Continuous Time Finance

Completeness and Hedging
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Problems around Standard Black-Scholes

e We assumed %he derivative was traded. How
do we price OTC products?

e Why is the option price independent of the expected

Frate of returr’of the underlymg stock?
A\

e Suppose that we have sold a caII option. Then we

face financial risk, so how do we hedge against that
risk?

All this has to do with completeness.

L» iC T mh A
,k{}
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Definition:
We say that a T-claim X can be replicated,
alternatively that it is reachable or hedgeable, if
there exists a self financing portfolio h sucE that

\/’L c v% -
V%L:X, P —a.s. ;,@%g&,

In this case we say that A is a hedge against X.
Alternatively, h is called a replicating or hedging
portfolio. If every contingent claim is reachable we say
that the market is complete

Basic Idea: [f X can be replicated by a portfolio A
then the arbitrage free price for X is given by

L, [X] = V",

[fémpjmbw MUW‘B
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Trading Strategy

Consider a replicable claim X which we want to sell at
t=0..

e Compute the price Ily [X] and sell X at a slightly
(well) higher price.

e Buy the hedging portfolio and invest the surplus in
the bank.

e Wait until expiration date 7'

e The liabilities stemming from X is exactly matched
by V{f, and we have our surplus in the bank.
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Completeness of Black-Scholes

Theorem: The Black-Scholes model is complete.

Proof. Fix a Ia|m (S7). We want to find
processes V/, ﬁ and/u such that A sAave

—— 78 B 4 L, =
Vr = ®(Sr). \/,/&_\:B‘J‘&C({/ 7
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Heuristics:
Let us assume that X is replicated by % (uB, u®)

with value process V. §£ ) A
- o
Ansatz: (F%Wb%, bosed ™ X T WWS

‘/t — F(ta St)

lto gives us

1
dV = {Ft + aSF, + 502821788} dt + o SF,dW,

Write this as

F SF, + L52S2F,, F,
dV—V{ t o ;20 }dt—H/S odW.

Compare with

dV:V{uBr—I—uSoz}dt—l— odW
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Define u° by

uS S Fs(t, St)
t F(t,S,) ’

This gives us the egn

1 2S2Fss
dV =V {@r + usa} dt + VuodW.
T

hgpoor
Compare with

dV =V {uB + usa} dt + Vu®odW
Natural choice for u” is given by

5 F+50°5°Fy,
- rF ’

u
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The relation u” + v = 1 gives us the Black-Scholes
PDE

1
Fy +rSF, + 502521788 —rF =0.

The condition
Vi =®(Sr)

gives us the boundary condition

F(T,s) = ®(s)

Moral: The model is complete and we have explicit
formulas for the replicating portfolio.

L
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Main Result

Theorem: Define F' as the solution to the boundary
value problem

1
Fy +rsF, + 50232}788 —rF = 0,
F(T,s) = ®(s).
Then X can be replicated by the relative portfolio

F(t,S;) — SiFs(t, St)

B _
o F(t, S5 !
.S S Fy(t, Sy)

' (ta St) .

The corresponding absolute portfolio is given by

&)
\}&\l*' \B el

"“’»c

hB . F(tv St) St (t St)
t _ Bt )

he = Fu(t,S),

and the value process V" is given by

VI =F(t,Sy).
[%@/ clx \O@"?l’(/ LQ/\/VMA&\ Y- L/>
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Notes

e Completeness explains unique price - the claim is
superfluous! wekvwg wen” Guapared S and §
TGN A wadeet

e Replicating the claim P — a.s. <= Replicating the
claim Q — a.s. for any (Q ~ P. Thus the price only

depends on the support of P. W\M}w\zﬂ \on?

e Thus (Girsanov) it will not depend on the drift%z of
the state equation.

e The completeness theorem is a nice theoretical
result, but the replicating portfolio is continuously
rebalanced. Thus we are facing very high
transaction costs.

%\ASM%} \[{74 Fé‘bx@t}
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Completeness vs No Arbitrage

Question:
When is a model arbitrage free and/or complete?

Answer:
Count the number of risky assets, and the number of
random sources.

R = number of random sources

N = number of risky assets

Intuition:

If N is large, compared to R, you have lots of
possibilities of forming (clever )portfolios. Thus lots
of chances of making arpitrage profits. Also many

chances of replicating a given claim.
VI EC
/F@,( Gk 0 gow(C/QS
@A
W\
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Meta-Theorem P

Cfﬂwoowm%@ csve A b pwtn AE -

Ve (,U/\/LAW\ ool ! W é\f :—ZA\A\C\\
Generically, the following hold. T WAW“MSU

e The market is arbitrage free if and only if

N <R

e The market is complete if and only if

N>R

Example:
The Black-Scholes model. R=N=1. Arbitrage free

and complete.
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Parity Relations

Let ® and ¥ be contract functions for the T'-claims
Z = ®(St) and Y = ¥(Sp). Then for any real
numbers a and 3 we have the following price relation.

s2e Ty al, PFEA

/) .

Consider the following “basic” contract functions.

Proof. Linearity of mathematical

bg(x) = =,
(I)B(LE) — ’

Qo x(r) = max|r— K,0].

Prices:
_ \ L)

I, [Bs] = S, i o o O
Ht [(I)B _ B_T(T_t),

0 [Box] = cft, S K,T)
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, L e
If we have /Gﬂ R Gt A S Wkt §trike =

® = adbg + BPp + Z viPo K,
i=1
then
I1; [®] = ol [®g] + BIL [P 5] + Z Yille [P, K]

1=1

We may replicate the claim & using a portfolio
consisting of basic contracts that is constant over
time, i.e. a buy-and hold portfolio:

e o3, ()

e « shares of the underlying stock,

e [3 zero coupon T-bonds with face value $1,

—

e v, European call options with strike price K;, all
maturing at 7'

fﬂ-
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Put-Call Parity

Consider a European put contract
(I)p’K(S) — INax [K — S, O]

It is easy to see (draw a figure) that
(¢ unple alytlra, )

(I)p,K(x) = (I)C,K(x) —s+ K
— CbéjK(x) — dg(x) + Pplz) K

We immediately get

Put-call parity:

CreN e )
p(t, s; K) = c(t, s; K) s—l—K/

Thus you can construct a synthetic put option, using
a buy-and-hold portfolio. [, dt4 oo call @@hm\

LGy un e Lode
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Delta/Hedging

Wil Wou kg do st e “6—{@\45“, fer
Consider a fixed claim ‘FVI/{‘\’W Adowin

X = &(Sy)

with pricing function

Ft,s). (s¢ Flr e )i %ccg>

Setup:

We are at time ¢, and have a short (interpret!) position
in the contract. (At Fur covaty ach )
Goal:

Offset the risk in the derivative by buying (or selling)
the (highly correlated) underlying.

Definition: Sy,

.. : . : :
A position in the undeﬂ?ung is a delta hedge against
the derivative if the portfolio (underlying + derivative)

iIs immune against small changes in the underlying
Price. L0 e s foronh i

ALOWeAS ey v Heo Seuge H (2200 LanS .
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Formal Analysis

L
S e T
e
(<

f fr0
—1 = number of units of the derivative product

x = number of units of the underlying

s = today's stock price

t = today's date ;&7 S

Value of the portfolio:
V=-1-F(t,s)+z-s

A delta hedge is characterized by the property that

v _y Z\/QA Conngs A
P agen 6
OF

7 — 0
({Jls—l_g[j

We obtain

Solve for z!

Tomas Bjork, 2017 114



Result: /

We should have
OF

ds
shares of the underlying in the delta hedged portfolio.

T =

Definition:
For any contract, its “delta” is defined by

(;\/S—Z?O c;\\ i~ >

Result:
We should have
Tz =A

shares of the underlying in the delta hedged portfolio.

Warning:
The delta hedge must be rebalanced over time. (why?)
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Black Scholes

For a European Call in the Black-Scholes model we

have
A = N(dy] = 7{ N[o") 20 )
g1, B
NB This is not a trivial result! %ngi@ﬁ sl

From put call parity it follows (how?) that A for a
European Put is given by

A= Nld] -1
— _?[N[OJ1>>0M

Check signs and interpret!
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Rebalanced Delta Hedge

e Sell one call option a time ¢ = 0 at the B-S price F..

e Compute A and by A shares. (Use the income
from the sale of the option, and borrow money if
necessary. )

e Wait one day (week, minute, second..). The stock
price has now changed.

e Compute the new value of A, and borrow money in
order to adjust your stock holdings.

e Repeat this procedure until ¢ =71'. Then the value
of your portfolio (B+S) will match the value of the

option almost exactly.
e
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e Lack of perfection comes from discrete, instead of
continuous, trading.

e You have created a “synthetic” option.
(Replicating portfolio).

Formal result:
The relative weights in the replicating portfolio are

us = —,

up =

[ﬁ& P\Oé,\mjf(& A:ﬁéﬁﬁg})

e A ‘Dﬂﬂ WMQ 20
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Portfolio Delta

Assume that you have a portfolio consisting of
derivatives

®;(Sty), i=1,--,n
all written on the same underlying stock S.

F;(t,s) = pricing function for i:th derivative [Sjcrfs)
OF;
A; = -
0s
h; = units of i:th derivative

Portfolio value: N
1= Z h;F,
i=1

Portfolio delta:

Ap = zn: hil;
1=1
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Gamma

A problem with discrete delta-hedging is.

e As time goes bij will change.

e This will cause A = %—F to change.
S

e : It L
e Thus you are sitting with the wrong value of delta.

[w% o oty Hwe wistand)
Moral:

e |f delta is sensitive to changes in .S, then you have
to rebalance often.

e |f delta is insensitive to changes in S you do not
need to rebalance so often.
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Definition:
Let II be the value of a derivative (or portfolio).
Gamma (I') is defined as

0A
"0
l.e. 9211
T
Gamma is a measure of the sensitivity of A to changes
in S.

Result: For a European Call in a Black-Scholes model,
I' can be calculated as

/&aMH

SJT

Important fact:
For a position in the underlying stock itself we have

r—o (towial 1)
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Gamma Neutrality

A portfolio II is said to be gamma neutral if its
gamma equals zero, i.e.

I'm=20

e Since I' = 0 for a stock you can not gamma-hedge
using only stocks. 4##&# Typically you use some
derivative to obtain gamma neutrality.
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General procedure

Given a portfolio IT with underlying S. Consider two
derivatives with pricing functions F' and G.

rr = number of units of F

rca = number of units of G

)

Problem: 0
Choose xr and zg such that thportfolio is
delta- and gamma-neutral.

Value of hedged portfolio:

V=I+zr - F+acg-G
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(¢ :
%Que of hedged portfolio:

V=Il4+zrp-F+2c-G

We get the equations

A% 0. / M/L&u \/LQ/V"WQ’Q’)

0s
; N Wbmf/\
oV _ o WM
0s?
l.e.
An+2rpArp+2cAg = 0,
I'n+zpl'r+2cl’'e = 0

Solve for xr and z! /@W gy5amn \novn ouv
Uiyl Gvton ) )
Vo geatgol 905 \f G in
N,F(:'\"uj(w\'ha, M.Q‘&(m& .-@MF
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Particular Case

so0bt
e In many,cases the original portfolio II is already
delta neutral.

e [hen it is natural to use a derivative to obtain
gamma-neutrality.

e This will destroy the delta-neutrality. j@ﬁ( Hre no
poctA v
e Therefore we use the underlying stock (with zero
gamma!) to delta hedge in the end? viost UD%
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Formally:

We have

Tomas Bjork, 2017

ke

M\\M‘%\\)\ﬂ/
V=I+zr - F+xs5-S
Ang+xrpAp +x5As = 0,
I'm+zrpl'rp+25l's = 0
o2 .- A
Ag = 0, [’”%WVJZAMM’QX
Ag = 1
I's = 0
Aq+xzrAr+xs = 0,
I'm+axpl'yr = 0
I'n
rTp = ——
F T
ArDl
rs = = H—AH
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Further Greeks

oIl
@_E’
oIl
V—a—a,
_ om
'0_87“

V is pronounced “Vega".

NB!

e A delta hedge is a hedge against the movements in
the underlying stock, given a fixed model.

e A Vega-hedge is not a hedge against movements of
the underlying asset. It is a hedge against a change
of the model itself: ¢ » » wwel Pafounstor

Tomas Bjork, 2017 127

ook T leebuse pc-



