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Dividends

Black-Scholes model:

dSt = αStdt + σStdWt,

dBt = rBtdt.

New feature:
The underlying stock pays dividends.

Dt = The cumulative dividends over

the interval [0, t]

Interpretation:
Over the interval [t, t+dt] you obtain the amount dDt

Two cases

• Discrete dividends (realistic but messy).

• Continuous dividends (unrealistic but easy to
handle).
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Portfolios and Dividends

Consider a market with N assets.

Si
t = price at t, of asset No i

Di
t = cumulative dividends for Si over

the interval [0, t]

hi
t = number of units of asset i

Vt = market value of the portfolio h at t

Assumption: We assume that D has continuous
trajctories.

Definition: The value process V is defined by

Vt =
N∑

i=1

hi
tS

i
t
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Self financing portfolios

Recall:

Vt =
N∑

i=1

hi
tS

i
t

Definition: The strategy h is self financing if

dVt =
N∑

i=1

hi
tdGi

t

where the gain process Gi is defined by

dGi
t = dSi

t + dDi
t

Interpret!

Note: The definitions above rely on the assumption
that D is continuous. In the case of a discontinuous
D, the definitions are more complicated.
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Relative weights

ui
t = the relative share of the portfolio value, which is

invested in asset No i.

ui
t =

hi
tS

i
t

Vt

dVt =
N∑

i=1

hi
tdGi

t

Substitute!

dVt = Vt

N∑

i=1

ui
t

dGi
t

Si
t

Tomas Björk, 2017 212

as before

previous
page



Continuous Dividend Yield

Definition: The stock S pays a continuous dividend
yield of q, if D has the form

dDt = qStdt

Problem:
How does the dividend affect the price of a European
Call? (compared to a non-dividend stock).

Answer:
The price is lower. (why?)
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Black-Scholes with Cont. Dividend Yield

dSt = αStdt + σStdWt,

dDt = qStdt

Gain process:

dGt = (α + q)Stdt + σStdWt

Consider a fixed claim

X = Φ(ST )

and assume that

Πt [X] = F (t, St)
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Standard Procedure

• Assume that the derivative price is of the form

Πt [X] = F (t, St).

• Form a portfolio based on underlying S and
derivative F , with portfolio dynamics

dVt = Vt

{
uS

t · dGt

St
+ uF

t · dF

F

}

• Choose uS and uF such that the dW -term is wiped
out. This gives us

dVt = Vt · ktdt

• Absence of arbitrage implies

kt = r

• This relation will say something about F .
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Value dynamics:

dV = V ·
{

uSdG

S
+ uF dF

F

}
,

dG = S(α + q)dt + σSdW.

From Itô we obtain

dF = αFFdt + σFFdW,

where

αF =
1

F

{
∂F

∂t
+ αS

∂F

∂s
+

1

2
σ2S2∂

2F

∂s2

}
,

σF =
1

F
· σS

∂F

∂s
.

Collecting terms gives us

dV = V ·
{
uS(α + q) + uFαF

}
dt

+ V ·
{
uSσ + uFσF

}
dW,
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Define uS and uF by the system

uSσ + uFσF = 0,

uS + uF = 1.
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Solution

uS =
σF

σF − σ
,

uF =
−σ

σF − σ
,

Value dynamics

dV = V ·
{
uS(α + q) + uFαF

}
dt.

Absence of arbitrage implies

uS(α + q) + uFαF = r,

We get

∂F

∂t
+ (r − q)S

∂F

∂s
+

1

2
σ2S2∂

2F

∂s2
− rF = 0.
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Pricing PDE

Proposition: The pricing function F is given as the
solution to the PDE






∂F

∂t
+ (r − q)s

∂F

∂s
+

1

2
σ2s2∂

2F

∂s2
− rF = 0,

F (T, s) = Φ(s).

We can now apply Feynman-Kac to the PDE in order
to obtain a risk neutral valuation formula.
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Risk Neutral Valuation

The pricing function has the representation

F (t, s) = e−r(T−t)EQ
t,s [Φ(ST )] ,

where the Q-dynamics of S are given by

dSt = (r − q)Stdt + σStdWQ
t .

Question: Which object is a martingale under the
meausre Q?
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Martingale Property

Proposition: Under the martingale measure Q the
normalized gain process

GZ
t = e−rtSt +

∫ t

0
e−rudDu

is a Q-martingale.

Proof: Exercise.

Note: The result above holds in great generality.

Interpretation:
In a risk neutral world, today’s stock price should be
the expected value of all future discounted earnings
which arise from holding the stock.

S0 = EQ

[∫ t

0
e−rudDu + e−rtSt

]
,
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Pricing formula

Pricing formula for claims of the type

Z = Φ(ST )

We are standing at time t, with dividend yield q.
Today’s stock price is s.

• Suppose that you have the pricing function

F 0(t, s)

for a non dividend stock.

• Denote the pricing function for the dividend paying
stock by

F q(t, s)

Proposition: With notation as above we have

F q(t, s) = F 0
(
t, se−q(T−t)

)
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Moral

Use your old formulas, but replace today’s stock price
s with se−q(T−t).
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European Call on Dividend-Paying-Stock

F q(t, s) = se−q(T−t)N [d1] − e−r(T−t)KN [d2] .

d1 =
1

σ
√

T − t

{
ln
( s

K

)
+

(
r − q +

1

2
σ2

)
(T − t)

}

d2 = d1 − σ
√

T − t.

Tomas Björk, 2017 224

p

Compare to p 71 andobserve
the roleof9



Martingale Analysis

Basic task: We have a general model for stock price S
and cumulative dividends D, under P . How do we find
a martingale measure Q, and exactly which objects will
be martingales under Q?

Main Idea: We attack this situation by reducing it
to the well known case of a market without dividends.
Then we apply standard techniques.
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The Reduction Technique

• Consider the self financing portfolio where you keep
1 unit of the stock and invest all dividends in the
bank. Denote the portfolio value by V .

• This portfolio can be viewed as a traded asset
without dividends.

• Now apply the First Fundamental Theorem to the
market (B, V ) instead of the original market (B, S).

• Thus there exists a martingale measure Q such that
Πt
Bt

is a Q martingale for all traded assets (underlying
and derivatives) without dividends.

• In particular the process

Vt

Bt

is a Q martingale.
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The V Process

Let ht denote the number of units in the bank account,
where h0 = 0. V is then characterized by

Vt = 1 · St + htBt (1)

dVt = dSt + dDt + htdBt (2)

From (1) we obtain

dVt = dSt + htdBt + Btdht

Comparing this with (2) gives us

Btdht = dDt

Integrating this gives us

ht =

∫ t

0

1

Bs
dDs
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We thus have

Vt = St + Bt

∫ t

0

1

Bs
dDs (3)

and the first fundamental theorem gives us the
following result.

Proposition: For a market with dividends, the
martingale measure Q is characterized by the fact
that the normalized gain process

GZ
t =

St

Bt
+

∫ t

0

1

Bs
dDs

is a Q martingale.

Quiz: Could you have guessed the formula (3) for V ?
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Continuous Dividend Yield

Model under P

dSt = αStdt + σStdWt,

dDt = qStdt

We recall

GZ
t =

St

Bt
+

∫ t

0

1

Bs
dDs

Easy calculation gives us

dGZ
t = Zt (α − r + q) dt + ZtσdWt

where Z = S/B.

Girsanov transformation dQ = LdP , where

dLt = LtϕtdWt

We have
dWt = ϕtdt + dWQ

t

Insert this into dGZ

Tomas Björk, 2017 229

p228 Proposition

under P

p

for some ee

see p 166



The Q dynamics for GZ are

dGZ
t = Zt (α − r + q + σϕt) dt + ZtσdWQ

t

Martingale condition

α − r + q + σϕt = 0

Q-dynamics of S

dSt = St (α + σϕ) dt + StσdWQ
t

Using the martingale condition this gives us the Q-
dynamics of S as

dSt = St (r − q) dt + StσdWQ
t
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Risk Neutral Valuation

Theorem: For a T -claim X, the price process Πt [X]
is given by

Πt [X] = e−r(T−t)EQ [X| Ft] ,

where the Q-dynamics of S are given by

dSt = (r − q)Stdt + σStdWQ
t .
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