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European Call Option

The holder of this paper has the right

to buy
1 ACME INC
on the date
2025
June 30, 201%
ZOL %/Aztw(e, Aodio D
at the price

$100
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Financial Derivative

e A financial asset which is defined in terms of some
underlying asset.

e Future stochastic claim.
/__%
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Examples

e European calls and puts
e American options

e Forward rate agreements
e Convertibles

e Futures

e Bond options

e Caps & Floors

e Interest rate swaps

e CDO:s

e CDS:s
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Main problems

e What is a “reasonable” price for a derivative?

e How do you hedge yourself against a derivative.
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Natural Answers

Consider a random cash payment Z at time 7.

What is a reasonable price Il [Z] at time 07

Natural answers:

1. Price = Discounted present value of future payouts.
aaet-l

I, [Z] E 2]

okoxest ko o U l

2. The question is meaningless.
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Both answers are incorrect!

e Given some assumptions we can really talk about
“the correct price” of an option.

e The correct pricing formula is not the one on the
previous slide.
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Philosophy

e The derivative is defined in terms of underlying.

e The derivative can be priced in terms of underlying
price.

e Consistent pricing.

e Relative pricing.

Before we can go on further we need some simple
portfolio theory
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Portfolios

We consider a market with N assets.
S;f — price at ¢, of asset No 1. /\05 -0 N
A portfolio strategy is an adapted vector process
hy = (h%,---,hiv)

where

h; = number of units of asset 1,

Vi = market value of the portfolio

N
Vi =) hiS;
i=1
The portfolio is typically of the form
ht — h(t, St)

I.e. today’s portfolio is based on today's prices.

(0wt cdo o P (Zn ATV
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Self financing portfolios

We want to study self financing portfolio strategies,
i.e. portfolios where purchase of a “new” asset must
be financed through sale of an “old” asset.

How is this formalized?

Definition:
The strategy h is self financing if

N
dV, =) hidS;
1=1

Interpret!

See Appendix B for details. (?‘ ﬁ§> ,
Ol v\ oS 0 %OVW Ansorets T
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Relative weights

Definition:

w! = relative portfolio weight on asset No i.

We have .
. hySy

()
0y
t
Vi

Insert this into the self financing condition
N
dV, =) hjdS;
i=1

We obtain

Portfolio dynamics:

dvtzvtzw'

Interpret!
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Deriving the Black-Scholes PDE

Tomas Bjork, 2017

56



Back to Financial Derivatives

Consider the Black-Scholes model

dSt uStdt + O'Stth,
dB; = rBdt. %W\/C AUt
(= k/t/\’k&((,gt ale

We want to price a European call with strike price K
and exercise time 1. This is a stochastic claim on
the future. The future pay-out (at 7T') is a stochastic
variable, Z, given by

Z = max[St — K, 0]

More general:
Z=®(S7)

for some contract function &.

Main problem: What is a “reasonable” price, II; [Z],
for Z at t?
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Main ldea

e \We demand consistent pricing between derivative
and underlying.

e No mispricing between derivative and underlying.

e No arbitrage possibilities on the market (B, S, 1I)
e P

e le Wwer ket
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Arbitrage

The portfolio w is an arbitrage portfolio if

e The portfolio strategy is self financing.

® V():O.

(of)waa\wv, \/T>© Wep- /\)aMoQ P(\/‘r >o>>(7
See K ophiet

e V7 > 0 with probability one. >

Moral:

e Arbitrage = Free Lunch

e No arbitrage possibilities in an efficient market.

A0 Jc(aﬁz/ jW@S%bw ty WLC% S
o ek Wi Wﬁ’"‘ﬁ po el
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Arbitrage test

Suppose that a portfolio w is self financing whith
dynamics

dVy = kVidt
e No driving Wiener process

e Risk free rate of return.

e "“Synthetic bank” with rate of return k.

If the market is free of arbitrage we must have:

k=r

2

é&c/auw%) o vn §9 5T
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Main Idea of Black-Scholes

e Since the derivative is defined in terms of the
underlying, the derivative price should be highly
correlated with the underlying price.

e We should be able to balance dervative against
underlying in our portfolio, so as to cancel the
randomness.

e [hus we will obtain a riskless rate of return k& on
our portfolio.

e Absence of arbitrage must imply

b o leckore M/]
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Two Approaches

The program above can be formally carried out in two
slightly different ways:

e The way Black-Scholes did it in the original paper.
This leads to some logical problems. (7 )

e A more conceptually satisfying way, first presented
by Merton.

Here we use the Merton method. You will find the
original BS method in Appendix C at the end of this

lecture. [‘Q? ~ ﬁ g]
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Formalized program a la Merton / OUU%W)

e Assume that the derivative price is of the form

Ht [Z] — f(ta St)

e Form a portfolio based on the underlying .S and the
derivative f, with portfolio dynamics

ol 509)
2 oANe Wg/@v@&

e Choose w” and w/ such that the dW-term is wiped
out. This gives us

dVy = Vi - kdt

e Absence of arbitrage implies

k=r
e This relation will say something about f.
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Back to Black-Scholes

dSt
1, [ 2]

— uStdt + O'Stth,
— f(tv St)

[t6's formula gives us the f dynamics as

Write this as

df = pys- fdt +oy- fdW

where

Hf =

of =

Tomas Bjork, 2017




Keceni -
df = pys- fdt +oy- fdW

dV = V{ws-ﬁﬂﬂ“-@}

S f
= V{wS(udt + cdW) + w! (usdt + o ;dW) )}
dV =V { u+wlpp}dt +V {w o +wlos} dW

Now we kill the dWV/-terml

Choose (w®,w') such that

wlo+wlor = 0
w¥twl =1
. . . \ / ' Aaj\z{
Linear system with solution (1{1 Y 0 don t AW \
) %@)
W =91 C wl = 2
of — 0O Of — 0

Plug into dV'!
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We obtain
dV =V {wpu+wlpp}dt
This is a risk free “synthetic bank” with short rate

{WSM + waF}

Absence of arbitrage implies

(St g} = r

Plug in the expressions for w?”, w/, pr and simplify.
This will give us the following result. )
| A bV g

Mot o ’Yﬁ/ﬁ“‘%
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Black-Schole’s PDE

The price is given by
11, [Z] — f (tv St)

where the pricing function f satisfies the PDE (partial differential equation)

(t,5) +rs2l(t,5) + 20220 4 )y, s)

s 2 0s?
f(T,s) = @(s)

of
ot

|
-

There is a unigue solution to the PDE so there is a unique arbitrage free
_ nique. d unique 4
price process for the contract.
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Black-Scholes’ PDE ct'd

of  Of 1 ,,0%
8t+r883+208832 rf = 0

f(T,s) = ®(s)

e The price of all derivative contracts have to satisfy
the same PDE

of Of 1 4 ,0°f

— +rs—+=0°s"=—5—rf =0

ot ds 2 052

otherwise there will be an arbitrage opportunity.

e Theonly difference’between different contracts is in
the boundary value condition

f(T,s) = ®(s)
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Data needed

e The contract function 9.
e Today's date ¢.

e Today's stock price S.

e Short rate r.

e Volatility o.

Note: The pricing formula does not involve the mean

rate of return u!
WY (¢ & 7 7
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Black-Scholes Basic Assumptions

Assumptions:

e The stock price is Geometric Brownian Motion
e Continuous trading.

e Frictionless efficient market.

e Short positions are allowed.

e Constant volatility o.

e Constant short rate r.

g Flat yield curvej

Tomas Bjork, 2017
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Black-Scholes’ Formula
European Call

T'=date of expiration,
t=today's date,

K =strike price,
r=short rate,
s=today's stock price,
o=volatility.

f(t,s) =sN[di] —e " T=YKN [dy].

N|-]=cdf for N (0, 1)-distribution.

do = dy—oVv1 —t.
’ 1 A pves NMW@MQ
bek pe (hack ?



European Call,

K = 100,

Black-Scholes

oc=20%, r=17%,

T—t=1/4

£

20 -
151

10
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Dependence on Time to Maturity

25

20

151

10

—— 13 weeks
— — -7 weeks
1 week
maturity
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Dependence on Volatility

25 T
sigma=0.2
— — -sigma=0.4
sigma=0.6|
maturity |
20 —,
151 .
(6]

10 .
5F i
O-. - — =T " - ! ! 1
80 85 90 95 100 105 110 115
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Risk neutral valuation

Appplyingmac to the Black-Scholes PDE we

obtain
[t X]=e "T-9E2 [X]
[4 ° ’ 7
obebien ot e
Lovdn B ool @X(p&%&i‘\m od P t,w t -

()-dynamics:
dSt = TStdt + UStthQa

dBt = TBtdt.

e Price = Expected discounted value of future
payments.

e [he expectation shall not be taken under the
“objective” probability measure P, but under the
“risk adjusted” measure ( “martingale measure”) Q.

Note: P ~ (@) [C‘“\(Samow/ )
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Concrete formulas

_G/\/27TT '
5? N )T ')
Aonérty of Vg\/ﬁww
R
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Interpretation of the risk adjusted
measure

e Assume a risk neutral world.

e Then the following must hold

&
s=8y=e "E[S]

e In our model this means that

dSt — TStdt -+ O'StthQ

e The risk adjusted probabilities can be intrepreted as
probabilities in a fictuous risk neutral economy.
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Moral

e \When we compute prices, we can compute as if we
live in a risk neutral world.

e This does not mean that we live (or think that we
live) in a risk neutral world.

e The formulas above hold regardless of the investor's
attitude to risk, as long as he/she prefers more to
less.

e [he wvaluation formulas are therefore called
“preference free valuation formulas”.
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Properties of ()

e Prng [ Giccomo)

e Forthe praded asset, derivative

or underlying, the process

is a (Q-martingale.

e Under (), the price pricess m of any traded asset,

derivative or underlying, has@as its local rate of
return:

dﬂ't — tdt -+ Or tthQ

e The volatility of 7 is the same under () as under P.

B

ok o lactuwre 415%)
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A Preview of Martingale Measures

Consider a market, under an objective probability
measure P, with underlying assets

B, St ... S¥

Definition: A probability measure () is called a
martingale measure if

o P~ ()

e For every 7, the process

is a (Q-martingale.

Theorem: The market is arbitrage free iff there exists

a martingale measure. FT,%(P 1:
1Y Lrndomncoskeld, Hopon of 65H poLs- )
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Appendix A: Black-Scholes vs gylomial
N Yo Vuow

Consider a binomial model for an option with a fixed
time to maturity 1" and a fixed strike price K.

e Build a binomial model with n periods for each
n=12,...

e Use the standard formulas for scaling the jumps:

u=e

VAL g = VAL At=T/n

e For a large n, the stock price at time 1" will then
be a product of a large number of i.i.d. random

variables.
WOW\SWM

e More precisely X—y—ﬁ—wﬁt—% =€ (=]

@)
St = S0Z125- -+ Zy,

where n is the number of periods in the binomial

model and Z; = u,d ; T, & wiwleer I U<

omd  A'¢ wabtes N@W\,;o;{' He oer >
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(Hoi fp Hre Coi-Rags- Kidrructen, mM)
ST = SoZ1242 -+ Ly,

Recall

e The stock price at time 1" will be a product of a
large number of i.i.d. random variablés.

o The%arn will be a large sum of i.i.d. variables.
Loy SstDQLSO% 5 602 >

e The Central Limit Theorem will kick in.

e In the limit, returns will be normally distributed.

e Stock prices will be lognormally distributed.

e \We are in the Black-Scholes model.

e The binomial price will converge to the Black-
Scholes price.
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Binomial convergence to Black-Scholes

11

T
- - -BS
Bin

105

10

9.5

Price

8.5

75 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50
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Binomial ~ Black-Scholes

The intuition from the Binomial model carries over to
Black-Scholes.

e The B-S model is “just” a binomial model where
we rebalance the portfolio infinitely often.

——m—n27 — ~

) \
e The B-S model is /’c\%complete.(mhm (o s

Loked

e Completeness explains the unique prices for options
N / -
in the B-S model.

e The B-S price for a derivative is the limit of the
binomial price when the number of periods is very
large.
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Appendix B: Portfolio theory

We consider a market with /N assets.

S’ = price at ¢, of asset No i.

A portfolio strategy is an adapted vector process

hy = (h%77h7]5\7)
where

h; = number of units of asset 1,

Vi = market value of the portfolio

N
Vi =Y hiS]
i=1
The portfolio is typically of the form
ht — h(t, St)
I.e. today’s portfolio is based on today's prices.

Tomas Bjork, 2017
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Self financing portfolios

We want to study self financing portfolio strategies,
I.e. portfolios where

e There is now external infusion and/or withdrawal of
money to/from the portfolio.

e Purchase of a “new” asset must be financed through
sale of an “old” asset.

How is this formalized?

Problem: Derive an expression for dV; for a self
financing portfolio.

We analyze in discrete time, and then go to the
continuous time limit.
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Discrete time portfolios

We trade at discrete points in time t =0,1,2,....

Price vector process:

Sp=(St ---,8Y), n=0,1,2,...

n

Portfolio process:

hy=(ht, - RY), n=0,1,2,...

Interpretation: At time n we buy the portfolio h,, at
the price S,,, and keep it until time n + 1.

Value process:

V, = E:h?Sz:
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The self financing condition

e At time n—1 we buy the portfolio h,,_1 at the price
Sn_1.

e At time n this portfolio is worth h,,_1.5,,.

e At time n we buy the new portfolio h,, at the price
Sh.

e The cost of this new portfolio is h,,.5,,.

e The self financing condition is the budget

constraint
hn—lsfn — hnSn
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The self financing condition

Recall:

Definition: For any sequence 1, xo, ... we define the
sequence Ax,, by

Problem: Derive an expression for AV, for a self
financing portfolio.

Lemma: For any pair of sequences x1,x5,... and
Y1,Y2, ... we have the relation

A(xY)n = Tn-1AYn + ynAz,
(Ab&{l S Tuvmhn e /ehfwxu,u

- eny 4 —'7(» - Z X - —f ~ )
Do it yourself. o -0 28, 8¢

Tomas Bjork, 2017
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Recall

From the Lemma we have

AV, = A(hS)p = hn_1ASp + SuAh,,

Recall the self financing condition
hp—1Sn = hnSn
which we can write as
SnAh, =0

Inserting this into the expression for AV,, gives us.

Proposition: The dynamics of a self financing portfolio
are given by

AV, = h,_1AS,

Note the forward increments!
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Portfolios in continuous time

Price process:
S! = price at ¢, of asset No 1.

Portfolio:
he = (b, hyY)

Value process
N
V=) hiS;
i=1
From the self financing condition in discrete time
AV, = h, 1AS,

)
we are led to the following definition. (lay W(p?% >

Definition: The portfolio h is self financing if and only
if N

dV, =) hydS;
T e 80
wﬁ:@’"‘\wﬁt(h“g%w

éf(ﬁg,\@&gwws D)

Tomas Bjork, 2017



Relative weights

Definition:
w! = relative portfolio weight on asset No i.

We have .
hySi

Vi

v
Wy =

Insert this into the self financing condition
N
dV, =) hjdS;

We obtain

Portfolio dynamics:

N
dsz
dv, =V, Z Wi

Interpret!

Tomas Bjork, 2017
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D

Appendix C:
The original Black-Scholes PDE
argument

Consider the following portfolio.

e Short one unit of the derivative, with pricing
function f(t,s).

e Hold z units of the underlying S. CW = pot e +)

The portfolio value is given by
V =—f(t,Sr)+ ‘%St

The object is to choose = such that the portfolio is
risk free for an |nf|n|te5|mal interval of length dt.

Seaf
We have dV = —df Wand from |t6 we obtain

B of of 5 282f
av = {875 + uSaS S 952 dt
of
— O'SanVV + zuSdt + xoSdW
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_ Of GO 1o 20°f
av = {xuS 5 S@s 28 952 dt

+ JS{LE—g}dW
0s

We obtain a risk free partfolio if we choose x as

of
0s

€Tr =

and then we have, after simplification,

_fOf 1y 20%f
CW—{ 5 55 0 5 dt

Using V = — f + x5 and x as above, the return dV/V
is thus given by
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\Nehai(ﬁbﬂmwkm%9\ 2
dV of 1S2 28f
— - Ot 88 dt
4 —f+ 53

This portfolio is risk free, so absence of arbitrage
implies that

_Af 102.20%f l
ot 2S0-882:,r,

0
—f+ 53

Simplifying this expression gives us the Black-Scholes
PDE.

2
AT W

ot Bs 952 17

|
o

f(T,s) = ®(s).
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