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Conditional Expectation

If X € Fand if G C F then we write ' [X|G] for
H\Vevconditional expectation of X given the information
contained in G. Sometimes we use the notation E; | X].

The following prcfpo%tlon contains everything that we
will need to know about conditional expectations within

this course. [\ ¢
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”EZX/\m ig@x/x§+ 6(“%5
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Main Results

Proposition 1: Assume that X € F, and that G C F.
Then the following hold.

e The random variable E [ X | G] is completely determined by
the information in G so we have

B(X|6leg  (by Aofnrio)

e If we have Y € G then Y is completely determined by G so
we have

FE[XY|G]|=YFE[X|J]

In particular we have
ElY|g]=Y
o If H C G then we have the “law of iterated expectations”

/ E[E[X|G]H] = E[X|H]
o c ooy WAtin resato A ﬁﬂ%WSB

e In particular we have

E[X]=E[E[X]|F]]
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Changing Measures
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Changing Measures
Sockmn B-&

Consider a probability measure P on (£,F), and
assume that L € F is a random variable with the

properties that
L>0

and
EY (L] =1.

For every event A € F we now define the real number
Q(A) by the prescription

Q(A) = E"[L - I,]

where the random variable I4 is the indicator for A,
l.e.

B 1 if A occurs
A4 0 if A°occurs

YI wor e A, wstead T /B
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Recall that
Q(A) = EV[L - I4]

We now see that Q(A) > 0 for all A, and that
Q) =E"[L-Io)=FE"[L-1]=1

We also see that if AN B = 0 then

QAUB) = EY[L-IauB]=E"[L - (I14+Ip)]

= EPY[L- 14+ EY[L-Ig]

= Q(A) +Q(B)
/GMW/!/) v Lk AAS ot ons )
Furthermore we see that)

P(A)=0 = QA)=0

We have thus more or less proved the following

VAV
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Proposition 2: If L € F is a nonnegative random
variable with E¥ [L] =1 and Q is defined by

Q(A) = EV[L - 14]

then () will be a probability measure on F with the
_probability m

property that for VB Yov wee
el alle Mﬂf/kb\/Hy (e )
P(A) =0 ?\ Q(A
| turns out that the property above is a very important
one, so we give it a name.
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Absolute Continuity

Definition: Given two probability measures P and ()
on F we say that () is absolutely continuous w.r.t.
P on F if, for all A € F, we have

P(A)=0 = QA)=0

We write this as
Q << P.

If Q << P and P << () then we say that P and ()
are equivalent and write

Q~P

[M 0@%6&@ naon Q=7 \\
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Equivalent measures

It is easy to see that P and () are equivalent if and

; G
only if | gt ame

P(A)=0 < QA= ?[%)794_@&[&)70

or, equivalently,
1(8) ) @ Q@)Z

PA)=1 & Q4)=
(bovle ot Complencarto

Two equivalent measures thus agree on all certain
events and on all impossible events, but can disagree
on all other events.

Simple examples:

e All non degenerate Gaussian distributions on R are
equivalent.

o If P is Gaussian on R and () is exponential then
() << P but not the other way around. (WE%? }
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Absolute Continuity ct'd

We have seen that if we are given P and define () by

QUA) = EP[L-1,] (4

for L > 0 with EY[L] = 1, then Q is a probability
measure and () << P. .

A natural question is now if all measures () << P
are obtained in this way. The answer is yes, and the
precise (quite deep) result is as follows. The proof is

difficult and therefore omitted.
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The Radon Nikodym Theorem

Consider two probability measures P and @ on (2

The random variable L is denoted as

e

L=
dP’

on F

and it is called the Radon-Nikodym derivative of ()
w.r.t. P on F, or the likelihood ratio between () and
P on F.
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A simple example

The Radon-Nikodym derivative L is intuitively the local

> local
scale factor between P and (). If the sample space (2
is finite so 2 = {w1,...,wy,} then P is determined by

the probabilities pq, ..., p, where

pi=Plw;) i=1,...,n

Now consider a measure () with probabilities

qi:Q(wi) izl,...,n

If () << P this simply says that
pi=0 = ¢=0

and it is easy to see that the Radon-Nikodym derivative
L =dQ/dP is given by

L(wi):% i=1,...,n [Qz«g P¢>O>)

)
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If p; = 0 then we also have ¢; = 0 and we can define
the ratio ¢;/p; arbitrarily.

If p1,...,p, as well as q1, ..., q, are all positive, then
we see that () ~ P and in fact

dap 1 dQ\~
dQ ~ L \dP
as could be expected. ‘
Note on wobatiow: EPX o T wihee as
Cle Lebesque  mntegrat (% 4P
Tww € (LT, = (L-‘ﬂm AP (*)

(2)
buk &U‘)[ & (=21 - S“’" Ia \
Wl Apcwally by A0 d WG

martw as e
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Computing expected values

A main use of Radon-Nikodym derivatives is for the
computation of expected values.

Suppose therefore that () << P on F and that X is

a random variable with X € F. With L = dQ/dP on
F then have the following result.

Proposition 3: With notation as above we have

E°[X]=E"[L-X],
(yag = ((Lxdp (e Lz 4L oo

AP
Proof: We only give a proof for the simple example
above where 2 = {wy,...,w,}. We then have
EC[X] = ZX wi)q ZX wz
= ZX(% EY[X L]
1
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The Abstract Bayes’ Formula

We can also use Radon-Nikodym derivatives in order to
compute conditional expectations. The result, known
as the abstract Bayes’ Formula, is as follows.

Theorem 4: Consider two measures P and () with
(Q << P on F and with

Lf:;l—g on F

Assume that G C F and let X be a random variable
with X € F. Then the following holds

B” [L7X|g]
EP[L7]4]

W Agind ATt
pbﬁ@mwﬁ( L EEX = “épfl/x? -
(ga bo@'k ?{OPO({’BM B- 4| )
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Dependence of the o-algebra

Suppose that we have ) << P on F with

Lf:;l—g on F

Now consider smaller g-algebra G C F. Our problem

Is to find the R-N derivative Uoske J«M&ﬁ Ao

We recall that LY is characterized by the following
properties

1. Q(A)=FET |[LY9-14] VAE€eg
2. LY >0

3. EF L9 =1

Teg)
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A natural guess would p,\e/r\fl\a/[?/s be that LY = L%, so
let us check if L7 satisfies points 1-4 above.

By assumption we have

Q(A)=E"[L” -14] VAeF

Sinc we then have

Q(A)=E"[L7 - 14] VA e@

so point 1 above is certainly satisfied by L. It is
also clear that L7 satisfies points 2 and 3. It thus
seems that L7 is also a natural candidate for the R-N
derivative LY. but the problem is that we do not in

general have L7 € G. % Iﬁ”qg ¥ i gemecal.

This problem can, however, be fixed. By iterated
expectations we have, for all A € G,

Qp)= BV 1a] = BV BV [L7 - 14| 6]
\—W\_'__/
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Thew yw’towv forwmla Boppwas
a2 (@ IF T )

Since A € § we have

B (L7 - 1,] 6] = B” [L7|6] 14

L define LY b
et us now deftine y wg\@w
L9 =EP[17]G] , wRl e
T oo L g
o

We then obviouslyshave LY € G and w*

Q(A)=E"[LY-14] VA€

It is easy to see that also points 2-3 are satisfied so we
AV g

have proved the following result.
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A formula for LY

Proposition 5: If Q << P on F and G C F then,
with notation as above, we have

Lg:EP [Lﬂg] ?

=4
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