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The likelihood process on a filtered space

We now consider the case when we have a probability
measure P on some space (2 and that instead of just

one o-algebra F we have .e. an increasing
family of o-algebras {F;},~

The interpretation is as usual that F; is th@
available to us at time ¢, and that we have F; < F;

for s < t.

Now assume that we also have another measure (),
and that for some fixed T', we have () << P on Fr.
We define the random variable L1 by

LT:@ OHFT

dP o o (P.\’SO
Since () << P on Fp we alsm<< P on F

for all t < T and we define

=% o7 ()<t<T 4

dP W(UM/
(& A9
For every t we havelLf € Fi so L is an adapted

process, known as the likelihood process. .

Nk arowm X o adaptod G 2 {t rechim
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The L process is a P martingale

We recall that

d
Lt:d_g onF 0<t<T

-16%
Since F, C F; for s < t we can use Propogi)tion 5 Jand

deduce that

L,=FEY[LJ|F,] s<t<T

and we have thus proved the following result.

Proposition: Given the assumptions above, the

likelihood process L is a P-martingale.
e

v ‘ Y.?’\w(ﬂwgcﬂ b at
A procny X Ao o 0% H

((\WLL ir adapied G o fatrabom 155,
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Where are we heading?
(WL/\/L W%DU@W@ (howe Ao ompid Hio! )

We are now going to perform measure transformations
on Wiener spaces, where P will correspond to the
objective measure and () will be the risk neutral
measure.

For this we need define the proper likelihood process L
and, since L is a P-martingale, we have the following
natural questions.

e \What does a martingale look like in a Wiener driven
framework? (Lc\u, Blode. Sdaon Kw%\

e Suppose that we have a P-Wiener process W and
then change measure from P to (). What are the
properties of W under the new measure ()7

These questions are handled by the Martingale
Representation Theorem, and the Girsanov Theorem

respectively. s AW ( 3;;
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4.

The Martingale Representation Theorem

k%é%wu . 7>
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Intuition AR

RN i

Suppose that we hav?a&/mener process W under
the measure P. We recall that if h is adapted (and
integrable enough) and if the process X is defined by

’ X, =z + / h.dWV,
0

then X is a a martingale. We now have the following
natural question: D

Question: Assume that X is an?artingale.
Does it then follow that X has the form
'
X: =20+ / hdW
0

for some adapted process h?

In other words: Areﬂmartingales stochastic integrals
w.r.t. W7
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Answer : No//éwe -

It is immediately clear that all martingales can not be
written as stochastic integrals w.r.t. W. Consider for
example the process X defined by

0 for 0<t<1
Xt:
Z for t>1

where Z is an random variable, @@Eﬁﬂof W'NQM

with E'[Z] = 0. OWQXQQ“PWK E&b\:&] T %75
X is then a martingale (why?) but it is clear |(how?) 9 __
: : AU N
that it cannot be written as RS
— : p(.ucf
t ’7L mka’(‘ &l’ 645(,\
X =x —I—/ hsdWs A

for any process h. S.o X+ (P%é \ vawgb VI
¢ ({Z94 e
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Intuition

The intuitive reason why we cannot write

t
X =x9+ / hsdWs
0

in the example above is of course that the random
variable Z "has nothing to do with™ the Wiener process
W. In order to exclude examples like this, we thus need
an assumption which guarantees that our probability
space only contains the Wiener process W and nothing

else.

This idea is formalized by assuming that the filtration
{Fi}+>0 is the one generated by the Wiener
process W, — &~

%;; U’CWg) St ). O\ MWWW

Ve 3
““n No’r m&ar‘fbﬂ 4o 'tf/w)
/("\wabm
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The Martingale Representation Theorem

Theorem. Let W be a P-Wiener process and assume
that the filtation is the internal one i.e.

| artingale X, there exists a
: n-adapted process h such that

t
t =T —I-/ hSdWS,
0

Then, for ever
real number x

dXt — htth .

Proof: Hard. [This is very deep result.

Cruciah jo ok X o adagest
%b W"QM;%&\@D%M
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Note

For a given martingale X, the Representation Theorem
above guarantees the existence of a process h such that

t
X, = x—l—/ hodW,,
0

The Theorem does not, however, tell us how to find
or construct the process h.
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The Girsanov Theorem

Sechsimg W2, 122
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Setup

Let W be a P-Wiener process and fix a time horizon
T'. Suppose that we want to change measure from P
to () on Fr. For this we need a P-martingale L with Sg)
Lo = 1 to use as a likelihood process, and a natural

way of constructing this is to choose a process g and
then define L by

dL; = gy dW; éﬁo o ooy
{ L= 9 gk o wackipl)

This definition does nof, guarantee that L > 0, so we
make a small adjustment. We choose a process ¢ and

define L by \]Ur&\u 6&7{%(@ {WWC@O

st = Ltgﬁtth e
@Q { : &0«%1'“*8(
The process L will again be a martingale and we easily

obtain I 2
Lt_e()@sdws 5 Jo psds 9
AW%W T focumtn o by A2 #<° ot @ Wm
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Thus we are guaranteed that L > 0. We now change
measure form P to () by setting

dQ = L;dP, on F;, 0<t<T

(r (f ] .
The main problem is to find out what the properties

of W are, under the new measure (). This problem is
resolved by the Girsanov Theorem.

U RLeodh v 2Q= L AP amd,
Lz & (e /)
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The Girsanov Theorem

Let W be a P-Wiener process. Fix a time horizon T..

Theorem: Choose an adapted process ¢, and define
the process L by

Vv [ dLy = LypdW, (%)
,DBQ \S\O Ao 06 { LO 1

Aﬂlume hat EX [L7] = 1, and define a new mesure Q
on Fr by

dQ = L;dP, on F;, 0<t<T

Then Q << P and the process W<, defined by

t
W =W, — / pods

0
is ()-Wiener. We can also write this as

AW, = odt + dW X

*) T 4t Wity @), | & a \MM{"’MOILLC (4<T)
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Changing the drift in an SDE
[S@Ck‘wcm \1'53
The single most common use of the Girsanov Theorem
is as follows. ((¢{sted 4o bs Lo wrodels )

Suppose that we have a process X with P dynamics
) dX, = pedt + o dW;

where 1t and o are adapted and W is P-Wiener.

We now do a Girsanov Transformation as above, and
the question is what the ()-dynamics look like.

From the Girsanov Theorem we have
dW; = pydt + dW,? (@a% 166 )

and substituting this into the P—dynamicé%]we obtain
the () dynamics as

dXt = {ut + O'tgﬁt} dt +@th@

Moral: The drift changes but is

unaffected, 7 Weamiug Hiad e \éup - W/\Mﬁ
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The Converse Girsanov Theorem

Let W be a P-Wiener process. Fix a time horizon T..

Theorem. Assume that:

e () << P on Frp, with likelihood process

d
Lt:d—g, OﬂftO,StST

e [ he filtation is the internal one .i.e.

Fi=0{W, 0<s <t}

Then there exists a process ¢ such that

Lo = 1
[ \g) Aot ) B oL
pote P s T e
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—» Lok Ik Rechme S0 C—

Continuous Time Finance

The Martingale Approach
Il: Pricing and Hedging
(Ch 10-12)

Tomas Bjork
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Financial Markets [& F@cc%O

Price Processes:

St — [SE,,S{V}

Example: (Black-Scholes, S¥ := B, S :=9)
dSt — OéStdt + O'Stth,
dBt = TBtdt.

Portfolio:
he = [hy, ..., by ]

h! = number of units of asset 7 at time t.

Value Process: \Jgﬁ‘s(
QP
v
V= hiS;=mS
{ ; ¢ t\z - \,e,(k"’
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Self Financing Portfolios

Definition: (intuitive)
A portfolio is self-financing if there is no exogenous
infusion or withdrawal of money. “The purchase of a

new asset must be financed by the sale of an old one.”

Definition: (mathematical)
A portfolio is self-financing if the value process
satisfies

dV, = Z hidsS:

Major insight:(z((ow\ WM/ ’wa’vg’)?
If the price process S is a martingale, and if h is
self-financing, then V is a martingale.(wots %SQW\WMQ

NB! This simple observation is/in fact the basis of the
following theory. XA&D‘H&

Tomas Bjork, 2017
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Arbitrage

fu / t
The portfolio ¢ is an arbitrage portfolio if (W\&’(w V=V

e The portfolio strategy is self financing.

o 1h=0. ZOX‘—’*/‘ .
0 S P (N+ M{wr

{o Vir é(), P —a.s. (MA"W X s w ¥ 56

B

(\AA,‘
e P(Vr>0)>0 ot
[4uin hap LS EP EVr] >0.

Main Question: When is the market free of arbitrage?

IV R WOV TV Leew # &r’oibmj(/
apd A o o GF f@‘lwamc}\m? ?”"’@0&0 wit

& (VTZO)C" ;

o ?[VT~70):OI Lo

w-;-(,y'[’(\/..l_’—‘ O):?
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First Attempt s

Proposition: If S,---, 5" are P-martingales/ then
the market is free of arbitrage.

Proof: by
Assume that ¥ is an arbitrage strategy. Since

dV, = Xﬁ%%

V' is a P-martingale, so (L«chwco
c i

Vo = EF [Vp]

a,xMcA—mxw
M/}ww \[r V)

> 0/

<oz ?C{,\/\&O(AS ]9&2@

This contradicts V; = 0.

True, but uselessg 1 s> Q%%

(bw‘c o we L see ) Hee
AN o ?mw‘c on Mﬁou‘/‘/“""bﬁ)
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Example: (Black-Scholes)
dSt — OéStdt + O'Stth,

dBt = TBtdt.
web esdigtic

(We would have to assume thatm

We now try to improve on this result.

W
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Choose S; as numeraire
(\o*k, ok nv\UY\v\aC\.-B(d‘ '*(-\ULQB

Definition:
The normalized price vector Z is given by

D

, = , ¥4 LT
7, = gg 1,2}, ... 2] @”M?y“

WWHW

The normalized value process V7 is given by

N . .
=Y hizi
0

Idea:
The arbitrage and self financing concepts should be
independent of the accounting unit.
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Invariance of numeraire

Proposition: One can show (see the book) that

e S-arbitrage <= Z-arbitrage.
e S-self-financing <= Z-self-financing A\i: Ly ds &
SO we b fust talo o SdE-fFuanc

Insight:
e If h self-financing then

N wote tlsdt w=
dV/ =) hidz; da't s d zw_o>
1

e Thus, if the normalized price process Z is a P-
martingale, then V# is a martingale, brclgmnonk

an \o.(/,(q—(b.
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Second Attempt
o wetemabiged Procsis

Proposition: If Z?,--- ZN are P-martingales, then
the market is free of arbitrage.

True, but still fairly useless.

\
\7@ O graaznit S 2

Example: (Black-Scholes)

dSt — OéStdt + O'Stth,

dBt TBtdt r
Uécf(wv albwbwwfo ruﬂ(g( W@“@wh&mw %%:W

5%
Bt
o geb dzy = (a—r)Zidl+oZ{dW,,

dZ) = 0dt.

We would have to assume “r%meutrality” l.e. that
fx

a=r. ty Luxe 20 M/U‘\"WL@A(/C
bBut
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Arbitrage

Recall that A is an arbitrage if
p- 3

e h is self financing

® V():O.
e Vr>0, P—a.s. VTZ'OI L -n-s.
« P(Vr>0)>0 O (N-70)> 0

of measure!

20 = RIAWD
Ve & "Ql& %VPUZ:\ ’I\L s q(we! o tgd O P)({}

? U)‘\'7’() i
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Martingale Measures

Definition: A probability measure () is called an
equivalent martingale measure (EMM) if and only
if it has the following properties.

e () and P are equivalent, i.e. (W“A“U/’Q Miw’d

Q~P

e The normalized price processes

-_S;f

Z;_S—?, i=0,.... N

are Q-martingales.
e

¢
W#®» now state the main result of arbitrage theory.
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First Fundamental Theorem
of Asick Frithy (FTAP 1)

Theorem: The market is arbitrage free
iff
there exists an equivalent martingale measure.

/(—\/l/:/:’ ‘KC\WWV‘ wan WLM? Gavunomn . o P?l
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Comments

e |t is very easy to prove that existence of EMM
imples no arbitrage (see below).

e The other im#plication is technically very hard.
VRN A

e For discrete time and finite sample space €2 the hard
part follows "easily from the separation_theorem for
convex sets.

M”"w&""

e For dlscrete time and more general sample space we_

e For continuous time the proof becomes technically
very hard, mainly due to topological problems. See
the textbook.

—> Ewnd "b’f( Leckurt 5 &—
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