-> Start of lecture 7a <

Continuous Time Finance

Dividends,

Forwards, Futures, and Futures Options

Ch 16 & 26

Tomas Björk

Contents

- 1. Dividends
- 2. Forward and futures contracts
- 3. Futures options

Tomas Björk, 2017

1. Dividends

Tomas Björk, 2017 208

Dividends

Black-Scholes model:

$$dS_t = \alpha S_t dt + \sigma S_t dW_t,$$

$$dB_t = rB_t dt.$$

New feature:

The underlying stock pays dividends. $D_t = \text{The cumulative dividends over}$

the interval [0,t] full separa on S_{u} , $u \leq t$)

Interpretation:

Over the interval [t,t+dt] you obtain the amount dD_t

Two cases

- Discrete dividends (realistic but messy): We skip !
- Continuous dividends (unrealistic but easy handle). in fact differentiable, as

Portfolios and Dividends

Consider a market with N assets.

 S_t^i = price at t, of asset No i

 $D_t^i = \text{cumulative dividends for } S^i \text{ over}$ the interval [0,t], $\mathcal{D}_{0}^{c} \approx \mathcal{D}$

 h_t^i = number of units of asset i

 V_t = market value of the portfolio h at t

Assumption: We assume that D has continuous differentiable trajctories.

Definition: The value process V is defined by

$$V_t = \sum_{i=1}^N h_t^i S_t^i$$
 (as before)

Self financing portfolios in presence of dividends

Recall:

$$V_t = \sum_{i=1}^{N} h_t^i S_t^i$$

New Definition: The strategy h is self financing if

$$dV_t = \sum_{i=1}^N h_t^i dG_t^i$$

where the **gain** process G^i is defined by $\begin{array}{c|c} \text{If } D_t^i \equiv 0 \text{ , we are} \\ \text{back in old case} \end{array} dG_t^i = dS_t^i + dD_t^i \\ \text{Interpret!} \end{array}$

$$dG_t^i = dS_t^i + dD_t^i$$

Note: The definitions above rely on the assumption that D is continuous. In the case of a discontinuous D, the definitions are more complicated.

Relative weights

 u_t^i = the relative share of the portfolio value, which is invested in asset No i.

$$u_t^i = \frac{h_t^i S_t^i}{V_t} \qquad \text{(as before)}$$

$$u_t^i = \frac{h_t^i S_t^i}{V_t} \qquad \text{(as before)}$$

$$dV_t = \sum_{i=1}^N h_t^i dG_t^i \qquad \text{(previous page)}$$

Substitute!

$$dV_t = V_t \sum_{i=1}^{N} u_t^i \frac{dG_t^i}{S_t^i}$$

Continuous Dividend Yield

Definition: The stock S pays a **continuous dividend** yield of q, if D has the form (with $q \ge 0$)

 $dD_t = qS_t dt \; , \; \text{here the dividend}$ growth qS_t is proportional to $S_t, \; \text{with rate } q$.

Problem:

How does the dividend affect the price of a European Call? (compared to a non-dividend stock).

Answer:

The price is lower. (why?) you can guess. ---

Tomas Björk, 2017 213

Black-Scholes with Cont. Dividend Yield

Gain process:

$$dG_t = (\alpha + q)S_t dt + \sigma S_t dW_t$$

Consider a fixed claim

$$X = \Phi(S_T)$$

and assume that

$$\Pi_t\left[X
ight] = F(t,S_t),$$
 justified by some Markov groperty as before.

Standard Procedure, familiar

Assume that the derivative price is of the form

$$\Pi_t[X] = F(t, S_t).$$

• Form a portfolio based on underlying S and derivative F, with portfolio dynamics with F projectly:

$$dV_t = V_t \left\{ u_t^S \cdot \frac{dG_t}{S_t} + u_t^F \cdot \frac{dF}{F} \right\} \quad \text{(asymptotic points)}$$

• Choose u^S and u^F such that the dW-term is wiped out. This gives us eventually, often computations,

$$dV_t = V_t \cdot k_t dt$$

Absence of arbitrage implies

$$k_t = r$$

 \bullet This relation will say something about F, an before.

Value dynamics (repeat);

$$dV = V \cdot \left\{ u^S \frac{dG}{S} + u^F \frac{dF}{F} \right\},\,$$

$$dG = S(\alpha + q)dt + \sigma SdW$$
. (Previous page)

From Itô we obtain

$$dF = \alpha_F F dt + \sigma_F F dW,$$
 where
$$\alpha_F = \frac{1}{F} \left\{ \frac{\partial F}{\partial t} + \alpha S \frac{\partial F}{\partial s} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 F}{\partial s^2} \right\},$$

$$\sigma_F = \frac{1}{F} \cdot \sigma S \frac{\partial F}{\partial s}.$$

Collecting terms gives us

$$dV = V \cdot \{u^S(\alpha + q) + u^F \alpha_F\} dt + V \cdot \{u^S \sigma + u^F \sigma_F\} dW,$$

Define \boldsymbol{u}^S and \boldsymbol{u}^F by the system

$$u^S \sigma + u^F \sigma_F = 0$$
, to ripe out the $u^S + u^F = 1$.

Solution (if
$$\nabla_{\overline{x}} \neq \nabla$$
)

$$u^{S} = \frac{\sigma_{F}}{\sigma_{F} - \sigma},$$

$$u^{F} = \frac{-\sigma}{\sigma_{F} - \sigma},$$

Value dynamics (dW term wiped out in previous equation):

$$dV = V \cdot \{u^S(\alpha + q) + u^F \alpha_F\} dt.$$

Absence of arbitrage implies [wand wgument]

$$u^S(\alpha + q) + u^F \alpha_F = r,$$

We get, using of and of of p.216 in us and uf,

$$\frac{\partial F}{\partial t} + (r - q)S\frac{\partial F}{\partial s} + \frac{1}{2}\sigma^2S^2\frac{\partial^2 F}{\partial s^2} - rF = 0.$$
 (verify!)

Pricing PDE

Proposition: The pricing function F is given as the solution to the PDE

$$\begin{cases} \frac{\partial F}{\partial t} + (r-q)s\frac{\partial F}{\partial s} + \frac{1}{2}\sigma^2s^2\frac{\partial^2 F}{\partial s^2} - rF & = 0, \\ & \uparrow & F(T,s) & = \Phi(s). \end{cases}$$

We can now apply Feynman-Kac to the PDE in order to obtain a risk neutral valuation formula.

If q=0 we are back in the old situation.

Tomas Björk, 2017 219

-> End of lecture fax

-> Start of lecture 766

Risk Neutral Valuation

The pricing function has the representation still discount-

$$F(t,s) = e^{-r(T-t)} E_{t,s}^{Q} \left[\Phi(S_T) \right],$$

where the Q-dynamics of S are given by

$$dS_t = (r - q)S_t dt + \sigma S_t dW_t^Q.$$

Question: Which object is a martingale under the meau $\operatorname{tre} Q$?

Is it St as before?

By

Answer should be no, as there
is "q" in the equation for St.

Martingale Property

Proposition: Under the martingale measure Q the normalized gain process

$$G_t^Z = e^{-rt}S_t + \int_0^t e^{-ru}dD_u$$
 ingale. La previous care

is a Q-martingale.

Proof: Exercise: Show $dG_t^2 = e^{-rt} \sigma S_t dW_t^Q$; no dt term

Note: The result above holds in great generality, emp. 228-

Interpretation:

In a risk neutral world, today's stock price should be the expected value of all future discounted earnings which arise from holding the stock, these include dividends,

$$S_0 = E^Q \left[\int_0^t e^{-ru} dD_u + e^{-rt} S_t \right], \ \ \, \text{the "off"}$$
 from Proposition upon noticing $G_o^2 = S_o$ Price Tomas Björk, 2017

Pricing formula

Find

Pricing formula for claims of the type

$$\mathcal{Z} = \Phi(S_T)$$
.

We are standing at time t, with dividend yield q. Today's stock price is s.

Suppose that you have the pricing function

$$F^{0}(t,s) = T_{t}(Z), \text{ when } S_{t}=s$$
.

for a non dividend stock.

 Denote the pricing function for the dividend paying stock by

$$F^q(t,s)$$

Proposition: With notation as above we have

$$F^{q}(t,s) = F^{0}\left(t, se^{-q(T-t)}\right)$$

This is Exercise 16.5.

Moral

Use your old formulas, but replace today's stock price s with $se^{-q(T-t)}$.

He Black - Scholls case

The Black - Scholls case

Se 2 \(\lambda \sigma \).

The foliation of the foliatio

European Call on Dividend-Paying-Stock

$$F^{q}(t,s) = se^{-q(T-t)}N[d_{1}] - e^{-r(T-t)}KN[d_{2}].$$

$$d_1 = \frac{1}{\sigma\sqrt{T-t}} \left\{ \ln\left(\frac{s}{K}\right) + \left(r - q + \frac{1}{2}\sigma^2\right) (T-t) \right\}$$

$$d_2 = d_1 - \sigma\sqrt{T-t}.$$

Compare to p.71, and observe the role of 9.

Martingale Analysis

Basic task: We have a general model for stock price S and cumulative dividends D, under P. How do we find a martingale measure Q, and exactly which objects will be martingales under Q?

needed to define a martingale measure

Main Idea: We attack this situation by reducing it to the well known case of a market without dividends. Then we apply standard techniques.

Tomas Björk, 2017 225

The Reduction Technique

- Consider the self financing portfolio where you keep 1 unit of the stock and invest all dividends in the bank. Denote the portfolio value by V.
- This portfolio can be viewed as a traded asset without dividends. (as they disappear into the bounk account)
- Now apply the First Fundamental Theorem to the market (B, V) instead of the original market (B, S).
- Thus there exists a martingale measure Q such that $\frac{\Pi_t}{B_t}$ is a Q martingale for all traded assets (underlying and derivatives) without dividends.
- In particular the process

$$\frac{V_t}{B_t}$$

is a Q martingale. Next we study V.

Tomas Björk, 2017 226

The V Process

Let h_t denote the number of units in the bank account, where $h_0=0$. V is then characterized by

$$V_t = 1 \cdot S_t + h_t B_t$$
 (1)

$$dV_t = dS_t + dD_t + h_t dB_t \tag{2}$$

From (1) we obtain

$$dV_t = dS_t + h_t dB_t + B_t dh_t$$

(ordinary produkt rule) if dhy makes sense)

Comparing this with (2) gives us

$$B_t dh_t = dD_t$$
 and $dh_t = \frac{1}{B_t} dD_t$.

Integrating this gives us

$$h_t = \int_0^t \frac{1}{B_s} dD_s$$

We thus have

$$V_t = S_t + B_t \int_0^t \frac{1}{B_s} dD_s \tag{3}$$

and the first fundamental theorem gives us the following result.

Proposition: For a market with dividends, the martingale measure Q is characterized by the fact that the **normalized gain process** $G_{+}^{2} = V_{+}$ such sfies

$$G_t^Z = \frac{S_t}{B_t} + \int_0^t \frac{1}{B_s} dD_s$$

is a Q martingale. (as on p. 22), but from a different argument)

Quiz: Could you have guessed the formula (3) for V?

Tomas Björk, 2017

Continuous Dividend Yield

Model under P

$$dS_t = \alpha S_t dt + \sigma S_t dW_t,$$

$$dD_t = qS_t dt$$

We recall
$$(p-22\delta, Proposition)$$

$$G_t^Z = \frac{S_t}{B_t} + \int_0^t \frac{1}{B_s} dD_s = 2 + \int_0^t q 2 ds ds$$

Easy calculation gives us (under P)

$$dG_t^Z = Z_t (\alpha - r + q) dt + Z_t \sigma dW_t$$

where Z = S/B.

Girsanov transformation dQ = LdP, where

$$dL_t = L_t \varphi_t dW_t$$
 (for time φ_t)

We have

$$dW_t = \varphi_t dt + dW_t^Q \qquad \text{(see p. 166)}$$

Insert this into dG^Z

The Q dynamics for G^Z are

$$dG_t^Z = Z_t (\alpha - r + q + \sigma \varphi_t) dt + Z_t \sigma dW_t^Q$$

$$\alpha - r + q + \sigma \varphi_t = 0$$
 $\alpha + \nabla \varphi_t = \nabla - \varphi_t$

 $\alpha-r+q+\sigma\varphi_t=0 \qquad \alpha+\nabla\varphi_t= -\varphi_t$ Q-dynamics of $S: dS=\alpha S_t dt + \sigma S_t (dw^Q+\varphi_t dt)$ gives $dS_t=S_t (\alpha+\sigma\varphi)\,dt+S_t\sigma dW_t^Q$ sing the martingale conditions of S as

 $dS_t = S_t \left(r-q\right) dt + S_t \sigma dW_t^Q \text{, already Seleve}$ (note again the ole of the dividend rate q.)

Risk Neutral Valuation

Theorem: For a T-claim X, the price process $\Pi_t[X]$ is given by

$$\Pi_t [X] = e^{-r(T-t)} E^Q [X | \mathcal{F}_t],$$

where the Q-dynamics of S are given by

$$dS_t = (r-q)S_t dt + \sigma S_t dW_t^Q.$$
 note that q appears (only) in the Q-dynamics of S^1 .

-> end of lecture 764