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Problems around Standard Black-Scholes

• We assumed that the derivative was traded. How
do we price OTC products?

• Why is the option price independent of the expected
rate of return α of the underlying stock?

• Suppose that we have sold a call option. Then we
face financial risk, so how do we hedge against that
risk?

All this has to do with completeness.
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Definition:
We say that a T -claim X can be replicated,
alternatively that it is reachable or hedgeable, if
there exists a self financing portfolio h such that

V h
T = X, P − a.s.

In this case we say that h is a hedge against X.
Alternatively, h is called a replicating or hedging
portfolio. If every contingent claim is reachable we say
that the market is complete

Basic Idea: If X can be replicated by a portfolio h
then the arbitrage free price for X is given by

Πt [X] = V h
t .
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Trading Strategy

Consider a replicable claim X which we want to sell at
t = 0..

• Compute the price Π0 [X] and sell X at a slightly
(well) higher price.

• Buy the hedging portfolio and invest the surplus in
the bank.

• Wait until expiration date T .

• The liabilities stemming from X is exactly matched
by V h

T , and we have our surplus in the bank.
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Completeness of Black-Scholes

Theorem: The Black-Scholes model is complete.

Proof. Fix a claim X = Φ (ST ). We want to find
processes V , uB and uS such that

dVt = Vt

{
uB

t
dBt

Bt
+ uS

t
dSt

St

}

VT = Φ(ST ).

i.e.

dVt = Vt

{
uB

t r + uS
t α
}

dt + Vtu
S
t σdWt,

VT = Φ(ST ).
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Heuristics:
Let us assume that X is replicated by h = (uB, uS)
with value process V .

Ansatz:
Vt = F (t, St)

Ito gives us

dV =

{
Ft + αSFs +

1

2
σ2S2Fss

}
dt + σSFsdW,

Write this as

dV = V

{
Ft + αSFs + 1

2σ
2S2Fss

V

}

dt + V
SFs

V
σdW.

Compare with

dV = V
{
uBr + uSα

}
dt + V uSσdW
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Define uS by

uS
t =

StFs(t, St)

F (t, St)
,

This gives us the eqn

dV = V

{
Ft + 1

2σ
2S2Fss

rF
r + uSα

}

dt + V uSσdW.

Compare with

dV = V
{
uBr + uSα

}
dt + V uSσdW

Natural choice for uB is given by

uB =
Ft + 1

2σ
2S2Fss

rF
,
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The relation uB + uS = 1 gives us the Black-Scholes
PDE

Ft + rSFs +
1

2
σ2S2Fss − rF = 0.

The condition
VT = Φ (ST )

gives us the boundary condition

F (T, s) = Φ(s)

Moral: The model is complete and we have explicit
formulas for the replicating portfolio.
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Main Result
Theorem: Define F as the solution to the boundary
value problem





Ft + rsFs +

1

2
σ2s2Fss − rF = 0,

F (T, s) = Φ(s).

Then X can be replicated by the relative portfolio

uB
t =

F (t, St) − StFs(t, St)

F (t, St)
,

uS
t =

StFs(t, St)

F (t, St)
.

The corresponding absolute portfolio is given by

hB
t =

F (t, St) − StFs(t, St)

Bt
,

hS
t = Fs(t, St),

and the value process V h is given by

V h
t = F (t, St).

Tomas Björk, 2017 106

LIMEY
VEFAStl

see alsobook lemma 8.4



Notes

• Completeness explains unique price - the claim is
superfluous!

• Replicating the claim P − a.s. ⇐⇒ Replicating the
claim Q − a.s. for any Q ∼ P . Thus the price only
depends on the support of P .

• Thus (Girsanov) it will not depend on the drift α of
the state equation.

• The completeness theorem is a nice theoretical
result, but the replicating portfolio is continuously
rebalanced. Thus we are facing very high
transaction costs.
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Completeness vs No Arbitrage

Question:
When is a model arbitrage free and/or complete?

Answer:
Count the number of risky assets, and the number of
random sources.

R = number of random sources

N = number of risky assets

Intuition:
If N is large, compared to R, you have lots of
possibilities of forming clever portfolios. Thus lots
of chances of making arbitrage profits. Also many
chances of replicating a given claim.
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Meta-Theorem

Generically, the following hold.

• The market is arbitrage free if and only if

N ≤ R

• The market is complete if and only if

N ≥ R

Example:
The Black-Scholes model. R=N=1. Arbitrage free
and complete.
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Parity Relations

Let Φ and Ψ be contract functions for the T -claims
Z = Φ(ST ) and Y = Ψ(ST ). Then for any real
numbers α and β we have the following price relation.

Πt [αΦ + βΨ] = αΠt [Φ] + βΠt [Ψ] .

Proof. Linearity of mathematical expectation.

Consider the following “basic” contract functions.

ΦS(x) = x,

ΦB(x) ≡ 1,

ΦC,K(x) = max [x − K, 0] .

Prices:

Πt [ΦS] = St,

Πt [ΦB] = e−r(T−t),

Πt [ΦC,K] = c(t, St; K,T ).
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If we have

Φ = αΦS + βΦB +
n∑

i=1

γiΦC,Ki,

then

Πt [Φ] = αΠt [ΦS] + βΠt [ΦB] +
n∑

i=1

γiΠt [ΦC,Ki]

We may replicate the claim Φ using a portfolio
consisting of basic contracts that is constant over
time, i.e. a buy-and hold portfolio:

• α shares of the underlying stock,

• β zero coupon T -bonds with face value $1,

• γi European call options with strike price Ki, all
maturing at T .
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Put-Call Parity

Consider a European put contract

ΦP,K(s) = max [K − s, 0]

It is easy to see (draw a figure) that

ΦP,K(x) = ΦC,K(x) − s + K

= ΦP,K(x) − ΦS(x) + ΦB(x)

We immediately get

Put-call parity:

p(t, s;K) = c(t, s;K) − s + Ker(T−t)

Thus you can construct a synthetic put option, using
a buy-and-hold portfolio.
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Delta Hedging

Consider a fixed claim

X = Φ(ST )

with pricing function

F (t, s).

Setup:
We are at time t, and have a short (interpret!) position
in the contract.

Goal:
Offset the risk in the derivative by buying (or selling)
the (highly correlated) underlying.

Definition:
A position in the underlying is a delta hedge against
the derivative if the portfolio (underlying + derivative)
is immune against small changes in the underlying
price.
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Formal Analysis

−1 = number of units of the derivative product

x = number of units of the underlying

s = today’s stock price

t = today’s date

Value of the portfolio:

V = −1 · F (t, s) + x · s

A delta hedge is characterized by the property that

∂V

∂s
= 0.

We obtain

−∂F

∂s
+ x = 0

Solve for x!
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Result:
We should have

x̂ =
∂F

∂s
shares of the underlying in the delta hedged portfolio.

Definition:
For any contract, its “delta” is defined by

∆ =
∂F

∂s
.

Result:
We should have

x̂ = ∆

shares of the underlying in the delta hedged portfolio.

Warning:
The delta hedge must be rebalanced over time. (why?)
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Black Scholes

For a European Call in the Black-Scholes model we
have

∆ = N [d1]

NB This is not a trivial result!

From put call parity it follows (how?) that ∆ for a
European Put is given by

∆ = N [d1] − 1

Check signs and interpret!
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Rebalanced Delta Hedge

• Sell one call option a time t = 0 at the B-S price F .

• Compute ∆ and by ∆ shares. (Use the income
from the sale of the option, and borrow money if
necessary.)

• Wait one day (week, minute, second..). The stock
price has now changed.

• Compute the new value of ∆, and borrow money in
order to adjust your stock holdings.

• Repeat this procedure until t = T . Then the value
of your portfolio (B+S) will match the value of the
option almost exactly.
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• Lack of perfection comes from discrete, instead of
continuous, trading.

• You have created a “synthetic” option.
(Replicating portfolio).

Formal result:
The relative weights in the replicating portfolio are

uS =
S · ∆

F
,

uB =
F − S · ∆

F
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Portfolio Delta

Assume that you have a portfolio consisting of
derivatives

Φi(STi), i = 1, · · · , n
all written on the same underlying stock S.

Fi(t, s) = pricing function for i:th derivative

∆i =
∂Fi

∂s
hi = units of i:th derivative

Portfolio value:

Π =
n∑

i=1

hiFi

Portfolio delta:

∆Π =
n∑

i=1

hi∆i
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Gamma

A problem with discrete delta-hedging is.

• As time goes by S will change.

• This will cause ∆ = ∂F
∂s to change.

• Thus you are sitting with the wrong value of delta.

Moral:

• If delta is sensitive to changes in S, then you have
to rebalance often.

• If delta is insensitive to changes in S you do not
need to rebalance so often.

Tomas Björk, 2017 120

g

U 11

at a later time instant



Definition:
Let Π be the value of a derivative (or portfolio).
Gamma (Γ) is defined as

Γ =
∂∆

∂s

i.e.

Γ =
∂2Π

∂s2

Gamma is a measure of the sensitivity of ∆ to changes
in S.

Result: For a European Call in a Black-Scholes model,
Γ can be calculated as

Γ =
N ′[d1]

Sσ
√

T − t

Important fact:
For a position in the underlying stock itself we have

Γ = 0
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Gamma Neutrality

A portfolio Π is said to be gamma neutral if its
gamma equals zero, i.e.

ΓΠ = 0

• Since Γ = 0 for a stock you can not gamma-hedge
using only stocks. item Typically you use some
derivative to obtain gamma neutrality.
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General procedure

Given a portfolio Π with underlying S. Consider two
derivatives with pricing functions F and G.

xF = number of units of F

xG = number of units of G

Problem:
Choose xF and xG such that the entire portfolio is
delta- and gamma-neutral.

Value of hedged portfolio:

V = Π + xF · F + xG · G

Tomas Björk, 2017 123



Value of hedged portfolio:

V = Π + xF · F + xG · G

We get the equations

∂V

∂s
= 0,

∂2V

∂s2
= 0.

i.e.

∆Π + xF∆F + xG∆G = 0,

ΓΠ + xFΓF + xGΓG = 0

Solve for xF and xG!
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Particular Case

• In many cases the original portfolio Π is already
delta neutral.

• Then it is natural to use a derivative to obtain
gamma-neutrality.

• This will destroy the delta-neutrality.

• Therefore we use the underlying stock (with zero
gamma!) to delta hedge in the end.
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Formally:
V = Π + xF · F + xS · S

∆Π + xF∆F + xS∆S = 0,

ΓΠ + xFΓF + xSΓS = 0

We have

∆Π = 0,

∆S = 1

ΓS = 0.

i.e.

∆Π + xF∆F + xS = 0,

ΓΠ + xFΓF = 0

xF = −ΓΠ

ΓF

xS =
∆FΓΠ

ΓF
− ∆Π
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Further Greeks

Θ =
∂Π

∂t
,

V =
∂Π

∂σ
,

ρ =
∂Π

∂r

V is pronounced “Vega”.

NB!

• A delta hedge is a hedge against the movements in
the underlying stock, given a fixed model.

• A Vega-hedge is not a hedge against movements of
the underlying asset. It is a hedge against a change
of the model itself.
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