
2. Forward and Futures Contracts
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Forward Contracts

A forward contract on the T -claim X, contracted
at t, is defined by the following payment scheme.

• The holder of the forward contract receives, at time
T , the stochastic amount X from the underwriter.

• The holder of the contract pays, at time T , the
forward price f(t; T, X) to the underwriter.

• The forward price f(t; T, X) is determined at time
t.

• The forward price f(t; T, X) is determined in such
a way that the price of the forward contract equals
zero, at the time t when the contract is made.
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General Risk Neutral Formula

Suppose we have a bank account B with dynamics

dBt = rtBtdt, B0 = 1

with a (possibly stochastic) short rate rt. Then

Bt = e
R t
0 rsds

and we have the following risk neutral valuation for a
T -claim X

Πt [X] = EQ
[
e−

R T
t rsds · X

∣∣∣Ft

]

Setting X = 1 we have the price, at time t, of a zero
coupon bond maturing at T as

p(t, T ) = EQ
[
e−

R T
t rsds

∣∣∣Ft

]
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Forward Price Formula

Theorem: The forward price of the claim X is given
by

f(t, T ) =
1

p(t, T )
EQ

[
e−

R T
t rsds · X

∣∣∣Ft

]

where p(t, T ) denotes the price at time t of a zero
coupon bond maturing at time T .

In particular, if the short rate r is deterministic we have

f(t, T ) = EQ [X| Ft]
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Proof

The net cash flow at maturity is X − f(t, T ). If the
value of this at time t equals zero we obtain

Πt [X] = Πt [f(t, T )]

We have

Πt [X] = EQ
[
e−

R T
t rsds · X

∣∣∣Ft

]

and, since f(t, T ) is known at t, we obviously (why?)
have

Πt [f(t, T )] = p(t, T )f(t, T ).

This proves the main result. If r is deterministic then
p(t, T ) = e−r(T−t) which gives us the second formula.
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Futures Contracts

A futures contract on the T -claim X, is a financial
asset with the following properties.

(i) At every point of time t with 0 ≤ t ≤ T , there exists
in the market a quoted object F (t; T, X), known as
the futures price for X at t, for delivery at T .

(ii) At the time T of delivery, the holder of the contract
pays F (T ; T, X) and receives the claim X.

(iii) During an arbitrary time interval (s, t] the holder
of the contract receives the amount F (t; T, X) −
F (s; T, X).

(iv) The spot price, at any time t prior to delivery, for
buying or selling the futures contract, is by definition
equal to zero.
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Futures Price Formula

From the definition it is clear that a futures contract
is a price-dividend pair (S, D) with

S ≡ 0, dDt = dF (t, T )

From general theory, the normalized gains process

GZ
t =

St

Bt
+

∫ t

0

1

Bs
dDs

is a Q-martingale.

Since S ≡ 0 and dDt = dF (t, T ) this implies that

1

Bt
dF (t, T )

is a martingale increment, which implies (why?) that
dF (t, T ) is a martingale increment. Thus F is a
Q-martingale and we have

F (t, T ) = EQ [F (T, T )| Ft] = EQ [X| Ft]
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Theorem: The futures price process is given by

F (t, T ) = EQ [X| Ft] .

Corollary. If the short rate is deterministic, then the
futures and forward prices coincide.
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3. Futures Options
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Futures Options

We denote the futures price process, at time t with
delivery time at T by

F (t, T ).

When T is fixed we sometimes suppress it and write
Ft, i.e. Ft = F (t, T )

Definition:
A European futures call option, with strike price K and
exercise date T , on a futures contract with delivery date
T1 will, if exercised at T , pay to the holder:

• The amount F (T, T1) − K in cash.

• A long postition in the underlying futures contract.

NB! The long position above can immediately be
closed at no cost.
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Institutional fact:
The exercise date T of the futures option is typcally
very close to the date of delivery of the underlying T1

futures contract.
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Why do Futures Options exist?

• On many markets (such as commodity markets)
the futures market is much more liquid than the
underlying market.

• Futures options are typically settled in cash. This
relieves you from handling the underlying (tons of
copper, hundreds of pigs, etc.).

• The market place for futures and futures options is
often the same. This facilitates hedging etc.
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Quote from Björk’s book, page 455:

For more explanation you may want to consult:

https://www.investopedia.com/terms/f/futurescontract.asp

or a similar page on Wikipedia:

https://en.wikipedia.org/wiki/Futures_contract



Pricing Futures Options – Black-76

We consider a futures contract with delivery date T1

and use the notation Ft = F (t, T1). We assume the
following dynamics for F .

dFt = µFtdt + σFtdWt

Now suppose we want to price a derivative with exercise
date T with the T1-futures price F as underlying, i.e.
a claim of the form

Φ(FT )

This turns out to be quite easy.
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From risk neutral valuation we know that the price
process Πt [Φ] is of the form

Πt [Φ] = f(t, Ft)

where f is given by

f(t, F ) = e−r(T−t)EQ
t,F [Φ(FT )]

so it only remains to find the Q-dynamics for F .

We now recall

Proposition: The futures price process Ft is a Q-
martingale.

Thus the Q-dynamics of F are given by

dFt = σFtdWQ
t
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We thus have

f(t, F ) = e−r(T−t)EQ
t,F [Φ(FT )]

with Q-dynamics

dFt = σFtdWQ
t

Now recall the formula for a stock with continuous
dividend yield q.

f(t, s) = e−r(T−t)EQ
t,s [Φ(ST )]

with Q-dynamics

dSt = (r − q)St + σStdWQ
t

Note: If we set q = r the formulas are identical!
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Pricing Formulas

Let f0(t, s) be the pricing function for the contract
Φ(ST ) for the case when S is a stock without dividends.
Let f(t, F ) be the pricing formula for the claim Φ(FT ).

Proposition: With notation as above we have

f(t, F ) = f0(t, Fe−r(T−t))

Moral: Reset today’s futures price F to Fe−r(T−t)

and use your formulas for stock options.
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Black-76 Formula

The price of a futures option with exercise date T and
exercise price K is given by

c = e−r(T−t) {FN [d1] − KN [d2]} .

d1 =
1

σ
√

T − t

{
ln

(
F

K

)
+

1

2
σ2(T − t)

}
,

d2 = d1 − σ
√

T − t.
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Continuous Time Finance

Currency Derivatives

Ch 17

Tomas Björk
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Pure Currency Contracts

Consider two markets, domestic (England) and foreign
(USA).

rd = domestic short rate

rf = foreign short rate

X = exchange rate

NB! The exchange rate X is quoted as

units of the domestic currency

unit of the foreign currency
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Simple Model (Garman-Kohlhagen)

The P -dynamics are given as:

dXt = Xtαdt + XtσdWt,

dBd
t = rdBd

t dt,

dBf
t = rfBf

t dt,

Main Problem:
Find arbitrage free price for currency derivative, Z, of
the form

Z = Φ(XT )

Typical example: European Call on X.

Z = max [XT − K, 0]
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Naive idea

For the European Call, use the standard Black-Scholes
formula, with S replaced by X and r replaced by rd.

Is this OK?
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NO!

WHY?
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Main Idea

• When you buy stock you just keep the asset until
you sell it.

• When you buy dollars, these are put into a bank
account, giving the interest rf .

Moral:
Buying a currency is like buying a dividend-paying
stock with dividend yield q = rf .
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Technique

• Transform all objects into domestically traded
asset prices.

• Use standard techniques on the transformed model.
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Transformed Market

1. Investing foreign currency in the foreign bank gives
value dynamics in foreign currency according to

dBf
t = rfBf

t dt.

2. Bf units of the foreign currency is worth X · Bf in
the domestic currency.

3. Trading in the foreign currency is equivalent to
trading in a domestic market with the domestic
price process

B̃f
t = Bf

t · Xt

4. Study the domestic market consisting of

B̃f , Bd
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Market dynamics

dXt = Xtαdt + XtσdW

B̃f
t = Bf

t · Xt

Using Itô we have domestic market dynamics

dB̃f
t = B̃f

t

(
α + rf

)
dt + B̃f

t σdWt

dBd
t = rdBd

t dt

Standard results gives us Q-dynamics for domestically
traded asset prices:

dB̃f
t = B̃f

t rddt + B̃f
t σdWQ

t

dBd
t = rdBd

t dt

Itô gives us Q-dynamics for Xt = B̃f
t /Bf

t :

dXt = Xt(r
d − rf)dt + XtσdWQ

t
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Risk neutral Valuation

Theorem: The arbitrage free price Πt [Φ] is given by
Πt [Φ] = F (t, Xt) where

F (t, x) = e−rd(T−t)EQ
t,x [Φ(XT )]

The Q-dynamics of X are given by

dXt = Xt(r
d − rf)dt + XtσdWQ

t
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Pricing PDE

Theorem:The pricing function F solves the boundary
value problem

∂F

∂t
+ x(rd − rf)

∂F

∂x
+

1

2
x2σ2∂2F

∂x2
− rdF = 0,

F (T, x) = Φ(x)
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Currency vs Equity Derivatives

Proposition: Introduce the notation:

• F 0(t, x) = the pricing function for the claim Z =
Φ(XT ), where we interpret X as the price of an
ordinary stock without dividends.

• F (t, x) = the pricing function of the same claim
when X is interpreted as an exchange rate.

Then the following holds

F (t, x) = F0

(
t, xe−rf(T−t)

)
.
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Currency Option Formula

The price of a European currency call is given by

F (t, x) = xe−rf(T−t)N [d1] − e−rd(T−t)KN [d2] ,

where

d1 =
1

σ
√

T − t

{
ln
( x

K

)
+

(
rd − rf +

1

2
σ2

X

)
(T − t)

}

d2 = d1(t, x) − σ
√

T − t
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