Universidade de Lisboa

LISBON SCHOOL OF ECONOMICS AND MANAGEMENT (ISEG)

Stochastic finance in continuous time 19 December 2025

1. In this exercise we consider the pricing of the T-claim $X = S_T \mathbf{1}_{\{S_T \ge K\}}$, so the owner of the claim receives nothing at time T when the stock price at that moment has dropped below the threshold K. In the Black-Scholes framework, the asset price S_t follows under the risk neutral measure \mathbb{Q} the dynamics

$$dS_t = rS_t dt + \sigma S_t dW_t,$$

where W is a Wiener process under \mathbb{Q} . As usual, the bank account is given by $B_t = e^{rt}$. It follows that $S_t = S_0 \exp\left((r - \frac{1}{2}\sigma^2)t + \sigma W_t\right)$. The filtration $\{\mathcal{F}_t, t \leq T\}$ is the one generated by W. Define the process R by $R_t = \frac{B_t}{S_t}$. Note that $R_0 = \frac{1}{S_0}$.

(a) Show that

$$dR_t = R_t(\sigma^2 dt - \sigma dW_t).$$

Next we make a change of measure by a likelihood ratio process L that satisfies $dL_t = \alpha L_t dW_t$, where the constant α is to be determined. General theory tells us that the process \tilde{W} defined by $\tilde{W}_t = W_t - \alpha t$ is a Wiener process under the measure $\tilde{\mathbb{Q}}$ defined on \mathcal{F}_T by $\frac{d\tilde{\mathbb{Q}}}{d\Omega} = L_T$.

(b) Show that $\alpha = \sigma$ in order that R becomes a martingale under $\tilde{\mathbb{Q}}$.

We keep this value of α in all what follows.

- (c) Show that $R_t L_t = \frac{1}{S_0}$, for $t \leq T$.
- (d) Show also that the process S satisfies

$$dS_t = S_t(r + \sigma^2) dt + S_t \sigma d\tilde{W}_t,$$

and that

$$d \log S_t = (r + \frac{1}{2}\sigma^2) dt + \sigma d\tilde{W}_t.$$

We now take the process S as numéraire, traded assets are such that their prices divided by S_t become martingales under $\tilde{\mathbb{Q}}$.

- (e) Show that the time t price Π_t of the claim is given by $\Pi_t = S_t \tilde{Q}(S_T \geq K|\mathcal{F}_t)$.
- (f) Show that Π_t for t < T can be computed as $\Pi_t = S_t \left(1 \Phi\left(\frac{\log \frac{K}{S_t} (r + \frac{1}{2}\sigma^2)(T t)}{\sigma\sqrt{T t}}\right)\right)$, where Φ is the standard normal distribution function. Compute also Π_T .
- 2. The setting in this exercise is that of a usual Black-Scholes market (which is known to be complete), with an asset price S evolving under the physical probability measure \mathbb{P} as

$$dS_t = \mu S_t dt + \sigma S_t dW_t$$

where W is a Wiener process under \mathbb{P} . The bank account is given by $B_t = e^{rt}$. We assume that the time horizon is T, and that we deal with the filtration $\{\mathcal{F}_t, 0 \leq t \leq T\}$ generated by W.

The problem is to maximize $\mathbb{E}^{\mathbb{P}}\Phi(Z)$, where we make the *special choice* $\Phi(z) = 2\sqrt{z}$, where $z \geq 0$. So the problem becomes the maximization of

$$\mathbb{E}^{\mathbb{P}}[2\sqrt{Z}].$$

Here the Z are \mathcal{F}_T -measurable random variables, which may have the interpretation as wealths arising from a self-financing portfolio process and an initial capital $x_0 > 0$. So we look at the maximization of $\mathbb{E}^{\mathbb{P}}[2\sqrt{Z}]$ under the budget constraint implied by x_0 .

Recall that Z is an attainable claim, it can be replicated by a self-financing strategy, and hence the corresponding discounted value process is a martingale under the equivalent martingale measure \mathbb{Q} . The likelihood ratio process is denoted L and L_T is the Radon-Nikodym derivative $\frac{d\mathbb{Q}}{d\mathbb{P}}$ of the two probability measures on \mathcal{F}_T .

- (a) Show that the budget constraint is given by $e^{-rT}\mathbb{E}^{\mathbb{Q}}Z = x_0$.
- (b) The Lagrangian for this problem is given by

$$\mathcal{L} = \mathbb{E}^{\mathbb{P}} \{ 2\sqrt{Z} + \lambda (x_0 - L_T e^{-rT} Z) \}$$
$$= \int_{\Omega} \{ 2\sqrt{Z(\omega)} + \lambda (x_0 - L_T(\omega) e^{-rT} Z(\omega)) \} \mathbb{P}(d\omega).$$

Show that, for fixed λ , the optimal Z is given by $\hat{Z} = \frac{e^{2rT}}{\lambda^2 L_T^2}$.

- (c) Show that λ satisfies $\frac{1}{\lambda^2} = \frac{x_0}{e^{rT} \mathbb{E}^{\mathbb{P}}[L_T^{-1}]}$.
- (d) Conclude that $\hat{Z} = \frac{x_0 e^{rT}}{L_T^2 \mathbb{E}^{\mathbb{P}}[L_T^{-1}]}$, and that the optimal $\mathbb{E}^{\mathbb{P}}[2\sqrt{Z}]$ equals $2\sqrt{x_0 e^{rT} \mathbb{E}^{\mathbb{P}}[L_T^{-1}]}$.
- 3. We continue the previous exercise, as we are interested in portfolio optimization by the martingale method. In the previous exercise we have seen in item 2d that the optimal Z is \hat{Z} , which we now interpret as the optimal final wealth $\hat{X}_T = \frac{x_0 e^{rT}}{L_T^2 \mathbb{E}^{\mathbb{P}}[L_T^{-1}]}$. This is the first step of the martingale method.

The purpose is now to perform the second step, which is to find the self-financing strategy that results in this wealth, as well is the intermediate wealths \hat{X}_t . Recall that the discounted optimal wealth process, given by $\hat{X}_t = e^{-rt}\hat{X}_t$, is a martingale under the measure \mathbb{Q} . The likelihood ratio process L is given by $L_t = \exp(\phi W_t - \frac{1}{2}\phi^2 t)$, with $\phi = \frac{r-\mu}{\sigma}$.

- (a) Show, use the abstract Bayes formula, that $\hat{X}_t = \frac{x_0 e^{rt} \mathbb{E}^{\mathbb{P}}[L_T^{-1}|\mathcal{F}_t]}{L_t \mathbb{E}^{\mathbb{P}}[L_T^{-1}]}$.
- (b) Show (you may try a direct computation, or use the Itô formula) that $M_t = \exp(-\phi W_t \frac{1}{2}\phi^2 t)$ gives a martingale under \mathbb{P} . Conclude that $\mathbb{E}^{\mathbb{P}}[L_T^{-1}|\mathcal{F}_t] = e^{\phi^2(T-t)}L_t^{-1}$ and $\mathbb{E}^{\mathbb{P}}[L_T^{-1}] = e^{\phi^2T}$.
- (c) Show that $\hat{X}_t = x_0 R_t e^{rt \phi^2 t}$, where $R_t = \frac{1}{L_t^2}$.
- (d) Show that $d\hat{X}_t = \hat{X}_t (-2\phi dW_t + (...) dt)$, where you don't have to specify the term (...). [You may want to do this by first showing that $dR_t = R_t (-2\phi dW_t + (...) dt)$, where also here you don't have to specify the (different) term (...).]
- (e) Let w_t be the fraction of wealth that at time t is invested in the stock by using a self-financing strategy to obtain the optimal wealth process \hat{X} . Show that

$$d\hat{X}_t = \hat{X}_t ((w_t \mu + r(1 - w_t)) dt + w_t \sigma dW_t).$$

(f) Find w_t in terms of the parameters μ, σ, r .