Continuous Time Finance

Black-Scholes

(Ch 6-7)

Start of lecture 1 Slides 42-97.

Contents

- 1. Introduction.
- 2. Portfolio theory.
- 3. Deriving the Black-Scholes PDE
- 4. Risk neutral valuation
- 5. Appendices.

1.

Introduction

European Call Option

The holder of this paper has the right

to buy

1 ACME INC

on the date

at the price

\$100

Financial Derivative

- A financial asset which is defined **in terms of** some **underlying** asset.
- Future stochastic claim.

Examples

- European calls and puts
- American options
- Forward rate agreements
- Convertibles
- Futures
- Bond options
- Caps & Floors
- Interest rate swaps
- CDO:s
- CDS:s

Main problems

- What is a "reasonable" price for a derivative?
- How do you hedge yourself against a derivative.

Natural Answers

Consider a random cash payment \mathcal{Z} at time T.

What is a reasonable price $\Pi_0[\mathcal{Z}]$ at time 0?

Natural answers:

- 1. Price = Discounted present value of future payouts. $\Pi_0 [\mathcal{Z}] = e^{-rT} E [\mathcal{Z}]$ interest rate is Γ
- 2. The question is meaningless.

Both answers are incorrect!

- Given some assumptions we **can** really talk about "the correct price" of an option.
- The correct pricing formula is **not** the one on the previous slide.

Philosophy

- The derivative is **defined in terms of** underlying.
- The derivative can be **priced in terms of** underlying price.
- **Consistent** pricing.
- **Relative** pricing.

Before we can go on further we need some simple portfolio theory

2.

Portfolio Theory

Portfolios

We consider a market with N assets.

$$S_t^i =$$
price at t , of asset No i .

A portfolio strategy is an adapted vector process

$$h_t = (h_t^1, \cdots, h_t^N)$$

where

 h_t^i = number of units of asset i,

 V_t = market value of the portfolio

$$V_t = \sum_{i=1}^N h_t^i S_t^i$$

The portfolio is typically of the form

$$h_t = h(t, S_t)$$

i.e. today's portfolio is based on today's prices.

(Sometimes also on prices from Tomas Björk, 2017 the past)

53

Self financing portfolios

We want to study self financing portfolio strategies, i.e. portfolios where purchase of a "new" asset must be financed through sale of an "old" asset.

How is this formalized?

Definition:

The strategy h is **self financing** if

$$dV_t = \sum_{i=1}^N h_t^i dS_t^i$$

Interpret!

See Appendix B for details. (P. 95) and motivation from discrete time

Relative weights

Definition:

 $\omega_t^i = \text{relative portfolio weight on asset No } i.$

We have

$$\omega_t^i = \frac{h_t^i S_t^i}{V_t}$$

Insert this into the self financing condition

$$dV_t = \sum_{i=1}^N h_t^i dS_t^i$$

We obtain

Portfolio dynamics:

nics:

$$dV_{t} = V_{t} \sum_{i=1}^{N} \omega_{t}^{i} \frac{dS_{t}^{i}}{S_{t}^{i}}$$

$$V_{t} = \sum_{i=1}^{N} \omega_{t}^{i} \frac{dS_{t}^{i}}{S_{t}^{i}}$$
Interpret!

$$(M_{t} = 0.4)$$

$$(M_{t} = 2.4)$$

$$S_{t} = 2.4$$

3.

Deriving the Black-Scholes PDE

Back to Financial Derivatives

Consider the Black-Scholes model

$$dS_t = \mu S_t dt + \sigma S_t dW_t,$$

$$dB_t = r B_t dt. \quad \text{bank account}$$

$$\Gamma_c \text{ interest rate}$$

We want to price a European call with strike price Kand exercise time T. This is a stochastic claim on the future. The future pay-out (at T) is a stochastic variable, \mathcal{Z} , given by

$$\mathcal{Z} = \max[S_T - K, 0]$$

More general:

$$\mathcal{Z} = \Phi(S_T)$$

for some contract function Φ .

Main problem: What is a "reasonable" price, $\Pi_t[\mathcal{Z}]$, for \mathcal{Z} at t?

Main Idea

- We demand **consistent** pricing between derivative and underlying.
- No **mispricing** between derivative and underlying.
- No arbitrage possibilities on the market (B, S, Π)

vjable market

Arbitrage

The portfolio ω is an **arbitrage** portfolio if

- The portfolio strategy is self financing.
- $V_0 = 0$.
- $V_T > 0$ with probability one. (or, weaker, $V_T \ge 0$ wp. 1, and $P(V_T > 0) > 0$) See later

Moral:

- Arbitrage = Free Lunch
- No arbitrage possibilities in an efficient market.

arbitrage possibility only in a market with "Wrong" prices

Arbitrage test (fundamental idea)

Suppose that a portfolio ω is self financing whith dynamics

$$dV_t = kV_t dt$$

- No driving Wiener process
- Risk free rate of return.
- "Synthetic bank" with rate of return k.

If the market is free of arbitrage we must have:

k - r

Main Idea of Black-Scholes

- Since the derivative is defined in terms of the underlying, the derivative price should be highly correlated with the underlying price.
- We should be able to balance dervative against underlying in our portfolio, so as to cancel the randomness.
- Thus we will obtain a riskless rate of return k on our portfolio.
- Absence of arbitrage must imply

$$k = r$$

End of lecture 1a

Two Approaches

The program above can be formally carried out in two slightly different ways:

- The way Black-Scholes did it in the original paper. This leads to some logical problems.
- A more conceptually satisfying way, first presented by Merton.

Here we use the Merton method. You will find the original BS method in Appendix C at the end of this lecture. $p \cdot g \leq j$

Formalized program a la Merton (Outline)

• Assume that the derivative price is of the form

$$\Pi_t \left[\mathcal{Z} \right] = f(t, S_t).$$

• Form a portfolio based on the underlying S and the derivative f, with portfolio dynamics

$$dV_t = V_t \left\{ \underbrace{\omega_t^S}_{t} \cdot \frac{dS_t}{S_t} + \underbrace{\omega_t^f}_{wights} \cdot \frac{df}{f} \right\}$$

• Choose ω^S and ω^f such that the dW-term is wiped out. This gives us

$$dV_t = V_t \cdot kdt$$

• Absence of arbitrage implies

$$k = r$$

• This relation will say something about f.

Back to Black-Scholes

$$dS_t = \mu S_t dt + \sigma S_t dW_t,$$

$$\Pi_t [\mathcal{Z}] = f(t, S_t)$$

Itô's formula gives us the f dynamics as

$$df = \left\{ \frac{\partial f}{\partial t} + \mu S \frac{\partial f}{\partial s} + \frac{1}{2} S^2 \sigma^2 \frac{\partial^2 f}{\partial s^2} \right\} dt + \sigma S \frac{\partial f}{\partial s} dW$$

Write this as

$$df = \mu_f \cdot f dt + \sigma_f \cdot f dW$$

where

Recall:

$$df = \mu_f \cdot f dt + \sigma_f \cdot f dW$$

$$dV = V \left\{ \omega^S \cdot \frac{dS}{S} + \omega^f \cdot \frac{df}{f} \right\}$$

$$= V \left\{ \omega^S (\mu dt + \sigma dW) + \omega^f (\mu_f dt + \sigma_f dW) \right\}$$

$$dV = V \left\{ \omega^S \mu + \omega^f \mu_f \right\} dt + V \left\{ \omega^S \sigma + \omega^f \sigma_f \right\} dW$$
Now we kill the dW-term!
Choose (ω^S, ω^f) such that

$$\omega^{S}\sigma + \omega^{f}\sigma_{f} = 0$$
$$\omega^{S} + \omega^{f} = 1$$

Linear system with solution (if you don't divide by zero!) $\omega^{S} = \frac{\sigma_{f}}{\sigma_{f} - \sigma}, \quad \omega^{f} = \frac{-\sigma}{\sigma_{f} - \sigma}$

Plug into dV!

We obtain

$$dV = V\left\{\omega^S \mu + \omega^f \mu_f\right\} dt$$

This is a risk free "synthetic bank" with short rate

$$\left\{\omega^S \mu + \omega^f \mu_F\right\}$$

Absence of arbitrage implies

$$\left\{\omega^S \mu + \omega^f \mu_f\right\} = r$$

Plug in the expressions for ω^S , ω^f , μ_f and simplify. This will give us the following result.

Black-Schole's PDE

The price is given by

 $\Pi_t\left[\mathcal{Z}\right] = f\left(t, S_t\right)$

where the pricing function f satisfies the PDE (partial differential equation)

$$\begin{cases} \frac{\partial f}{\partial t}(t,s) + rs\frac{\partial f}{\partial s}(t,s) + \frac{1}{2}\sigma^2 s^2 \frac{\partial^2 f}{\partial s^2}(t,s) - rf(t,s) &= 0\\ f(T,s) &= \Phi(s) \end{cases}$$

There is a unique solution to the PDE so there is a unique arbitrage free price process for the contract.

Black-Scholes' PDE ct'd

$$\begin{cases} \frac{\partial f}{\partial t} + rs\frac{\partial f}{\partial s} + \frac{1}{2}\sigma^2 s^2 \frac{\partial^2 f}{\partial s^2} - rf &= 0\\ f(T,s) &= \Phi(s) \end{cases}$$

• The price of **all** derivative contracts have to satisfy the **same** PDE

$$\frac{\partial f}{\partial t} + rs\frac{\partial f}{\partial s} + \frac{1}{2}\sigma^2 s^2 \frac{\partial^2 f}{\partial s^2} - rf = 0$$

otherwise there will be an arbitrage opportunity.

• The only difference between different contracts is in the boundary value condition

$$f(T,s) = \Phi(s)$$

Data needed

- The contract function Φ .
- Today's date *t*.
- Today's stock price S.
- Short rate r.
- Volatility σ .

Note: The pricing formula does **not** involve the mean rate of return μ !

miracle??

Black-Scholes Basic Assumptions

Assumptions:

- The stock price is Geometric Brownian Motion
- Continuous trading.
- Frictionless efficient market.
- Short positions are allowed.
- Constant volatility σ .
- Constant short rate r.

Black-Scholes' Formula European Call

T=date of expiration, t=today's date, K=strike price, r=short rate, s=today's stock price, σ =volatility.

$$f(t,s) = sN[d_1] - e^{-r(T-t)}KN[d_2].$$

 $N[\cdot] = \operatorname{cdf}$ for N(0, 1)-distribution.

$$d_1 = \frac{1}{\sigma\sqrt{T-t}} \left\{ \ln\left(\frac{s}{K}\right) + \left(r + \frac{1}{2}\sigma^2\right) (T-t) \right\},\,$$

$$d_2 = d_1 - \sigma \sqrt{T - t}.$$

Comes out of the blue for the Aime
Tomas Björk, 2017 being; but this f solves $\frac{1}{71}$
the Black-Scholes PDE (check of $\frac{1}{71}$)

Black-Scholes

European Call,

 $K = 100, \quad \sigma = 20\%, \quad r = 7\%, \quad T - t = 1/4$

Dependence on Time to Maturity

Dependence on Volatility

Tomas Björk, 2017

4.

Risk Neutral Valuation

Risk neutral valuation

Appplying Feynman-Kac to the Black-Scholes PDE we obtain $\Pi[t;X] = e^{-r(T-t)}E_{t,s}^Q[X],$ what is a perform of the type to the second time to

Q-dynamics:

$$\begin{cases} dS_t = rS_t dt + \sigma S_t dW_t^Q, \\ dB_t = rB_t dt. \end{cases}$$

- Price = Expected discounted value of future payments.
- The expectation shall **not** be taken under the "objective" probability measure *P*, but under the "risk adjusted" measure ("martingale measure") *Q*.

Note: $P \sim Q$ (Girson)

Concrete formulas

$$t = 0$$

$$f(z) = \frac{1}{\sigma\sqrt{2\pi T}} \exp\left\{-\frac{\left[z - (r - \frac{1}{2}\sigma^2)T\right]^2}{2\sigma^2 T}\right\}$$

$$f(z) = \frac{1}{\sigma\sqrt{2\pi T}} \exp\left\{-\frac{\left[z - (r - \frac{1}{2}\sigma^2)T\right]^2}{2\sigma^2 T}\right\}$$

$$f(z) = \frac{1}{\sigma\sqrt{2\pi T}} \exp\left\{-\frac{\left[z - (r - \frac{1}{2}\sigma^2)T\right]^2}{2\sigma^2 T}\right\}$$

$$f(z) = \frac{1}{\sigma\sqrt{2\pi T}} \exp\left\{-\frac{\left[z - (r - \frac{1}{2}\sigma^2)T\right]^2}{2\sigma^2 T}\right\}$$

$$f(z) = \frac{1}{\sigma\sqrt{2\pi T}} \exp\left\{-\frac{\left[z - (r - \frac{1}{2}\sigma^2)T\right]^2}{2\sigma^2 T}\right\}$$

$$f(z) = \frac{1}{\sigma\sqrt{2\pi T}} \exp\left\{-\frac{\left[z - (r - \frac{1}{2}\sigma^2)T\right]^2}{2\sigma^2 T}\right\}$$

$$f(z) = \frac{1}{\sigma\sqrt{2\pi T}} \exp\left\{-\frac{\left[z - (r - \frac{1}{2}\sigma^2)T\right]^2}{2\sigma^2 T}\right\}$$

$$f(z) = \frac{1}{\sigma\sqrt{2\pi T}} \exp\left\{-\frac{\left[z - (r - \frac{1}{2}\sigma^2)T\right]^2}{2\sigma^2 T}\right\}$$

$$f(z) = \frac{1}{\sigma\sqrt{2\pi T}} \exp\left\{-\frac{\left[z - (r - \frac{1}{2}\sigma^2)T\right]^2}{2\sigma^2 T}\right\}$$

$$f(z) = \frac{1}{\sigma\sqrt{2\pi T}} \exp\left\{-\frac{\left[z - (r - \frac{1}{2}\sigma^2)T\right]^2}{2\sigma^2 T}\right\}$$

$$f(z) = \frac{1}{\sigma\sqrt{2\pi T}} \exp\left\{-\frac{\left[z - (r - \frac{1}{2}\sigma^2)T\right]^2}{2\sigma^2 T}\right\}$$

Interpretation of the risk adjusted measure

- Assume a risk neutral world.
- Then the following must hold

$$s = S_0 = e^{-rt} E\left[S_t\right]$$

• In our model this means that

$$dS_t = rS_t dt + \sigma S_t dW_t^Q$$

• The risk adjusted probabilities can be intrepreted as probabilities in a fictuous risk neutral economy.

Moral

- When we compute prices, we can compute **as if** we live in a risk neutral world.
- This does **not** mean that we live (or think that we live) in a risk neutral world.
- The formulas above hold regardless of the investor's attitude to risk, as long as he/she prefers more to less.
- The valuation formulas are therefore called "preference free valuation formulas".

Properties of Q

•
$$P \sim Q$$
 (Girsamov)

• For the price pricess π of any traded asset, derivative or underlying, the process

$$Z_t = \frac{\pi_t}{B_t}$$

is a Q-martingale.

• Under Q, the price pricess π of any traded asset, derivative or underlying, has \overline{r} as its local rate of return:

$$d\pi_t = r\pi_t dt + \sigma_\pi \pi_t dW_t^Q$$

• The volatility of π is the same under Q as under P.

end of lecture 16 (or after next seite)

A Preview of Martingale Measures

Consider a market, under an objective probability measure P, with underlying assets

$$B, S^1, \ldots, S^N$$

Definition: A probability measure Q is called a **martingale measure** if

• $P \sim Q$

• For every *i*, the process

$$Z_t^i = \frac{S_t^i}{B_t}$$

is a Q-martingale.

Theorem: The market is arbitrage free **iff** there exists a martingale measure.

1St fundamental theorem of asset pricing Tomas Björk, 2017 5.

Appendices

Appendix A: Black-Scholes vs Binomial

If you know this

Consider a binomial model for an option with a fixed time to maturity T and a fixed strike price K.

- Build a binomial model with n periods for each $n=1,2,\ldots$
- Use the standard formulas for scaling the jumps:

$$u = e^{\sigma\sqrt{\Delta t}}$$
 $d = e^{-\sigma\sqrt{\Delta t}}$ $\Delta t = T/n$

- For a large *n*, the stock **price** at time *T* will then be a **product** of a large number of i.i.d. random variables.
- More precisely $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$

$$S_T = S_0 Z_1 Z_2 \cdots Z_n,$$

where n is the number of periods in the binomial model and $Z_i = u, d$; T_n Specific the order of u's and d's matters any not the order \rightarrow Tomas Björk, 2017 looks like Finomial (83

Recall (this is the Cox-Ross Rubinstein model)

$$S_T = S_0 Z_1 Z_2 \cdots Z_n,$$

- The stock **price** at time T will be a **product** of a large number of i.i.d. random variables.
- The **return** will be a large **sum** of i.i.d. variables. $\log S_T = \log S_D + Z_{i=1} \log Z_i$
- The Central Limit Theorem will kick in.
- In the limit, returns will be normally distributed.
- Stock **prices** will be **lognormally** distributed.
- We are in the Black-Scholes model.
- The binomial price will converge to the Black-Scholes price.

Binomial convergence to Black-Scholes

Tomas Björk, 2017

$\textbf{Binomial} \sim \textbf{Black-Scholes}$

The intuition from the Binomial model carries over to Black-Scholes.

- The B-S model is "just" a binomial model where we rebalance the portfolio infinitely often.
- The B-S model is thus complete. (notion comes
- Completeness explains the unique prices for options in the B-S model.
- The B-S price for a derivative is the limit of the binomial price when the number of periods is very large.

Appendix B: Portfolio theory

We consider a market with N assets.

$$S_t^i =$$
price at t , of asset No i .

A portfolio strategy is an adapted vector process

$$h_t = (h_t^1, \cdots, h_t^N)$$

where

 h_t^i = number of units of asset i,

 V_t = market value of the portfolio

$$V_t = \sum_{i=1}^N h_t^i S_t^i$$

The portfolio is typically of the form

$$h_t = h(t, S_t)$$

i.e. today's portfolio is based on today's prices.

Self financing portfolios

We want to study **self financing** portfolio strategies, i.e. portfolios where

- There is now external infusion and/or withdrawal of money to/from the portfolio.
- Purchase of a "new" asset must be financed through sale of an "old" asset.

How is this formalized?

Problem: Derive an expression for dV_t for a self financing portfolio.

We analyze in discrete time, and then go to the continuous time limit.

Discrete time portfolios

We trade at discrete points in time t = 0, 1, 2, ...**Price vector process:**

$$S_n = (S_n^1, \cdots, S_n^N), \quad n = 0, 1, 2, \dots$$

Portfolio process:

$$h_n = (h_n^1, \cdots, h_n^N), \quad n = 0, 1, 2, \dots$$

Interpretation: At time n we buy the portfolio h_n at the price S_n , and keep it until time n + 1.

Value process:

$$V_n = \sum_{i=1}^N h_n^i S_n^i = h_n S_n$$

The self financing condition

- At time n-1 we buy the portfolio h_{n-1} at the price S_{n-1} .
- At time n this portfolio is worth $h_{n-1}S_n$.
- At time n we buy the new portfolio h_n at the price S_n .
- The cost of this new portfolio is $h_n S_n$.
- The self financing condition is the budget constraint

$$h_{n-1}S_n = h_n S_n$$

The self financing condition

Recall:

$$V_n = h_n S_n$$

Definition: For any sequence x_1, x_2, \ldots we define the sequence Δx_n by

$$\Delta x_n = x_n - x_{n-1}$$

Problem: Derive an expression for ΔV_n for a self financing portfolio.

Lemma: For any pair of sequences x_1, x_2, \ldots and y_1, y_2, \ldots we have the relation

$$\Delta(xy)_n = x_{n-1}\Delta y_n + y_n\Delta x_n$$
(Abel' 5 Summation formula:
Proof: Do it yourself.
Tomas Björk, 2017

$$\Delta(xy)_n = x_{n-1}\Delta y_n + y_n\Delta x_n$$
(Abel' 5 Summation formula:

$$\Delta(xy)_n = x_{n-1}\Delta y_n + y_n\Delta x_n$$
(Abel' 5 Summation formula:

$$\Delta(xy)_n = x_{n-1}\Delta y_n + y_n\Delta x_n$$
(Abel' 5 Summation formula:

$$\Delta(xy)_n = x_{n-1}\Delta y_n + y_n\Delta x_n$$
(Abel' 5 Summation formula:

$$\Delta(xy)_n = x_{n-1}\Delta y_n + y_n\Delta x_n$$
(Abel' 5 Summation formula:

$$\Delta(xy)_n = x_{n-1}\Delta y_n + y_n\Delta x_n$$
(Abel' 5 Summation formula:

$$\Delta(xy)_n = x_{n-1}\Delta y_n + y_n\Delta x_n$$
(Abel' 5 Summation formula:

$$\Delta(xy)_n = x_{n-1}\Delta y_n + y_n\Delta x_n$$
(Abel' 5 Summation formula:

$$\Delta(xy)_n = x_{n-1}\Delta y_n + y_n\Delta x_n$$
(Abel' 5 Summation formula:

$$\Delta(xy)_n = x_{n-1}\Delta y_n + y_n\Delta x_n$$
(Abel' 5 Summation formula:

$$\Delta(xy)_n = x_{n-1}\Delta y_n + y_n\Delta x_n$$
(Abel' 5 Summation formula:

$$\Delta(xy)_n = x_{n-1}\Delta y_n + y_n\Delta x_n$$
(Abel' 5 Summation formula:

$$\Delta(xy)_n = x_{n-1}\Delta y_n + y_n\Delta x_n$$
(Abel' 5 Summation formula:

$$\Delta(xy)_n = x_{n-1}\Delta y_n + y_n\Delta x_n$$
(Abel' 5 Summation formula:

$$\Delta(xy)_n = x_{n-1}\Delta y_n + y_n\Delta x_n$$
(Abel' 5 Summation formula:

$$\Delta(xy)_n = x_{n-1}\Delta y_n + y_n\Delta x_n$$
(Abel' 5 Summation formula:

$$\Delta(xy)_n = x_{n-1}\Delta y_n + y_n\Delta x_n$$
(Abel' 5 Summation formula:

$$\Delta(xy)_n = x_{n-1}\Delta y_n + y_n\Delta x_n$$
(Abel' 5 Summation formula:

$$\Delta(xy)_n = x_{n-1}\Delta y_n + y_n\Delta x_n$$
(Abel' 5 Summation formula:

$$\Delta(xy)_n = x_{n-1}\Delta y_n + y_n\Delta x_n$$
(Abel' 5 Summation formula:

$$\Delta(xy)_n = x_{n-1}\Delta y_n + y_n\Delta x_n$$
(Abel' 5 Summation formula:

$$\Delta(xy)_n = x_{n-1}\Delta y_n + y_n\Delta x_n$$
(Abel' 5 Summation formula:

$$\Delta(xy)_n = x_{n-1}\Delta y_n + y_n\Delta x_n$$
(Abel' 5 Summation formula:

$$\Delta(xy)_n = x_{n-1}\Delta y_n + y_n\Delta x_n$$
(Abel' 5 Summation formula:

$$\Delta(xy)_n = x_{n-1}\Delta y_n + y_n\Delta x_n$$
(Abel' 5 Summation formula:

$$\Delta(xy)_n = x_{n-1}\Delta y_n + y_n\Delta x_n$$
(Abel' 5 Summation formula:

$$\Delta(xy)_n = x_{n-1}\Delta y_n + y_n\Delta x_n$$
(Abel' 5 Summation formula:

$$\Delta(xy)_n = x_{n-1}\Delta y_n + y_n\Delta x_n$$
(Abel' 5 Summation formula:

$$\Delta(xy)_n = x_{n-1}\Delta y_n + y_n\Delta x_n$$
(Abel' 5 Summation formula:
(Abel' 5 Summation formula:
(Abel' 5 Summation fo

Recall

$$V_n = h_n S_n$$

From the Lemma we have

$$\Delta V_n = \Delta (hS)_n = h_{n-1} \Delta S_n + S_n \Delta h_n$$

Recall the self financing condition

$$h_{n-1}S_n = h_n S_n$$

which we can write as

$$S_n \Delta h_n = 0$$

Inserting this into the expression for ΔV_n gives us.

Proposition: The dynamics of a self financing portfolio are given by

$$\Delta V_n = h_{n-1} \Delta S_n$$

Note the forward increments!

Portfolios in continuous time

Price process:

$$S_t^i =$$
price at t , of asset No i .

Portfolio:

$$h_t = (h_t^1, \cdots, h_t^N)$$

Value process

$$V_t = \sum_{i=1}^N h_t^i S_t^i$$

From the self financing condition in discrete time

$$\Delta V_n = h_{n-1} \Delta S_n$$

we are led to the following definition. (by analogy)

Definition: The portfolio h is self financing if and only if

$$dV_t = \sum_{i=1}^{N} h_t^i dS_t^i$$

$$head that the S' are head that the s$$

Relative weights

Definition:

 $\omega_t^i = \text{relative portfolio weight on asset No } i.$

We have

$$\omega_t^i = \frac{h_t^i S_t^i}{V_t}$$

Insert this into the self financing condition

$$dV_t = \sum_{i=1}^N h_t^i dS_t^i$$

We obtain

Portfolio dynamics:

$$dV_t = V_t \sum_{i=1}^N \omega_t^i \frac{dS_t^i}{S_t^i}$$

Interpret!

Appendix C: The original Black-Scholes PDE argument

Consider the following portfolio.

- Short one unit of the derivative, with pricing function f(t, s).
- Hold x units of the underlying S. (or \mathcal{R}_{t} at time t)

The portfolio value is given by

$$V = -f(t, S_T) + xS_t$$

The object is to choose x such that the portfolio is risk free for an infinitesimal interval of length dt.

We have dV = -df + xdS and from Itô we obtain

$$dV = -\left\{\frac{\partial f}{\partial t} + \mu S \frac{\partial f}{\partial s} + \frac{1}{2}S^2 \sigma^2 \frac{\partial^2 f}{\partial s^2}\right\} dt$$
$$- \sigma S \frac{\partial f}{\partial s} dW + x\mu S dt + x\sigma S dW$$

$$dV = \left\{ x\mu S - \frac{\partial f}{\partial t} - \mu S \frac{\partial f}{\partial s} - \frac{1}{2} S^2 \sigma^2 \frac{\partial^2 f}{\partial s^2} \right\} dt + \sigma S \left\{ x - \frac{\partial f}{\partial s} \right\} dW$$

We obtain a risk free portfolio if we choose x as

$$x = \frac{\partial f}{\partial s}$$

and then we have, after simplification,

$$dV = \left\{ -\frac{\partial f}{\partial t} - \frac{1}{2}S^2\sigma^2\frac{\partial^2 f}{\partial s^2} \right\} dt$$

Using V=-f+xS and x as above, the return dV/V is thus given by

$$\frac{dV}{V} = \frac{-\frac{\partial f}{\partial t} - \frac{1}{2}S^2\sigma^2\frac{\partial^2 f}{\partial s^2}}{-f + S\frac{\partial f}{\partial s}}dt$$

We had (previous page)
$$\frac{dV}{V} = \frac{-\frac{\partial f}{\partial t} - \frac{1}{2}S^2\sigma^2\frac{\partial^2 f}{\partial s^2}}{-f + S\frac{\partial f}{\partial s}}dt$$

This portfolio is risk free, so absence of arbitrage implies that

$$\frac{-\frac{\partial f}{\partial t} - \frac{1}{2}S^2\sigma^2\frac{\partial^2 f}{\partial s^2}}{-f + S\frac{\partial f}{\partial s}} \stackrel{\bullet}{=} r$$

Simplifying this expression gives us the Black-Scholes PDE.

$$\frac{\partial f}{\partial t} + rs\frac{\partial f}{\partial s} + \frac{1}{2}\sigma^2 s^2 \frac{\partial^2 f}{\partial s^2} - rf = 0,$$

$$f(T,s) = \Phi(s).$$

Tomas Björk, 2017

97