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Introduction ?@W%

In order to understand and“to apply the martingale
approach to derivative pricing and hedging we will
need to some basic concepts and results from measure
theory. These will be introduced below in an informal
manner - for full details see the textbook.

Many propositions below will be proved but we will
also present a couple of central results without proofs,
and these must then be considered as dogmatic truths.
You are of course not expected to knmofs of
such results (this is outside the scope of this course)
but you are supposed to be able to use the results in
an operational manner.
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Events and sigma-algebras
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Events and sigma-algebras
(bole: Sechor A

Consider a probability measure P on a sample space
2. An event ism a subset A C Q and P(A) is
the probability that the event A occurs.

For technical reasons, a probability measure can only
be defined for a certain “nice” class F of events, so for
A € F we are allowed to write P(A) as the probability
for the event A.

For technical reasons the class F must be a sigma-
algebra, which means that F is closed under the usual
set theoretic operations like complements, countable

Intersections and countable unions.

Interpretation: We can view a o-algebra F as
formalizing the idea of information. More precisely: A
o-algebra F is a collection of events, and if we assume
that we have access to the information contained in F,
this means that for every A € F we know exactly if A
has occured or not.
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Borel sets

Definition: The Borel algebra B is the smallest
sigma-algebra on R which contains all intervals. A set
B in B is called a Borel set. ‘

Remark: There is no constructivé definition of B, but
almost all subsets of R that you will ever see will in
fact be Borel sets, so the reader can without danger
think about a Borel set as “an arbitrary subset of R".
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Random variables
gwm/u -1

An F-measurable random variable X is a a mapping
X:Q— R

such that {X € B} = {w e Q: X(w) € B} belongs
to JF for all Borel sets B. This guarantees that we are
allowed to write P(X € B). Instad of writing “X is
F-measurable” we will often write X € F.

This means that if X € F then the value of X is
completely determined by the information contained in

F.

If we have another og-algebra G with G C F then we
interpret this as “G contains less information than F.
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Conditional Expectation

If X € Fand if G C F then we write ' [X|G] for
the conditional expectation of X given the information
contained in G. Sometimes we use the notation E; | X].

The following proposition contains everything that we
will need to know about conditional expectations within

this course. [\ ¢
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Main Results

Proposition 1: Assume that X € F, and that G C F.
Then the following hold.

e The random variable E [ X | G] is completely determined by
the information in G so we have

B(X|6leg  (by Aofnrio)

e If we have Y € G then Y is completely determined by G so
we have

FE[XY|G]|=YFE[X|J]

In particular we have
ElY|g]=Y
o If H C G then we have the “law of iterated expectations”

/ E[E[X|G]H] = E[X|H]
o c ooy WAtin resato A ﬁﬂ%WSB

e In particular we have

E[X]=E[E[X]|F]]
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Changing Measures
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Changing Measures
Sockmn B-&

Consider a probability measure P on (£,F), and
assume that L € F is a random variable with the

properties that
L>0

and
EY (L] =1.

For every event A € F we now define the real number
Q(A) by the prescription

Q(A) = E"[L - I,]

where the random variable I4 is the indicator for A,
l.e.

{1 if A occurs
Iy =

0 if A°occurs
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Recall that
Q(A) = EV[L - I4]

We now see that Q(A) > 0 for all A, and that
Q) =E"[L-Io)=FE"[L-1]=1

We also see that if AN B = 0 then

QAUB) = EY[L-IauB]=E"[L - (I14+Ip)]

= EPY[L- 14+ EY[L-Ig]

= Q(A) +Q(B)
/GMW/!/) v Lk AAS ot ons )
Furthermore we see that)

P(A)=0 = QA)=0

We have thus more or less proved the following

VAV
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Proposition 2: If L € F is a nonnegative random
variable with E¥ [L] =1 and Q is defined by

Q(A) = B [L - 14]

then () will be a probability measure on F with the
/

property that for Ve yove A

Coud able Mﬂf/kb\/Hy que)
P(A)=0 = QA

| turns out that the property above is a very important
one, so we give it a name.
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Absolute Continuity

Definition: Given two probability measures P and ()
on F we say that () is absolutely continuous w.r.t.
P on F if, for all A € F, we have

P(A)=0 = QA)=0

We write this as
Q << P.

If Q << P and P << () then we say that P and ()
are equivalent and write

Q~P

[M 0@%6&@ naon Q=7 \\
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Equivalent measures

It is easy to see that P and () are equivalent if and
only if
PA)=0 < QA =0

or, equivalently,

PA)=1 & QA =1
(sl ot towmpleimernto\
Two equivalent measures thus agree on all certain

events and on all impossible events, but can disagree
on all other events.

Simple examples:

e All non degenerate Gaussian distributions on R are
equivalent.

o If P is Gaussian on R and () is exponential then
() << P but not the other way around. (W&qﬂ'? }

K(l)) ok T lecture Soy

Tomas Bjork, 2017 143



Absolute Continuity ct'd

We have seen that if we are given P and define () by

QUA) = EP[L-1,] (4

for L > 0 with EY[L] = 1, then Q is a probability
measure and () << P. .

A natural question is now if all measures () << P
are obtained in this way. The answer is yes, and the
precise (quite deep) result is as follows. The proof is

difficult and therefore omitted.
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The Radon Nikodym Theorem

Consider two probability measures P and @ on (2, F),
and assume that () << P on F. Then there exists a
unique random variable L with the following properties

- f

L v ?-wai«o(a’p(&

1. Q(A)=EP[L-14], VAeF

2. L>0, P—a.s.
3. EFP[L]=1,
4. LeF

The random variable L is denoted as

dQ

I —
dP’

on F

and it is called the Radon-Nikodym derivative of ()
w.r.t. P on F, or the likelihood ratio between () and
P on F.
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A simple example

The Radon-Nikodym derivative L is intuitively the local

> local
scale factor between P and (). If the sample space (2
is finite so 2 = {w1,...,wy,} then P is determined by

the probabilities pq, ..., p, where

pi=Plw;) i=1,...,n

Now consider a measure () with probabilities

qi:Q(wi) izl,...,n

If () << P this simply says that
pi=0 = ¢=0

and it is easy to see that the Radon-Nikodym derivative
L =dQ/dP is given by

L(wi):% i=1,...,n [Qz«g P¢>O>)

)
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If p; = 0 then we also have ¢; = 0 and we can define
the ratio g;/p; arbitrarily.

If p1,...,p, as well as q1, ..., q, are all positive, then
we see that () ~ P and in fact

dP 1 (dQ\ ™"
5-1-(

as could be expected.
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Computing expected values
A main use of Radon-Nikodym derivatives is for the
computation of expected values.

Suppose therefore that () << P on F and that X is
a random variable with X € F. With L = dQ/dP on

F then have the following result.

Proposition 3: With notation as above we have

E?[X]=ET[L-X]

Proof: We only give a proof for the simple example

above where Q2 = {w1,...,wy,}. We then have
E?[X] = > X(wi)g= ZX(%);]%
i=1 i=1 L

Vool wotohon: P
E&EQQCMQ oo EPEXI /L \//4662 +o compar”
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The Abstract Bayes’ Formula

We can also use Radon-Nikodym derivatives in order to
compute conditional expectations. The result, known
as the abstract Bayes’ Formula, is as follows.

Theorem 4: Consider two measures P and () with
Q << P on F and with

Lf:;l—g on F

Assume that G C F and let X be a random variable
with X € F. Then the following holds

B” [L7X|g]
EP[L7]4]

m Agind ATt
pbﬁ@mwy L EEX = “épfl/x? -

[(See bl Propasctio B-41 )

E?[X|G] =

Tomas Bjork, 2017 149



Dependence of the o-algebra

Suppose that we have ) << P on F with

Lf:;l—g on F

Now consider smaller g-algebra G C F. Our problem

is to find the R-N derivative Uale Uiak Ago
dQ k |
G _ 8. &) on
L=ap ¢ g

We recall that LY is characterized by the following
properties

1. Q(A)=FET |[LY9-14] VAE€eg
2. LY >0

3. EF L9 =1

Teg)
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A natural guess would perhaps be that LY = L%, so
let us check if L7 satisfies points 1-4 above.

By assumption we have

Q(A)=E"[L” -14] VAeF

Since § C F we then have
Q(A)=E"[L” -14] VAEeg

so point 1 above is certainly satisfied by L. It is
also clear that L7 satisfies points 2 and 3. It thus
seems that L7 is also a natural candidate for the R-N

derivative LY. but the problem is that we do not in
general have L7 € G.

This problem can, however, be fixed. By iterated
expectations we have, for all A € G,

Qp)= BV 1a] = BV BV [L7 - 14| 6]
\—W\_'__/
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ff‘(/lku\/ YN‘WW) (fw-/w(a- B2 cowen

a2 (@ IF T )
Since A € G we have
E" L7 - 14|G] = E" [L7|G] I4
Let us now define LY by /
“[27]d]

We then obviouslyshave LY € G and

Q(A)=E"[LY-14] VA€

It is easy to see that also points 2-3 are satisfied so we
AV g

have proved the following result.
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A formula for LY

Proposition 5: If Q << P on F and G C F then,
with notation as above, we have

Lg:EP[L}"‘g} ?

M powet in Hasd e Wl
L% 1, be 2§~W&M/v@ﬁ
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The likelihood process on a filtered space

We now consider the case when we have a probability
measure P on some space (2 and that instead of just
one o-algebra F we have a filtration, i.e. an increasing
family of o-algebras {F;},~,.

The interpretation is as usual that F; is the information
available to us at time ¢, and that we have F, C F;
for s < t.

Now assume that we also have another measure (),
and that for some fixed T', we have () << P on Fr.
We define the random variable L1 by

dQ

oo o~ )
Since () << P on Fp we alsm<< P on F

for all t < T and we define

d
Lt:d—g Onft OStST

For every t we have L; € F;, so L is an adapted
process, known as the likelihood process.
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The L process is a P martingale

We recall that

d
Lt:d_g onF 0<t<T

Since F, C F; for s <t we can use Proposition 5 and
deduce that

L,=FEY[LJ|F,] s<t<T

and we have thus proved the following result.

Proposition: Given the assumptions above, the

likelihood process L is a P-martingale.
e
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Where are we heading?
[rand e o e bowe o o Huis! |

We are now going to perform measure transformations
on Wiener spaces, where P will correspond to the
objective measure and () will be the risk neutral
measure.

For this we need define the proper likelihood process L
and, since L is a P-martingale, we have the following
natural questions.

e \What does a martingale look like in a Wiener driven
framework? (Lg\u, Blode. Sdaon 4@!«\%\

e Suppose that we have a P-Wiener process W and
then change measure from P to (). What are the
properties of W under the new measure ()7

These questions are handled by the Martingale
Representation Theorem, and the Girsanov Theorem

respectively. ?)
(- CAXH TAW (WVJQ@(
1y BS /Fm/w&wwtc W T A = M a
e i ASm (ST TSA nde )
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4.

The Martingale Representation Theorem

Sechs o N
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Intuition TS BN 78

Lpon 470"

Suppose that we hav?a&/mener process W under
the measure P. We recall that if h is adapted (and
integrable enough) and if the process X is defined by

’ X, =z + / h.dWV,
0

then X is a a martingale. We now have the following
natural question: D

Question: Assume that X is an?artingale.
Does it then follow that X has the form
'
X: =20+ / hdW
0

for some adapted process h?

In other words: Are all martingales stochastic integrals
w.r.t. W7
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Answer

It is immediately clear that all martingales can not be
written as stochastic integrals w.r.t. W. Consider for
example the process X defined by

0 for 0<t<1
Xt:
Z for t>1

where Z is an random variable, independent of W,aqud,,
with E[Z] = 0. OQWPWKE[%\:&] iy

X is then a martingale (why?) but it is/\c/lgar (how?)
that it cannot be written as

— | o iﬁ@%
Xt=x0+/ hodw, 8
0

Ao
(4 (l;vv)&:"‘ﬁ:,k :”%ﬂ)

for any process h.  S.o X (P%é -
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Intuition

The intuitive reason why we cannot write

t
X =x9+ / hsdWs
0

in the example above is of course that the random
variable Z “has nothing to do with” the Wiener process
W . In order to exclude examples like this, we thus need
an assumption which guarantees that our probability
space only contains the Wiener process W and nothing
else.

This idea is formalized by assuming that the filtration

{Fi}+>0 is the one generated by the Wiener
process W, —

9—;: G-C\Ng) gé'b)
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The Martingale Representation Theorem

Theorem. Let W be a P-Wiener process and assume
that the filtation is the internal one i.e.

| artingale X, there exists a
: n-adapted process h such that

t
t =T —I-/ hSdWS,
0

Then, for ever
real number x

dXt — htth .

Proof: Hard. [This is very deep result.

Cluciah jotuat X i wdapest
Ko pecies At
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Note

For a given martingale X, the Representation Theorem
above guarantees the existence of a process h such that

t
X, = x—l—/ hodW,,
0

The Theorem does not, however, tell us how to find
or construct the process h.
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The Girsanov Theorem

Sechsimg W2, 122
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Setup

Let W be a P-Wiener process and fix a time horizon
T'. Suppose that we want to change measure from P
to (Q on Fr. For this we need a P-martingale L with
Lo = 1 to use as a likelihood process, and a natural

way of constructing this is to choose a process g and
then define L by

dLy = gdW;
Lo = 1

This definition does not guarantee that L > 0, so we
make a small adjustment. We choose a process ¢ and

define L by \]/;m\& @Jf[/(t[@?r {@(WCGD

dL; = LypidW; L [/W\Z(
o= 1
The process L will again be a martmgale and we eaS|Iy

obtain ,
Lt — efO psdWs— 2 fO Ps ds

[ Qe oy T {5 )
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Thus we are guaranteed that L > 0. We now change
measure form P to () by setting

dQ = L;dP, on F;, 0<t<T

The main problem is to find out what the properties
of W are, under the new measure (). This problem is
resolved by the Girsanov Theorem.
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The Girsanov Theorem

Let W be a P-Wiener process. Fix a time horizon T..

Theorem: Choose an adapted process ¢, and define
the process L by

oLV,
OK/\S\O/ )(“06
o

A@ume that E¥ [L7] = 1, and define a new mesure Q
on Fr by

Y dLy = LypdW,
Lo = 1

dQ = L;dP, on F;, 0<t<T

Then Q << P and the process W<, defined by

t
W =W, — / pods
0

is ()-Wiener. We can also write this as

AW, = @udt + dW 2
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Changing the drift in an SDE
[S@C/ﬁ@w \1'53
The single most common use of the Girsanov Theorem
is as follows. (\Las 47 witto bs Lilce wwodels )

Suppose that we have a process X with P dynamics
dXt = utdt -+ O'tth

where 1t and o are adapted and W is P-Wiener.

We now do a Girsanov Transformation as above, and
the question is what the ()-dynamics look like.

From the Girsanov Theorem we have
dW; = pydt + dW,? (\P&% 166 )

and substituting this into the P-dynamics we obtain
the () dynamics as

dXt = {ut + O'tgﬁt} dt + O'tthQ

Moral: The drift changes but the diffusion is
unafFectedy. e anius Mook \oc WV " wﬁ

Tomas Bjork, 2017 /H/“‘Z SAnme Cr,b W ’g(OVVt\S{_
e e Peowwidn woks
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The Converse Girsanov Theorem

Let W be a P-Wiener process. Fix a time horizon T..

Theorem. Assume that:

T Huw lL
e () << P on Fr, with likelihood process (J—

dQ LrAS Qd?)
Lt:d—P, OnftO,StST
e T he filtation is the internal one .i.e.
Fi=0{W, 0<s <t}
Then there exists a process ¢ such that
st = Lt@tth
Lo = 1
[ \g) M ) M«Hw AL
pote P s T e
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