-> Start of lecture ga <

Martingale Analysis

 Q^d = domestic martingale measure

 Q^f = foreign martingale measure

$$L_t = \frac{dQ^f}{dQ^d}, \quad L_t^d = \frac{dQ^d}{dP}, \quad L_t^f = \frac{dQ^f}{dP}$$

P-dynamics of X

$$dX_t = X_t \alpha_t dt + X_t \sigma_t dW_t$$

where α and σ are arbitrary adapted processes and W is $P\text{-}\mathsf{Wiener}.$

Problem: How are Q^d and Q^f related?

through L_t of course, but how exactly? via L^d, L^f?

Tomas Björk, 2017

Main Idea

Fix an arbitrary foreign T-claim Z.

Compute foreign price and change to domestic currency. The price at t=0 will be

$$\Pi_0\left[Z\right] = X_0 E^{Q^f} \left[e^{-\int_0^T r_s^f ds} Z\right] \quad \text{for an pice}$$

This can be written as

is can be written as
$$\Pi_0\left[Z\right] = X_0 E^{Q^d} \left[L_T e^{-\int_0^T r_s^f ds} Z\right]$$

$$\Pi_0\left[Z\right] = E^{Q^d} \left[e^{-\int_0^T r_s^d ds} X_T \cdot Z \right]$$

 These expressions must be equal for all choices of $Z \in \mathcal{F}_T$

We thus obtain

$$E^{Q^d} \left[e^{-\int_0^T r_s^d ds} X_T \cdot Z \right] = X_0 E^{Q^d} \left[L_T e^{-\int_0^T r_s^f ds} Z \right]$$

for all Υ -claims Z. This implies the following result (replace Twitht)

Theorem: The exchange rate X is given by

e exchange rate
$$X$$
 is given by
$$X_t = X_0 e^{\int_0^t (r_s^d - r_s^f) ds} L_t = X_0$$

alternatively by

$$X_t = X_0 \frac{D_t^f}{D_t^d}$$

 D_t^d is the domestic stochastic and D_t^d is the domestic stochastic stochastic and D_t^d is the domestic stochastic stochastic stochastic stochastic stochastic stoch where D_t^d is the domestic stochastic discount factor

Proof: The last part follows from

$$L = \frac{dQ^f}{dQ^d} = \frac{dQ^f}{dP} \bigg/ \frac{dQ^d}{dP} = \frac{L^f}{L^d}$$
 and $B_t^f = \text{Dry}\left(\binom{t}{p} \binom{t}{s} ds\right)$ etc.

Compare to general theory on p-155 we

Q^d -Dynamics of X

In particular, since L is a Q^d -martingale the Q^d dynamics of L are of the form

$$(\land) dL_t = L_t \varphi_t dW_t^d$$

where W^d is Q^d -Wiener. From (Thm on ϕ .264)

$$(b) X_t = X_0 e^{\int_0^t (r_s^d - r_s^f) ds} L_t$$

the Q^d -dynamics of X follows (A), (b) and (b) as

$$dX_t = (r_t^d - r_t^f) X_t dt + X_t \varphi_t dW_t^d \quad \text{(bit of work)}$$
 Compare to p.257 (we W = W) and endude that

the Girsanov kernel φ equals the exchange rate volatility and we have the general Q^d dynamics.

Theorem: The Q^d dynamics of X are of the form

$$dX_t = (r_t^d - r_t^f)X_tdt + X_t\sigma_t dW_t^d,$$

known from p.257

Tomas Björk, 2017

Market Prices of Risk

Recall
$$D_t^d = e^{-\int_0^t r_s^d ds} L_t^d$$
 We also have a representation like
$$dL_t^d = L_t^d \varphi_t^d dW_t \leftarrow \text{P. Wiener process}$$

where $-\varphi_t^d = \lambda^d$ is the domestic market price of risk tc. From $X_t = X_0 \frac{D_t^f}{D_t^d}$ (returns later, p.305 and p.305) and similar for φ^f etc. From

$$X_t = X_0 \frac{D_t^f}{D_t^d}$$

we now easily obtain (exercise in Ito-calculus)

$$dX_t = X_t \alpha_t dt + X_t \left(\lambda_t^d - \lambda_t^f\right) dW_t,$$

where we do not care about the exact shape of α . We we don't specify it thus have

Theorem: The exchange rate volatility is given by

$$\sigma_t = \lambda_t^d - \lambda_t^f,$$
 a Clatin between volatility and market prices of risk.

Siegel's Paradox

Assume that the domestic and the foreign markets are hoth risk neutral and assume constant short rates. We now have the following surprising (?) argument.

A: Let us consider a T claim of 1 dollar. The arbitrage free dollar value at t=0 is of course

$$e^{-r^fT}$$

so the Euro value at at t=0 is given by

$$X_0e^{-r^fT}$$
.

The 1-dollar claim is, however, identical to a T-claim of X_T euros. Given domestic risk neutrality, the Euro value at t=0 is then $\mathbb{R}^{d} = \mathbb{P} \quad \text{by assumption}.$

$$e^{-r^d T} E^P \left[X_T \right].$$

We thus have

$$X_0 e^{-r^f T} = e^{-r^d T} E^P [X_T]$$

Siegel's Paradox ct'd

B: We now consider a T-claim of one Euro and compute the dollar value of this claim. The Euro value at t=0 is of course

$$e^{-r^dT}$$

so the dollar value is

$$\frac{1}{X_0}e^{-r^dT}.$$

The 1-Euro claim is identical to a T-claim of X_T^{-1} Euros so, by foreign risk neutrality, we obtain the dollar price as

$$e^{-r^f T} E^P \left[\frac{1}{X_T} \right]$$

which gives us

$$\frac{1}{X_0}e^{-r^dT} = e^{-r^fT}E^P\left[\frac{1}{X_T}\right]$$

Siegel's Paradox ct'd

Recall our earlier results (pp 267 and 268)

$$X_0 e^{-r^f T} = e^{-r^d T} E^P [X_T]$$

$$\frac{1}{X_0} e^{-r^d T} = e^{-r^f T} E^P \left[\frac{1}{X_T} \right]$$
[multiply]

Combining these gives us

$$E^{P}\left[\frac{1}{X_{T}}\right] = \frac{1}{E^{P}\left[X_{T}\right]}$$

which, by Jensen's inequality, is impossible unless X_T is deterministic. This is sometimes referred to as (one formulation of) "Siegel's paradox."

It thus seems that Americans cannot be risk neutral at the same time as Europeans.

Formal analysis of Siegel's Paradox

Question: Can we assume that both the domestic and the foreign markets are risk neutral?

Answer: Generally no, because of Jensen's inequality

Proof: The assumption would be equivalent to assuming the $P=Q^d=Q^f$ i.e.

$$\lambda_t^d = \lambda_t^f = 0$$
 (must have $\lambda_t^d \equiv 1 \equiv (f_t)$

However, we know that $(See p \cdot 266)$

$$\sigma_t = \lambda_t^d - \lambda_t^f$$

so we would need to have $\sigma_t=0$ i.e. a non-stochastic exchange rate, which is the second stock of the se

Which is not realistic.

AX = X X dt 7 Oct

from p-266

The previous slide gave us the mathematical result, but the intuitive question remains why Americans cannot be risk neutral at the same time as Europeans.

The solution is roughly as follows.

- Risk neutrality (or risk aversion) is always **defined**in terms of a given numeraire.
- It is **not** an attitude towards **risk as such**. but also refers to a specific market
- You can therefore **not** be risk neutral w.r.t two different numeraires at the same time unless the ratio between them is deterministic.
- In particular we cannot have risk neutrality w.r.t.
 Dollars and Euros at the same time.

Convincing.

-> End of lecture gaz-

Tomas Björk, 2017

If you are risk under all in one markets, you cannot be so in the other one, due to random fluctuations of the exchange rate.

-> Start of lecture 96 <-

Continuous Time Finance

Change of Numeraire

Ch 26

Tomas Björk

Recap of General Theory

Consider a market with asset prices

$$S_t^0, S_t^1, \dots, S_t^N$$

FTAP 1;

Theorem: The market is arbitrage free

iff

there exists an EMM, i.e. a measure Q such that

ullet Q and P are equivalent, i.e.

$$Q \sim P$$

The normalized price processes

$$\frac{S_t^0}{S_t^0}, \frac{S_t^1}{S_t^0}, \dots, \frac{S_t^N}{S_t^0}$$

are Q-martingales.

Recap continued

Recall the normalized market

$$(Z_t^0, Z_t^1, \dots Z_t^N) = \left(\frac{S_t^0}{S_t^0}, \frac{S_t^1}{S_t^0}, \dots, \frac{S_t^N}{S_t^0}\right)$$

We obviously have

$$Z_t^0 \equiv 1$$

- ullet Thus Z^0 is a risk free asset in the normalized economy.
- ullet Z^0 is a bank account in the normalized economy.
- In the normalized economy the short rate is zero:

If
$$dZ_t^2 = \Gamma_t Z_t^2 dt$$
 by then $Z_t^0 = \exp\left(\int_0^1 \Gamma_s ds\right) = 1$, $\forall t \geq 0$
 $Z_t^0 = 1$ $\Rightarrow \Gamma_s = 0$, $\forall s \neq 0$.

Dependence on numeraire

- The EMM Q will obviously depend on the choice of numeraire, so we should really write Q^0 to emphasize that we are using S^0 as numeraire.
- So far we have only considered the case when the numeraire asset is the bank account, i.e. when $S_t^0 = B_t$. In this case, the martingale measure Q^B is referred to as "the risk neutral martingale measure".
- Henceforth the notation Q (without upper case index) will only be used for the risk neutral martingale measure, i.e. $Q = Q^B = Q^o$
- We will now consider the case of a general numeraire.

Tomas Björk, 2017 275

General change of numeraire.

- ullet Consider a financial market, including a bank account B.
- Assume that the market is using a fixed risk neutral measure Q as pricing measure. $\begin{pmatrix} S_{k} \end{pmatrix}_{B_{q}}$ and $\begin{pmatrix} S_{k} \end{pmatrix}_{B_{$

Altervanti

• Choose a fixed asset S as numeraire, and denote the corresponding martingale measure by Q^S .

St become martingales

Problems:

ullet Determine Q^S , i.e. determine

$$L_t = \frac{dQ^S}{dQ}, \quad \text{on } \mathcal{F}_t \quad \left(\begin{array}{c} \text{determine} \\ \text{dQ} \end{array} \right)$$

• Develop pricing formulas for contingent claims using Q^S instead of Q.

Constructing \mathbf{Q}^S

Fix a T-claim X. From general theory we know that

$$\Pi_0[X] = E^Q \left[\frac{X}{B_T} \right] \qquad \left(\frac{\Pi_t(X)}{B_t} \right) = \frac{B_t}{B_t} \text{ martingale}$$

Since Q^S is a martingale measure for the numeraire S, the normalized process

$$\frac{\Pi_t[X]}{S_t}$$
 note the different measures and numeraires

is a Q^S -martingale. We thus have with $L_T = \frac{dQ^S}{dQ} = \frac{dQ^S}{Q} = \frac{Q}{Q} = \frac{dQ^S}{Q} = \frac{dQ^S}{Q} = \frac{dQ^S}{Q} = \frac{dQ^S}{Q} = \frac{dQ^$

$$\frac{\Pi_0\left[X\right]}{S_0} = E^S \left[\frac{\Pi_T\left[X\right]}{S_T}\right] = E^S \left[\frac{X}{S_T}\right] = E^Q \left[L_T \frac{X}{S_T}\right]$$

From this we obtain (use So is a wishout)

$$\Pi_0[X] = E^Q \left[L_T \frac{X \cdot S_0}{S_T} \right],$$

For all $X \in \mathcal{F}_T$ we thus have

$$E^{Q} \left[\frac{X}{B_{T}} \right] = E^{Q} \left[L_{T} \frac{X \cdot S_{0}}{S_{T}} \right]$$

Recall the following basic result from probability theory. (see again $p \cdot 264$)

Proposition: Consider a probability space (Ω, \mathcal{F}, P) and assume that

$$E\left[Y\cdot X\right]=E\left[Z\cdot X\right], \quad \text{for all } \mathbf{Z}\in\mathcal{F}. \quad \text{s.t.}$$
 expectations exist

Then we have

$$Y = Z$$
, $P - a.s$. (Prove this)

From this result we conclude that

$$\frac{1}{B_T} = L_T \frac{S_0}{S_T}$$
 Can do the same for t instead of T :

Main result

Proposition: The likelihood process for the change a to QS,

$$L_t = \frac{dQ^S}{dQ}, \quad \text{on } \mathcal{F}_t$$

is given by

$$L_t = \frac{S_t}{B_t} \cdot \frac{1}{S_0}$$

Ceneral theory says L is a Q-maringule

NB Also
$$L_{\pm} = \frac{S_{\pm}/S_{0}}{B_{\pm}/B_{0}}$$
 (as $B_{5}=1$)

Easy exercises

- 1. Convince yourself that L is a Q-martingale. Also follows from formula of L_L , and projecty of Q.
- 2. Assume that a process A_t has the property that A_t/B_t is a Q martingale. Show that this implies that A_t/S_t is a Q^S -martingale. Interpret the result.

Prove by Bayes rule las one possibility)

There is a general result in the Exercise class, Exercise 3 in the "additional exercises".

Pricing

Theorem: For every T-claim X we have the pricing formula

$$\Pi_t [X] = S_t E^S \left[\frac{X}{S_T} \middle| \mathcal{F}_t \right]$$

Proof: Follows directly from the Q^S -martingale property of $\Pi_t[X]/S_t$. \blacksquare (parallel to the usual property under R)

Note 1: We observe S_t directly on the market.

Note 2: The pricing formula above is particularly useful when X is of the form

$$X = S_T \cdot Y$$

In this case we obtain

$$\Pi_{t}\left[S_{t}Y\right] = \Pi_{t}\left[X\right] = S_{t}E^{S}\left[Y\right|\mathcal{F}_{t}\right]$$

variable here, instead of the ratio

Tomas Björk, 2017

Important example

Consider a claim of the form

$$X = \Phi \left[S_T^0, S_T^1 \right]$$

We assume that Φ is **linearly homogeneous**, i.e.

$$\Phi(\lambda x, \lambda y) = \lambda \Phi(x, y), \text{ for all } \lambda > 0$$

Using Q^0 we obtain

$$\Pi_{t}\left[X\right] = S_{t}^{0}E^{0}\left[\frac{\Phi\left[S_{T}^{0}, S_{T}^{1}\right]}{S_{T}^{0}}\middle|\mathcal{F}_{t}\right]$$

$$\Pi_{t}\left[X\right] = S_{t}^{0}E^{0}\left[\Phi\left(1, \frac{S_{T}^{1}}{S_{T}^{0}}\right)\middle|\mathcal{F}_{t}\right]$$

$$\text{ is linearly homogeneous}$$

Important example cnt'd

Proposition: For a claim of the form

$$X = \Phi \left[S_T^0, S_T^1 \right],$$

where Φ is homogeneous, we have

$$\Pi_t [X] = S_t^0 E^0 [\varphi (Z_T) | \mathcal{F}_t]$$

where

$$\varphi\left(z\right)=\Phi\left[1,z\right],\quad Z_{t}=\frac{S_{t}^{1}}{S_{t}^{0}}$$
 what of on for normalized process, here with some faire

Exchange option

has ustling to so with exchange rates

Consider an exchange option, i.e. a claim X given by explain. He wave!

$$X = \max\left[S_T^1 - S_T^0, \ 0\right]$$

Since $\Phi(x,y) = \max[x-y,0]$ is homogeneous we obtain

$$\Pi_t[X] = S_t^0 E^0 \left[\max \left[Z_T - 1, 0 \right] \middle| \mathcal{F}_t \right]$$

- This is a European Call on Z with strike price K=
- Zero interest rate. (?) What IF $S_t = B_t$?
- Piece of cake!

• If S^0 and S^1 are both GBM, then so is Z and the price will be given by the Black-Scholes formula.

Thangerous statement: "product or ratio of two lognormals is by normal agains"

Tomas Björk, 2017

[why dangerous ?]

284

Related: Is the sum of two normals again.

Identifying the Girsanov Transformation

Assume the Q-dynamics of S are known as

$$dS_t = r_t S_t dt + S_t v_t dW_t^Q$$

$$\text{p. 279 fives} \quad L_t = \frac{S_t}{S_0 B_t} \quad \left(\begin{array}{c} \text{dof} \\ \text{dof} \end{array} \right)$$
 From this we immediately have
$$\left(\begin{array}{c} \text{if} \quad \text{dB}_t = \text{f} \quad \text{B}_t \text{d} \end{array} \right)$$

$$dL_t = L_t v_t dW_t^Q.$$

and we can summarize.

Theorem: The Girsanov kernel is given by the numeraire volatility v_t , i.e.

$$dL_t = L_t v_t dW_t^Q.$$

Recap on zero coupon bonds

Recall: A zero coupon T-bond is a contract which gives you the claim

$$X \equiv 1$$

at time T.

The price process $\Pi_t[1]$ is denoted by p(t,T), see also Allowing a stochastic short rate r_t we have

$$dB_t = r_t B_t dt$$
. Lisadapted,

This gives us

$$B_t = e^{\int_0^t r_s ds}, \quad \in \mathcal{F}_t$$

and using standard risk neutral valuation we have

$$p(t,T) = E^{Q} \left[e^{-\int_{t}^{T} r_{s} ds} \middle| \mathcal{F}_{t} \right] = \mathbb{E}^{Q} \left[\mathbb{E}^{1} \right]$$

Note:

$$p(T,T) = 1$$

Special choice of numéraire leads to

The forward measure Q^T

- \bullet Consider a fixed T.
- ullet Choose the bond price process p(t,T) as numeraire.
- ullet The corresponding martingale measure is denoted by Q^T and referred to as "the T-forward measure".

For any T claim X we obtain

$$\Pi_t[X] = p(t, T)E^{Q^T} \left[\frac{\Pi_T[X]}{p(T, T)} \middle| \mathcal{F}_t \right]$$

We have

$$\Pi_T[X] = X, \quad p(T,T) = 1$$

Theorem: For any T-claim X we have any one variable of $\Pi_t[X] = p(t,T)E^{Q^T}[X|\mathcal{F}_t]$ but also note the different Tomas Björk, 2017 and $\Pi_0[X] = p(0,T)$ but $\mathbb{F}_q[X] = \mathbb{F}_q[X]$ expectations

A general option pricing formula, by use of two different numéraires, and Randa

European call on asset S with strike price K and maturity T.

$$X = \max\left[S_T - K, \ 0\right]$$

Write X as and use Note 2 on p.281

$$X = (S_T - K) \cdot I \{S_T \ge K\} = S_T I \{S_T \ge K\} - K I \{S_T \ge K\}$$

forward measure

Use Q^S on the first term and Q^T on the second.

$$\Pi_0[X] = S_0 \cdot Q^S[S_T \ge K] - K \cdot p(0, T) \cdot Q^T[S_T \ge K]$$

Exercise: find Amilar expression for Tf [X],
Tomas Björk, 2017

at time t instead 288

-> End of lecture gbz