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lecture 3

a purely theoretical lecture



Introduction

In order to understand and to apply the martingale
approach to derivative pricing and hedging we will
need to some basic concepts and results from measure
theory. These will be introduced below in an informal
manner - for full details see the textbook.

Many propositions below will be proved but we will
also present a couple of central results without proofs,
and these must then be considered as dogmatic truths.
You are of course not expected to know the proofs of
such results (this is outside the scope of this course)
but you are supposed to be able to use the results in
an operational manner.
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1.

Events and sigma-algebras

Tomas Björk, 2017 131



Events and sigma-algebras

Consider a probability measure P on a sample space
Ω. An event is simply a subset A ⊆ Ω and P (A) is
the probability that the event A occurs.

For technical reasons, a probability measure can only
be defined for a certain “nice” class F of events, so for
A ∈ F we are allowed to write P (A) as the probability
for the event A.

For technical reasons the class F must be a sigma-
algebra, which means that F is closed under the usual
set theoretic operations like complements, countable
intersections and countable unions.

Interpretation: We can view a σ-algebra F as
formalizing the idea of information. More precisely: A
σ-algebra F is a collection of events, and if we assume
that we have access to the information contained in F,
this means that for every A ∈ F we know exactly if A
has occured or not.
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Borel sets

Definition: The Borel algebra B is the smallest
sigma-algebra on R which contains all intervals. A set
B in B is called a Borel set.

Remark: There is no constructive definition of B, but
almost all subsets of R that you will ever see will in
fact be Borel sets, so the reader can without danger
think about a Borel set as “an arbitrary subset of R”.
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Random variables

An F-measurable random variable X is a a mapping

X : Ω → R

such that {X ∈ B} = {ω ∈ Ω : X(ω) ∈ B} belongs
to F for all Borel sets B. This guarantees that we are
allowed to write P (X ∈ B). Instad of writing “X is
F-measurable” we will often write X ∈ F.

This means that if X ∈ F then the value of X is
completely determined by the information contained in
F.

If we have another σ-algebra G with G ⊆ F then we
interpret this as “G contains less information than F”.
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2.

Conditional Expectation
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Conditional Expectation

If X ∈ F and if G ⊆ F then we write E [X| G] for
the conditional expectation of X given the information
contained in G. Sometimes we use the notation EG [X].

The following proposition contains everything that we
will need to know about conditional expectations within
this course.
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Main Results

Proposition 1: Assume that X ∈ F, and that G ⊆ F .
Then the following hold.

• The random variable E [X| G] is completely determined by
the information in G so we have

E [X| G] ∈ G

• If we have Y ∈ G then Y is completely determined by G so
we have

E [XY | G] = Y E [X| G]

In particular we have

E [Y | G] = Y

• If H ⊆ G then we have the “law of iterated expectations”

E [E [X| G]|H] = E [X|H]

• In particular we have

E [X] = E [E [X| G]]
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3.

Changing Measures
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Changing Measures

Consider a probability measure P on (Ω,F), and
assume that L ∈ F is a random variable with the
properties that

L ≥ 0

and
EP [L] = 1.

For every event A ∈ F we now define the real number
Q(A) by the prescription

Q(A) = EP [L · IA]

where the random variable IA is the indicator for A,
i.e.

IA =

{
1 if A occurs

0 if Ac occurs
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Recall that
Q(A) = EP [L · IA]

We now see that Q(A) ≥ 0 for all A, and that

Q(Ω) = EP [L · IΩ] = EP [L · 1] = 1

We also see that if A ∩ B = ∅ then

Q(A ∪ B) = EP [L · IA∪B] = EP [L · (IA + IB)]

= EP [L · IA] + EP [L · IB]

= Q(A) + Q(B)

Furthermore we see that

P (A) = 0 ⇒ Q(A) = 0

We have thus more or less proved the following
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Proposition 2: If L ∈ F is a nonnegative random
variable with EP [L] = 1 and Q is defined by

Q(A) = EP [L · IA]

then Q will be a probability measure on F with the
property that

P (A) = 0 ⇒ Q(A) = 0.

I turns out that the property above is a very important
one, so we give it a name.
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Absolute Continuity

Definition: Given two probability measures P and Q
on F we say that Q is absolutely continuous w.r.t.
P on F if, for all A ∈ F , we have

P (A) = 0 ⇒ Q(A) = 0

We write this as
Q << P.

If Q << P and P << Q then we say that P and Q
are equivalent and write

Q ∼ P
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Equivalent measures

It is easy to see that P and Q are equivalent if and
only if

P (A) = 0 ⇔ Q(A) = 0

or, equivalently,

P (A) = 1 ⇔ Q(A) = 1

Two equivalent measures thus agree on all certain
events and on all impossible events, but can disagree
on all other events.

Simple examples:

• All non degenerate Gaussian distributions on R are
equivalent.

• If P is Gaussian on R and Q is exponential then
Q << P but not the other way around.
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Absolute Continuity ct’d

We have seen that if we are given P and define Q by

Q(A) = EP [L · IA]

for L ≥ 0 with EP [L] = 1, then Q is a probability
measure and Q << P . .

A natural question is now if all measures Q << P
are obtained in this way. The answer is yes, and the
precise (quite deep) result is as follows. The proof is
difficult and therefore omitted.
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The Radon Nikodym Theorem

Consider two probability measures P and Q on (Ω,F),
and assume that Q << P on F . Then there exists a
unique random variable L with the following properties

1. Q(A) = EP [L · IA] , ∀A ∈ F

2. L ≥ 0, P − a.s.

3. EP [L] = 1,

4. L ∈ F

The random variable L is denoted as

L =
dQ

dP
, on F

and it is called the Radon-Nikodym derivative of Q
w.r.t. P on F , or the likelihood ratio between Q and
P on F .

Tomas Björk, 2017 145

Far able



A simple example

The Radon-Nikodym derivative L is intuitively the local
scale factor between P and Q. If the sample space Ω
is finite so Ω = {ω1, . . . ,ωn} then P is determined by
the probabilities p1, . . . , pn where

pi = P (ωi) i = 1, . . . , n

Now consider a measure Q with probabilities

qi = Q(ωi) i = 1, . . . , n

If Q << P this simply says that

pi = 0 ⇒ qi = 0

and it is easy to see that the Radon-Nikodym derivative
L = dQ/dP is given by

L(ωi) =
qi

pi
i = 1, . . . , n
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If pi = 0 then we also have qi = 0 and we can define
the ratio qi/pi arbitrarily.

If p1, . . . , pn as well as q1, . . . , qn are all positive, then
we see that Q ∼ P and in fact

dP

dQ
=

1

L
=

(
dQ

dP

)−1

as could be expected.
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Computing expected values

A main use of Radon-Nikodym derivatives is for the
computation of expected values.

Suppose therefore that Q << P on F and that X is
a random variable with X ∈ F . With L = dQ/dP on
F then have the following result.

Proposition 3: With notation as above we have

EQ [X] = EP [L · X]

Proof: We only give a proof for the simple example
above where Ω = {ω1, . . . ,ωn}. We then have

EQ [X] =
n∑

i=1

X(ωi)qi =
n∑

i=1

X(ωi)
qi

pi
pi

=
n∑

i=1

X(ωi)L(ωi)pi = EP [X · L]
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The Abstract Bayes’ Formula

We can also use Radon-Nikodym derivatives in order to
compute conditional expectations. The result, known
as the abstract Bayes’ Formula, is as follows.

Theorem 4: Consider two measures P and Q with
Q << P on F and with

LF =
dQ

dP
on F

Assume that G ⊆ F and let X be a random variable
with X ∈ F . Then the following holds

EQ [X| G] =
EP

[
LFX

∣∣G
]

EP [LF | G]

Tomas Björk, 2017 149

Fte denominator

different from Fox ELLA

see book Proposition B 41



Dependence of the σ-algebra

Suppose that we have Q << P on F with

LF =
dQ

dP
on F

Now consider smaller σ-algebra G ⊆ F . Our problem
is to find the R-N derivative

LG =
dQ

dP
on G

We recall that LG is characterized by the following
properties

1. Q(A) = EP
[
LG · IA

]
∀A ∈ G

2. LG ≥ 0

3. EP
[
LG] = 1

4. LG ∈ G

Tomas Björk, 2017 150

Note that also

among

crucial



A natural guess would perhaps be that LG = LF , so
let us check if LF satisfies points 1-4 above.

By assumption we have

Q(A) = EP
[
LF · IA

]
∀A ∈ F

Since G ⊆ F we then have

Q(A) = EP
[
LF · IA

]
∀A ∈ G

so point 1 above is certainly satisfied by LF . It is
also clear that LF satisfies points 2 and 3. It thus
seems that LF is also a natural candidate for the R-N
derivative LG, but the problem is that we do not in
general have LF ∈ G.

This problem can, however, be fixed. By iterated
expectations we have, for all A ∈ G,

EP
[
LF · IA

]
= EP

[
EP

[
LF · IA

∣∣G
]]
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Since A ∈ G we have

EP
[
LF · IA

∣∣G
]

= EP
[
LF∣∣G

]
IA

Let us now define LG by

LG = EP
[
LF∣∣G

]

We then obviously have LG ∈ G and

Q(A) = EP
[
LG · IA

]
∀A ∈ G

It is easy to see that also points 2-3 are satisfied so we
have proved the following result.
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A formula for LG

Proposition 5: If Q << P on F and G ⊆ F then,
with notation as above, we have

LG = EP
[
LF∣∣G

]
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The likelihood process on a filtered space

We now consider the case when we have a probability
measure P on some space Ω and that instead of just
one σ-algebra F we have a filtration, i.e. an increasing
family of σ-algebras {Ft}t≥0.

The interpretation is as usual that Ft is the information
available to us at time t, and that we have Fs ⊆ Ft

for s ≤ t.

Now assume that we also have another measure Q,
and that for some fixed T , we have Q << P on FT .
We define the random variable LT by

LT =
dQ

dP
on FT

Since Q << P on FT we also have Q << P on Ft

for all t ≤ T and we define

Lt =
dQ

dP
on Ft 0 ≤ t ≤ T

For every t we have Lt ∈ Ft, so L is an adapted
process, known as the likelihood process.
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The L process is a P martingale

We recall that

Lt =
dQ

dP
on Ft 0 ≤ t ≤ T

Since Fs ⊆ Ft for s ≤ t we can use Proposition 5 and
deduce that

Ls = EP [Lt| Fs] s ≤ t ≤ T

and we have thus proved the following result.

Proposition: Given the assumptions above, the
likelihood process L is a P -martingale.
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Where are we heading?

We are now going to perform measure transformations
on Wiener spaces, where P will correspond to the
objective measure and Q will be the risk neutral
measure.

For this we need define the proper likelihood process L
and, since L is a P -martingale, we have the following
natural questions.

• What does a martingale look like in a Wiener driven
framework?

• Suppose that we have a P -Wiener process W and
then change measure from P to Q. What are the
properties of W under the new measure Q?

These questions are handled by the Martingale
Representation Theorem, and the Girsanov Theorem
respectively.
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4.

The Martingale Representation Theorem
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Intuition

Suppose that we have a Wiener process W under
the measure P . We recall that if h is adapted (and
integrable enough) and if the process X is defined by

Xt = x0 +

∫ t

0
hsdWs

then X is a a martingale. We now have the following
natural question:

Question: Assume that X is an arbitrary martingale.
Does it then follow that X has the form

Xt = x0 +

∫ t

0
hsdWs

for some adapted process h?

In other words: Are all martingales stochastic integrals
w.r.t. W?
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Answer

It is immediately clear that all martingales can not be
written as stochastic integrals w.r.t. W . Consider for
example the process X defined by

Xt =

{
0 for 0 ≤ t < 1

Z for t ≥ 1

where Z is an random variable, independent of W ,
with E [Z] = 0.

X is then a martingale (why?) but it is clear (how?)
that it cannot be written as

Xt = x0 +

∫ t

0
hsdWs

for any process h.
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Intuition

The intuitive reason why we cannot write

Xt = x0 +

∫ t

0
hsdWs

in the example above is of course that the random
variable Z “has nothing to do with” the Wiener process
W . In order to exclude examples like this, we thus need
an assumption which guarantees that our probability
space only contains the Wiener process W and nothing
else.

This idea is formalized by assuming that the filtration
{Ft}t≥0 is the one generated by the Wiener
process W .
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The Martingale Representation Theorem

Theorem. Let W be a P -Wiener process and assume
that the filtation is the internal one i.e.

Ft = FW
t = σ {Ws; 0 ≤ s ≤ t}

Then, for every (P,Ft)-martingale X, there exists a
real number x and an adapted process h such that

Xt = x +

∫ t

0
hsdWs,

i.e.
dXt = htdWt.

Proof: Hard. This is very deep result.
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Note

For a given martingale X, the Representation Theorem
above guarantees the existence of a process h such that

Xt = x +

∫ t

0
hsdWs,

The Theorem does not, however, tell us how to find
or construct the process h.
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5.

The Girsanov Theorem
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Setup

Let W be a P -Wiener process and fix a time horizon
T . Suppose that we want to change measure from P
to Q on FT . For this we need a P -martingale L with
L0 = 1 to use as a likelihood process, and a natural
way of constructing this is to choose a process g and
then define L by

{
dLt = gtdWt

L0 = 1

This definition does not guarantee that L ≥ 0, so we
make a small adjustment. We choose a process ϕ and
define L by

{
dLt = LtϕtdWt

L0 = 1

The process L will again be a martingale and we easily
obtain

Lt = e
R t
0 ϕsdWs−1

2

R t
0 ϕ2

sds
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Thus we are guaranteed that L ≥ 0. We now change
measure form P to Q by setting

dQ = LtdP, on Ft, 0 ≤ t ≤ T

The main problem is to find out what the properties
of W are, under the new measure Q. This problem is
resolved by the Girsanov Theorem.
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The Girsanov Theorem

Let W be a P -Wiener process. Fix a time horizon T .

Theorem: Choose an adapted process ϕ, and define
the process L by

{
dLt = LtϕtdWt

L0 = 1

Assume that EP [LT ] = 1, and define a new mesure Q
on FT by

dQ = LtdP, on Ft, 0 ≤ t ≤ T

Then Q << P and the process WQ, defined by

WQ
t = Wt −

∫ t

0
ϕsds

is Q-Wiener. We can also write this as

dWt = ϕtdt + dWQ
t
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Changing the drift in an SDE

The single most common use of the Girsanov Theorem
is as follows.

Suppose that we have a process X with P dynamics

dXt = µtdt + σtdWt

where µ and σ are adapted and W is P -Wiener.

We now do a Girsanov Transformation as above, and
the question is what the Q-dynamics look like.

From the Girsanov Theorem we have

dWt = ϕtdt + dWQ
t

and substituting this into the P -dynamics we obtain
the Q dynamics as

dXt = {µt + σtϕt} dt + σtdWQ
t

Moral: The drift changes but the diffusion is
unaffected.

Tomas Björk, 2017 167

Section 11.5

has to with Bs like models

page
766

a meaning that we keepon having
the same of in front of
the new Brownian motion



The Converse Girsanov Theorem

Let W be a P -Wiener process. Fix a time horizon T .

Theorem. Assume that:

• Q << P on FT , with likelihood process

Lt =
dQ

dP
, on Ft 0,≤ t ≤ T

• The filtation is the internal one .i.e.

Ft = σ {Ws; 0 ≤ s ≤ t}

Then there exists a process ϕ such that

{
dLt = LtϕtdWt

L0 = 1
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