If Q << P this simply says that

pi = 0 ⇒ qi = 0

and it is easy to see that the Radon-Nikodym derivative
L = dQ/dP is given by

L(ωi) =
qi

pi
i = 1, . . . , n
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If pi = 0 then we also have qi = 0 and we can define
the ratio qi/pi arbitrarily.

If p1, . . . , pn as well as q1, . . . , qn are all positive, then
we see that Q ∼ P and in fact

dP

dQ
=

1

L
=

(
dQ

dP

)−1

as could be expected.
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Computing expected values

A main use of Radon-Nikodym derivatives is for the
computation of expected values.

Suppose therefore that Q << P on F and that X is
a random variable with X ∈ F . With L = dQ/dP on
F then have the following result.

Proposition 3: With notation as above we have

EQ [X] = EP [L · X]

Proof: We only give a proof for the simple example
above where Ω = {ω1, . . . ,ωn}. We then have

EQ [X] =
n∑

i=1

X(ωi)qi =
n∑

i=1

X(ωi)
qi

pi
pi

=
n∑

i=1

X(ωi)L(ωi)pi = EP [X · L]
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The Abstract Bayes’ Formula

We can also use Radon-Nikodym derivatives in order to
compute conditional expectations. The result, known
as the abstract Bayes’ Formula, is as follows.

Theorem 4: Consider two measures P and Q with
Q << P on F and with

LF =
dQ

dP
on F

Assume that G ⊆ F and let X be a random variable
with X ∈ F . Then the following holds

EQ [X| G] =
EP

[
LFX

∣∣G
]

EP [LF | G]
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Dependence of the σ-algebra

Suppose that we have Q << P on F with

LF =
dQ

dP
on F

Now consider smaller σ-algebra G ⊆ F . Our problem
is to find the R-N derivative

LG =
dQ

dP
on G

We recall that LG is characterized by the following
properties

1. Q(A) = EP
[
LG · IA

]
∀A ∈ G

2. LG ≥ 0

3. EP
[
LG] = 1

4. LG ∈ G
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A natural guess would perhaps be that LG = LF , so
let us check if LF satisfies points 1-4 above.

By assumption we have

Q(A) = EP
[
LF · IA

]
∀A ∈ F

Since G ⊆ F we then have

Q(A) = EP
[
LF · IA

]
∀A ∈ G

so point 1 above is certainly satisfied by LF . It is
also clear that LF satisfies points 2 and 3. It thus
seems that LF is also a natural candidate for the R-N
derivative LG, but the problem is that we do not in
general have LF ∈ G.

This problem can, however, be fixed. By iterated
expectations we have, for all A ∈ G,

EP
[
LF · IA

]
= EP

[
EP

[
LF · IA

∣∣G
]]
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Since A ∈ G we have

EP
[
LF · IA

∣∣G
]

= EP
[
LF∣∣G

]
IA

Let us now define LG by

LG = EP
[
LF∣∣G

]

We then obviously have LG ∈ G and

Q(A) = EP
[
LG · IA

]
∀A ∈ G

It is easy to see that also points 2-3 are satisfied so we
have proved the following result.
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A formula for LG

Proposition 5: If Q << P on F and G ⊆ F then,
with notation as above, we have

LG = EP
[
LF∣∣G

]
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