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European Call Option

The holder of this paper has the right
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1 ACME INC

on the date
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Financial Derivative

• A financial asset which is defined in terms of some
underlying asset.

• Future stochastic claim.
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Examples

• European calls and puts

• American options

• Forward rate agreements

• Convertibles

• Futures

• Bond options

• Caps & Floors

• Interest rate swaps

• CDO:s

• CDS:s
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Main problems

• What is a “reasonable” price for a derivative?

• How do you hedge yourself against a derivative.
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Natural Answers

Consider a random cash payment Z at time T .

What is a reasonable price Π0 [Z] at time 0?

Natural answers:

1. Price = Discounted present value of future payouts.

Π0 [Z] = e−rTE [Z]

2. The question is meaningless.
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Both answers are incorrect!

• Given some assumptions we can really talk about
“the correct price” of an option.

• The correct pricing formula is not the one on the
previous slide.
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Philosophy

• The derivative is defined in terms of underlying.

• The derivative can be priced in terms of underlying
price.

• Consistent pricing.

• Relative pricing.

Before we can go on further we need some simple
portfolio theory

Tomas Björk, 2017 51



2.

Portfolio Theory
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Portfolios

We consider a market with N assets.

Si
t = price at t, of asset No i.

A portfolio strategy is an adapted vector process

ht = (h1
t , · · · , hN

t )

where

hi
t = number of units of asset i,

Vt = market value of the portfolio

Vt =
N∑

i=1

hi
tS

i
t

The portfolio is typically of the form

ht = h(t, St)

i.e. today’s portfolio is based on today’s prices.
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Self financing portfolios

We want to study self financing portfolio strategies,
i.e. portfolios where purchase of a “new” asset must
be financed through sale of an “old” asset.

How is this formalized?

Definition:
The strategy h is self financing if

dVt =
N∑

i=1

hi
tdSi

t

Interpret!

See Appendix B for details.
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Relative weights

Definition:

ωi
t = relative portfolio weight on asset No i.

We have

ωi
t =

hi
tS

i
t

Vt

Insert this into the self financing condition

dVt =
N∑

i=1

hi
tdSi

t

We obtain

Portfolio dynamics:

dVt = Vt

N∑

i=1

ωi
t
dSi

t

Si
t

Interpret!

Tomas Björk, 2017 55

MOHINIISI

also p 94



3.

Deriving the Black-Scholes PDE
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Back to Financial Derivatives

Consider the Black-Scholes model

dSt = µStdt + σStdWt,

dBt = rBtdt.

We want to price a European call with strike price K
and exercise time T . This is a stochastic claim on
the future. The future pay-out (at T ) is a stochastic
variable, Z, given by

Z = max[ST − K, 0]

More general:
Z = Φ(ST )

for some contract function Φ.

Main problem: What is a “reasonable” price, Πt [Z],
for Z at t?
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Main Idea

• We demand consistent pricing between derivative
and underlying.

• No mispricing between derivative and underlying.

• No arbitrage possibilities on the market (B, S,Π)
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Arbitrage

The portfolio ω is an arbitrage portfolio if

• The portfolio strategy is self financing.

• V0 = 0.

• VT > 0 with probability one.

Moral:

• Arbitrage = Free Lunch

• No arbitrage possibilities in an efficient market.
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Arbitrage test

Suppose that a portfolio ω is self financing whith
dynamics

dVt = kVtdt

• No driving Wiener process

• Risk free rate of return.

• “Synthetic bank” with rate of return k.

If the market is free of arbitrage we must have:

k = r
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Main Idea of Black-Scholes

• Since the derivative is defined in terms of the
underlying, the derivative price should be highly
correlated with the underlying price.

• We should be able to balance dervative against
underlying in our portfolio, so as to cancel the
randomness.

• Thus we will obtain a riskless rate of return k on
our portfolio.

• Absence of arbitrage must imply

k = r
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Two Approaches

The program above can be formally carried out in two
slightly different ways:

• The way Black-Scholes did it in the original paper.
This leads to some logical problems.

• A more conceptually satisfying way, first presented
by Merton.

Here we use the Merton method. You will find the
original BS method in Appendix C at the end of this
lecture.
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Formalized program a la Merton

• Assume that the derivative price is of the form

Πt [Z] = f(t, St).

• Form a portfolio based on the underlying S and the
derivative f , with portfolio dynamics

dVt = Vt

{
ωS

t · dSt

St
+ ωf

t · df

f

}

• Choose ωS and ωf such that the dW -term is wiped
out. This gives us

dVt = Vt · kdt

• Absence of arbitrage implies

k = r

• This relation will say something about f .
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Back to Black-Scholes

dSt = µStdt + σStdWt,

Πt [Z] = f(t, St)

Itô’s formula gives us the f dynamics as

df =

{
∂f

∂t
+ µS

∂f

∂s
+

1

2
S2σ2∂2f

∂s2

}
dt

+ σS
∂f

∂s
dW

Write this as

df = µf · fdt + σf · fdW

where

µf =
∂f
∂t + µS∂f

∂s + 1
2S

2σ2∂2f
∂s2

f

σf =
σS∂f

∂s

f
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df = µf · fdt + σf · fdW

dV = V

{
ωS · dS

S
+ ωf · df

f

}

= V
{
ωS(µdt + σdW ) + ωf(µfdt + σfdW )

}

dV = V
{
ωSµ + ωfµf

}
dt + V

{
ωSσ + ωfσf

}
dW

Now we kill the dW -term!

Choose (ωS,ωf) such that

ωSσ + ωfσf = 0

ωS + ωf = 1

Linear system with solution

ωS =
σf

σf − σ
, ωf =

−σ

σf − σ

Plug into dV !
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We obtain

dV = V
{
ωSµ + ωfµf

}
dt

This is a risk free “synthetic bank” with short rate

{
ωSµ + ωfµF

}

.

Absence of arbitrage implies

{
ωSµ + ωfµf

}
= r

Plug in the expressions for ωS, ωf , µf and simplify.
This will give us the following result.
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Black-Schole’s PDE

The price is given by
Πt [Z] = f (t, St)

where the pricing function f satisfies the PDE (partial differential equation)






∂f

∂t
(t, s) + rs

∂f

∂s
(t, s) +

1

2
σ2s2∂2f

∂s2
(t, s) − rf(t, s) = 0

f(T, s) = Φ(s)

There is a unique solution to the PDE so there is a unique arbitrage free
price process for the contract.
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Black-Scholes’ PDE ct’d






∂f

∂t
+ rs

∂f

∂s
+

1

2
σ2s2∂2f

∂s2
− rf = 0

f(T, s) = Φ(s)

• The price of all derivative contracts have to satisfy
the same PDE

∂f

∂t
+ rs

∂f

∂s
+

1

2
σ2s2∂2f

∂s2
− rf = 0

otherwise there will be an arbitrage opportunity.

• The only difference between different contracts is in
the boundary value condition

f(T, s) = Φ(s)
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Data needed

• The contract function Φ.

• Today’s date t.

• Today’s stock price S.

• Short rate r.

• Volatility σ.

Note: The pricing formula does not involve the mean
rate of return µ!

??
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Black-Scholes Basic Assumptions

Assumptions:

• The stock price is Geometric Brownian Motion

• Continuous trading.

• Frictionless efficient market.

• Short positions are allowed.

• Constant volatility σ.

• Constant short rate r.

• Flat yield curve.
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Black-Scholes’ Formula
European Call

T=date of expiration,
t=today’s date,
K=strike price,
r=short rate,
s=today’s stock price,
σ=volatility.

f(t, s) = sN [d1] − e−r(T−t)KN [d2] .

N [·]=cdf for N(0, 1)-distribution.

d1 =
1

σ
√

T − t

{
ln
( s

K

)
+

(
r +

1

2
σ2

)
(T − t)

}
,

d2 = d1 − σ
√

T − t.
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Black-Scholes

European Call,

K = 100, σ = 20%, r = 7%, T − t = 1/4
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Dependence on Time to Maturity

80 85 90 95 100 105 110 115 120
0
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Dependence on Volatility
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0
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4.

Risk Neutral Valuation
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Risk neutral valuation

Appplying Feynman-Kac to the Black-Scholes PDE we
obtain

Π [t; X] = e−r(T−t)EQ
t,s [X]

Q-dynamics:






dSt = rStdt + σStdWQ
t ,

dBt = rBtdt.

• Price = Expected discounted value of future
payments.

• The expectation shall not be taken under the
“objective” probability measure P , but under the
“risk adjusted” measure (“martingale measure”) Q.

Note: P ∼ Q
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Concrete formulas

Π [0;Φ] = e−rT

∫ ∞

−∞
Φ(sez)f(z)dz

f(z) =
1√
2πT

exp

{

−
[
z − (r − 1

2σ
2)T
]2

2σ2T

}
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Interpretation of the risk adjusted
measure

• Assume a risk neutral world.

• Then the following must hold

s = S0 = e−rtE [St]

• In our model this means that

dSt = rStdt + σStdWQ
t

• The risk adjusted probabilities can be intrepreted as
probabilities in a fictuous risk neutral economy.
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Moral

• When we compute prices, we can compute as if we
live in a risk neutral world.

• This does not mean that we live (or think that we
live) in a risk neutral world.

• The formulas above hold regardless of the investor’s
attitude to risk, as long as he/she prefers more to
less.

• The valuation formulas are therefore called
“preference free valuation formulas”.
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Properties of Q

• P ∼ Q

• For the price pricess π of any traded asset, derivative
or underlying, the process

Zt =
πt

Bt

is a Q-martingale.

• Under Q, the price pricess π of any traded asset,
derivative or underlying, has r as its local rate of
return:

dπt = rπtdt + σππtdWQ
t

• The volatility of π is the same under Q as under P .
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A Preview of Martingale Measures

Consider a market, under an objective probability
measure P , with underlying assets

B, S1, . . . , SN

Definition: A probability measure Q is called a
martingale measure if

• P ∼ Q

• For every i, the process

Zi
t =

Si
t

Bt

is a Q-martingale.

Theorem: The market is arbitrage free iff there exists
a martingale measure.
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5.

Appendices

Tomas Björk, 2017 82



Appendix A: Black-Scholes vs Binomial

Consider a binomial model for an option with a fixed
time to maturity T and a fixed strike price K.

• Build a binomial model with n periods for each
n = 1, 2, ....

• Use the standard formulas for scaling the jumps:

u = eσ
√

∆t d = e−σ
√

∆t ∆t = T/n

• For a large n, the stock price at time T will then
be a product of a large number of i.i.d. random
variables.

• More precisely

ST = S0Z1Z2 · · ·Zn,

where n is the number of periods in the binomial
model and Zi = u, d
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Recall
ST = S0Z1Z2 · · ·Zn,

• The stock price at time T will be a product of a
large number of i.i.d. random variables.

• The return will be a large sum of i.i.d. variables.

• The Central Limit Theorem will kick in.

• In the limit, returns will be normally distributed.

• Stock prices will be lognormally distributed.

• We are in the Black-Scholes model.

• The binomial price will converge to the Black-
Scholes price.
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Binomial convergence to Black-Scholes
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Binomial ∼ Black-Scholes

The intuition from the Binomial model carries over to
Black-Scholes.

• The B-S model is “just” a binomial model where
we rebalance the portfolio infinitely often.

• The B-S model is thus complete.

• Completeness explains the unique prices for options
in the B-S model.

• The B-S price for a derivative is the limit of the
binomial price when the number of periods is very
large.
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Appendix B: Portfolio theory

We consider a market with N assets.

Si
t = price at t, of asset No i.

A portfolio strategy is an adapted vector process

ht = (h1
t , · · · , hN

t )

where

hi
t = number of units of asset i,

Vt = market value of the portfolio

Vt =
N∑

i=1

hi
tS

i
t

The portfolio is typically of the form

ht = h(t, St)

i.e. today’s portfolio is based on today’s prices.
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Self financing portfolios

We want to study self financing portfolio strategies,
i.e. portfolios where

• There is now external infusion and/or withdrawal of
money to/from the portfolio.

• Purchase of a “new” asset must be financed through
sale of an “old” asset.

How is this formalized?

Problem: Derive an expression for dVt for a self
financing portfolio.

We analyze in discrete time, and then go to the
continuous time limit.
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Discrete time portfolios

We trade at discrete points in time t = 0, 1, 2, . . ..

Price vector process:

Sn = (S1
n, · · · , SN

n ), n = 0, 1, 2, . . .

Portfolio process:

hn = (h1
n, · · · , hN

n ), n = 0, 1, 2, . . .

Interpretation: At time n we buy the portfolio hn at
the price Sn, and keep it until time n + 1.

Value process:

Vn =
N∑

i=1

hi
nSi

n = hnSn
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The self financing condition

• At time n−1 we buy the portfolio hn−1 at the price
Sn−1.

• At time n this portfolio is worth hn−1Sn.

• At time n we buy the new portfolio hn at the price
Sn.

• The cost of this new portfolio is hnSn.

• The self financing condition is the budget
constraint

hn−1Sn = hnSn
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The self financing condition

Recall:
Vn = hnSn

Definition: For any sequence x1, x2, . . . we define the
sequence ∆xn by

∆xn = xn − xn−1

Problem: Derive an expression for ∆Vn for a self
financing portfolio.

Lemma: For any pair of sequences x1, x2, . . . and
y1, y2, . . . we have the relation

∆(xy)n = xn−1∆yn + yn∆xn

Proof: Do it yourself.
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Recall
Vn = hnSn

From the Lemma we have

∆Vn = ∆(hS)n = hn−1∆Sn + Sn∆hn

Recall the self financing condition

hn−1Sn = hnSn

which we can write as

Sn∆hn = 0

Inserting this into the expression for ∆Vn gives us.

Proposition: The dynamics of a self financing portfolio
are given by

∆Vn = hn−1∆Sn

Note the forward increments!
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Portfolios in continuous time

Price process:

Si
t = price at t, of asset No i.

Portfolio:
ht = (h1

t , · · · , hN
t )

Value process

Vt =
N∑

i=1

hi
tS

i
t

From the self financing condition in discrete time

∆Vn = hn−1∆Sn

we are led to the following definition.

Definition: The portfolio h is self financing if and only
if

dVt =
N∑

i=1

hi
tdSi

t
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Relative weights

Definition:

ωi
t = relative portfolio weight on asset No i.

We have

ωi
t =

hi
tS

i
t

Vt

Insert this into the self financing condition

dVt =
N∑

i=1

hi
tdSi

t

We obtain

Portfolio dynamics:

dVt = Vt

N∑

i=1

ωi
t
dSi

t

Si
t

Interpret!
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Appendix C:
The original Black-Scholes PDE

argument

Consider the following portfolio.

• Short one unit of the derivative, with pricing
function f(t, s).

• Hold x units of the underlying S.

The portfolio value is given by

V = −f(t, ST ) + xSt

The object is to choose x such that the portfolio is
risk free for an infinitesimal interval of length dt.

We have dV = −df + xdS and from Itô we obtain

dV = −
{

∂f

∂t
+ µS

∂f

∂s
+

1

2
S2σ2∂2f

∂s2

}
dt

− σS
∂f

∂s
dW + xµSdt + xσSdW
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dV =

{
xµS − ∂f

∂t
− µS

∂f

∂s
− 1

2
S2σ2∂

2f

∂s2

}
dt

+ σS

{
x − ∂f

∂s

}
dW

We obtain a risk free portfolio if we choose x as

x =
∂f

∂s

and then we have, after simplification,

dV =

{
−∂f

∂t
− 1

2
S2σ2∂

2f

∂s2

}
dt

Using V = −f +xS and x as above, the return dV/V
is thus given by

dV

V
=

−∂f
∂t −

1
2S

2σ2∂2f
∂s2

−f + S∂f
∂s

dt
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We had
dV

V
=

−∂f
∂t −

1
2S

2σ2∂2f
∂s2

−f + S∂f
∂s

dt

This portfolio is risk free, so absence of arbitrage
implies that

−∂f
∂t −

1
2S

2σ2∂2f
∂s2

−f + S∂f
∂s

= r

Simplifying this expression gives us the Black-Scholes
PDE.

∂f

∂t
+ rs

∂f

∂s
+

1

2
σ2s2∂2f

∂s2
− rf = 0,

f(T, s) = Φ(s).
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