
The likelihood process on a filtered space

We now consider the case when we have a probability
measure P on some space Ω and that instead of just
one σ-algebra F we have a filtration, i.e. an increasing
family of σ-algebras {Ft}t≥0.

The interpretation is as usual that Ft is the information
available to us at time t, and that we have Fs ⊆ Ft

for s ≤ t.

Now assume that we also have another measure Q,
and that for some fixed T , we have Q << P on FT .
We define the random variable LT by

LT =
dQ

dP
on FT

Since Q << P on FT we also have Q << P on Ft

for all t ≤ T and we define

Lt =
dQ

dP
on Ft 0 ≤ t ≤ T

For every t we have Lt ∈ Ft, so L is an adapted
process, known as the likelihood process.
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The L process is a P martingale

We recall that

Lt =
dQ

dP
on Ft 0 ≤ t ≤ T

Since Fs ⊆ Ft for s ≤ t we can use Proposition 5 and
deduce that

Ls = EP [Lt| Fs] s ≤ t ≤ T

and we have thus proved the following result.

Proposition: Given the assumptions above, the
likelihood process L is a P -martingale.
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Where are we heading?

We are now going to perform measure transformations
on Wiener spaces, where P will correspond to the
objective measure and Q will be the risk neutral
measure.

For this we need define the proper likelihood process L
and, since L is a P -martingale, we have the following
natural questions.

• What does a martingale look like in a Wiener driven
framework?

• Suppose that we have a P -Wiener process W and
then change measure from P to Q. What are the
properties of W under the new measure Q?

These questions are handled by the Martingale
Representation Theorem, and the Girsanov Theorem
respectively.
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4.

The Martingale Representation Theorem
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Intuition

Suppose that we have a Wiener process W under
the measure P . We recall that if h is adapted (and
integrable enough) and if the process X is defined by

Xt = x0 +

∫ t

0
hsdWs

then X is a a martingale. We now have the following
natural question:

Question: Assume that X is an arbitrary martingale.
Does it then follow that X has the form

Xt = x0 +

∫ t

0
hsdWs

for some adapted process h?

In other words: Are all martingales stochastic integrals
w.r.t. W?
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Answer

It is immediately clear that all martingales can not be
written as stochastic integrals w.r.t. W . Consider for
example the process X defined by

Xt =

{
0 for 0 ≤ t < 1

Z for t ≥ 1

where Z is an random variable, independent of W ,
with E [Z] = 0.

X is then a martingale (why?) but it is clear (how?)
that it cannot be written as

Xt = x0 +

∫ t

0
hsdWs

for any process h.
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Intuition

The intuitive reason why we cannot write

Xt = x0 +

∫ t

0
hsdWs

in the example above is of course that the random
variable Z “has nothing to do with” the Wiener process
W . In order to exclude examples like this, we thus need
an assumption which guarantees that our probability
space only contains the Wiener process W and nothing
else.

This idea is formalized by assuming that the filtration
{Ft}t≥0 is the one generated by the Wiener
process W .
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The Martingale Representation Theorem

Theorem. Let W be a P -Wiener process and assume
that the filtation is the internal one i.e.

Ft = FW
t = σ {Ws; 0 ≤ s ≤ t}

Then, for every (P,Ft)-martingale X, there exists a
real number x and an adapted process h such that

Xt = x +

∫ t

0
hsdWs,

i.e.
dXt = htdWt.

Proof: Hard. This is very deep result.
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Note

For a given martingale X, the Representation Theorem
above guarantees the existence of a process h such that

Xt = x +

∫ t

0
hsdWs,

The Theorem does not, however, tell us how to find
or construct the process h.
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5.

The Girsanov Theorem
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Setup

Let W be a P -Wiener process and fix a time horizon
T . Suppose that we want to change measure from P
to Q on FT . For this we need a P -martingale L with
L0 = 1 to use as a likelihood process, and a natural
way of constructing this is to choose a process g and
then define L by

{
dLt = gtdWt

L0 = 1

This definition does not guarantee that L ≥ 0, so we
make a small adjustment. We choose a process ϕ and
define L by

{
dLt = LtϕtdWt

L0 = 1

The process L will again be a martingale and we easily
obtain

Lt = e
R t
0 ϕsdWs−1

2

R t
0 ϕ2

sds
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Thus we are guaranteed that L ≥ 0. We now change
measure form P to Q by setting

dQ = LtdP, on Ft, 0 ≤ t ≤ T

The main problem is to find out what the properties
of W are, under the new measure Q. This problem is
resolved by the Girsanov Theorem.
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The Girsanov Theorem

Let W be a P -Wiener process. Fix a time horizon T .

Theorem: Choose an adapted process ϕ, and define
the process L by

{
dLt = LtϕtdWt

L0 = 1

Assume that EP [LT ] = 1, and define a new mesure Q
on FT by

dQ = LtdP, on Ft, 0 ≤ t ≤ T

Then Q << P and the process WQ, defined by

WQ
t = Wt −

∫ t

0
ϕsds

is Q-Wiener. We can also write this as

dWt = ϕtdt + dWQ
t
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Changing the drift in an SDE

The single most common use of the Girsanov Theorem
is as follows.

Suppose that we have a process X with P dynamics

dXt = µtdt + σtdWt

where µ and σ are adapted and W is P -Wiener.

We now do a Girsanov Transformation as above, and
the question is what the Q-dynamics look like.

From the Girsanov Theorem we have

dWt = ϕtdt + dWQ
t

and substituting this into the P -dynamics we obtain
the Q dynamics as

dXt = {µt + σtϕt} dt + σtdWQ
t

Moral: The drift changes but the diffusion is
unaffected.

Tomas Björk, 2017 167

Section 11.5

related to BS like models

page
766

meaning that we keepon having
the same of in front of
the newsBrownian motion w



The Converse Girsanov Theorem

Let W be a P -Wiener process. Fix a time horizon T .

Theorem. Assume that:

• Q << P on FT , with likelihood process

Lt =
dQ

dP
, on Ft 0,≤ t ≤ T

• The filtation is the internal one .i.e.

Ft = σ {Ws; 0 ≤ s ≤ t}

Then there exists a process ϕ such that

{
dLt = LtϕtdWt

L0 = 1
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Continuous Time Finance

The Martingale Approach

II: Pricing and Hedging

(Ch 10-12)

Tomas Björk
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Financial Markets

Price Processes:

St =
[
S0

t , ..., SN
t

]

Example: (Black-Scholes, S0 := B, S1 := S)

dSt = αStdt + σStdWt,

dBt = rBtdt.

Portfolio:
ht =

[
h0

t , ..., h
N
t

]

hi
t = number of units of asset i at time t.

Value Process:

V h
t =

N∑

i=0

hi
tS

i
t = htSt
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Self Financing Portfolios

Definition: (intuitive)
A portfolio is self-financing if there is no exogenous
infusion or withdrawal of money. “The purchase of a
new asset must be financed by the sale of an old one.”

Definition: (mathematical)
A portfolio is self-financing if the value process
satisfies

dVt =
N∑

i=0

hi
tdSi

t

Major insight:
If the price process S is a martingale, and if h is
self-financing, then V is a martingale.

NB! This simple observation is in fact the basis of the
following theory.
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Arbitrage

The portfolio u is an arbitrage portfolio if

• The portfolio strategy is self financing.

• V0 = 0.

• VT ≥ 0, P − a.s.

• P (VT > 0) > 0

Main Question: When is the market free of arbitrage?
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First Attempt

Proposition: If S0
t , · · · , SN

t are P -martingales, then
the market is free of arbitrage.

Proof:
Assume that V is an arbitrage strategy. Since

dVt =
N∑

i=0

hi
tdSi

t,

V is a P -martingale, so

V0 = EP [VT ] > 0.

This contradicts V0 = 0.

True, but useless.

Tomas Björk, 2017 173

not
realgistic

h

malaria
µ

1 see previouspage

next page

but as we'll see there
is a point in the argument



Example: (Black-Scholes)

dSt = αStdt + σStdWt,

dBt = rBtdt.

(We would have to assume that α = r = 0)

We now try to improve on this result.
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Choose S0 as numeraire

Definition:
The normalized price vector Z is given by

Zt =
St

S0
t

=
[
1, Z1

t , ..., ZN
t

]

The normalized value process V Z is given by

V Z
t =

N∑

0

hi
tZ

i
t.

Idea:
The arbitrage and self financing concepts should be
independent of the accounting unit.
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Invariance of numeraire

Proposition: One can show (see the book) that

• S-arbitrage ⇐⇒ Z-arbitrage.

• S-self-financing ⇐⇒ Z-self-financing.

Insight:

• If h self-financing then

dV Z
t =

N∑

1

hi
tdZ

i
t

• Thus, if the normalized price process Z is a P -
martingale, then V Z is a martingale.
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Second Attempt

Proposition: If Z0
t , · · · , ZN

t are P -martingales, then
the market is free of arbitrage.

True, but still fairly useless.

Example: (Black-Scholes)

dSt = αStdt + σStdWt,

dBt = rBtdt.

dZ1
t = (α − r)Z1

t dt + σZ1
t dWt,

dZ0
t = 0dt.

We would have to assume “risk-neutrality”, i.e. that
α = r.
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Arbitrage

Recall that h is an arbitrage if

• h is self financing

• V0 = 0.

• VT ≥ 0, P − a.s.

• P (VT > 0) > 0

Major insight

This concept is invariant under an equivalent change
of measure!
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Martingale Measures

Definition: A probability measure Q is called an
equivalent martingale measure (EMM) if and only
if it has the following properties.

• Q and P are equivalent, i.e.

Q ∼ P

• The normalized price processes

Zi
t =

Si
t

S0
t

, i = 0, . . . , N

are Q-martingales.

Wan now state the main result of arbitrage theory.
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First Fundamental Theorem

Theorem: The market is arbitrage free

iff

there exists an equivalent martingale measure.
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Comments

• It is very easy to prove that existence of EMM
imples no arbitrage (see below).

• The other imnplication is technically very hard.

• For discrete time and finite sample space Ω the hard
part follows easily from the separation theorem for
convex sets.

• For discrete time and more general sample space we
need the Hahn-Banach Theorem.

• For continuous time the proof becomes technically
very hard, mainly due to topological problems. See
the textbook.
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