lecture 4

Continuous Time Finance

The Martingale Approach

II: Pricing and Hedging

(Ch 10-12)

Tomas Björk

(lecture 3 applied to finance)

Financial Markets ^a recap

Price Processes:

$$
S_t = \left[S_t^0, ..., S_t^N\right]
$$

Example: (Black-Scholes, $S^0 := B$, $S^1 := S$)

$$
dS_t = \alpha S_t dt + \sigma S_t dW_t,
$$

$$
dB_t = rB_t dt.
$$

Portfolio:

$$
h_t = \left[h_t^0, ..., h_t^N\right]
$$

 $h_t^i =$ number of units of asset i at time $t.$

Value Process:
\n
$$
V_t^h = \sum_{i=0}^N h_t^i S_t^i = \widehat{h_t} S_t
$$
\n
$$
\underbrace{V_t^h = \sum_{i=0}^N h_t^i S_t^i}_{\text{sum}} = \underbrace{V_t^{\text{sum}} \cdot V_t^{\text{sum}}}_{\text{sum}}
$$

Self Financing Portfolios

Definition: (intuitive)

A portfolio is self-financing if there is no exogenous infusion or withdrawal of money. "The purchase of a new asset must be financed by the sale of an old one."

Definition: (mathematical)

A portfolio is self-financing if the value process satisfies

$$
dV_t = \sum_{i=0}^N h_t^i dS_t^i
$$

Major insight:

If the price process S is a **martingale**, and if h is self-financing, then V is a martingale.

NB! This simple observation is in fact the basis of the following theory. s|i
|
|

discret

 Ft° theory

time

 $E\left\{DY_{k}|F_{t-1}\right\} = E\left\{l_{k} \in \mathbb{C}A^{x_{t}}\right\} + \frac{1}{4}E\left\{1 + \frac{1}{4}E\right\}$

DYE

 R_{k} \in $(A \times T)^{4}$

eri
Ka

indone:

Arbitrage

The portfolio u is an **arbitrage** portfolio if

- The portfolio strategy is self financing.
- $V_0 = 0$. • $V_T \geq 0, P-a.s.$ • $P(V_T > 0) > 0$ weaker than on ^p 59

Main Question: When is the market free of arbitrage?

First Attempt

Proposition: If S_t^0, \cdots, S_t^N are P -martingales, then the market is free of arbitrage. not \mathbb{Z}

Proof:

Assume that V is an arbitrage strategy. Since

$$
dV_t = \sum_{i=0}^{N} h_t^i dS_t^i,
$$

 V is a P -martingale, so $V_0 = E^P[V_T] > 0.$ $\sum_{i=0}^{n_t x \approx t}$, emany the same

This contradicts
$$
V_0 = 0
$$
.

True, but useless_o wext page

realistic

Example: (Black-Scholes)

$$
dS_t = \alpha S_t dt + \sigma S_t dW_t,
$$

$$
dB_t = rB_t dt.
$$

(We would have to assume that $\alpha = r = 0$) We now try to improve on this result.

I
I
I
I for ^Sand ^B martingales

Choose S_0 as numeraire

Definition: The **normalized price vector** Z is given by

$$
Z_t = \frac{S_t}{S_t^0} = [1, Z_t^1, ..., Z_t^N]
$$

The **normalized value process** V^Z is given by

$$
V_t^Z = \sum_0^N h_t^i Z_t^i.
$$

Idea:

The arbitrage and self financing concepts should be independent of the accounting unit.

Invariance of numeraire

Proposition: One can show (see the book) that

- S-arbitrage $\iff Z$ -arbitrage.
- S -self-financing $\Longleftrightarrow Z$ -self-financing.

Insight:

• If h self-financing then

$$
dV_t^Z = \sum_1^N h_t^i dZ_t^i
$$

• Thus, if the normalized price process Z is a P martingale, then V^Z is a martingale.

 $dV = U_{\text{t}} dS_{\text{t}}$

 dV_t^{ν} : ht dS_t

Second Attempt

the normalized processes

Proposition: If Z_t^0, \cdots, Z_t^N are P-martingales, then the market is free of arbitrage.

True, but still fairly useless.
\n
$$
b_{y}
$$
 (Mgument as m p. 173)

Example: (Black-Scholes)

$$
dS_t = \alpha S_t dt + \sigma S_t dW_t,
$$

$$
dB_t = rB_t dt.
$$

$$
\mathcal{Z}_{\mathcal{L}}^{\Lambda} \stackrel{\text{S}_{\pm}}{\to} dZ_t^1 = (\alpha - r)Z_t^1 dt + \sigma Z_t^1 dW_t,
$$

$$
dZ_t^0 = 0 dt.
$$

We would have to assume "risk-neutrality", i.e. that $\alpha = r$ to have \mathcal{Z}' is a P-martingale

Arbitrage

Recall that h is an arbitrage if

- \bullet *h* is self financing
- $V_0 = 0$.
- $V_T \geq 0$, $P a.s$.
- $P(V_T > 0) > 0$

This concept is invariant under an equivalent change of measure!

$$
\mathcal{P} \sim \mathcal{R} \Rightarrow \int_{\mathcal{P}(A) > 0}^{\mathcal{P}(A) = 0} \mathcal{L} \Rightarrow \mathcal{R} \mid A = 1
$$
\n
$$
\mathcal{P}(A) = 1 \quad \mathcal{L} \Rightarrow \mathcal{R} \mid A = 1
$$
\n
$$
\mathcal{P}(A) > 0 \quad \mathcal{L} \Rightarrow \mathcal{R} \mid A = 1
$$

Martingale Measures

Definition: A probability measure Q is called an equivalent martingale measure (EMM) if and only if it has the following properties.

• Q and P are equivalent, i.e.

 $Q \sim P$

• The normalized price processes

$$
Z_t^i = \frac{S_t^i}{S_t^0}, \quad i = 0, \dots, N
$$

are Q-martingales.

 $\overline{\mathbf{C}}$ Was now state the main result of arbitrage theory.

First Fundamental Theorem

Theorem: The market is arbitrage free

iff

there exists an equivalent martingale measure.

Comments

- It is very easy to prove that existence of EMM imples no arbitrage (see below).
- The other implication is technically very hard.
- For discrete time and finite sample space Ω the hard part follows easily from the separation theorem for convex sets. sets a rainy
- For discrete time and more general sample space we need the Hahn-Banach Theorem. (formulated as an infinite dimensionalversion of the separation theorem
- For continuous time the proof becomes technically very hard, mainly due to topological problems. See the textbook.

and of lecture ya.

i

Proof that EMM implies no arbitrage

Assume that there exists an EMM denoted by Q . Assume that $P(V_T\,\geq\,0)\,=\,1$ and $P(V_T\,>\,0)\,>\,0.$ Then, since $P\sim Q$ we also have $Q(V_T\geq 0)=1$ and $Q(V_T > 0) > 0.$ we also have $Q(V_T \ge 0) = 1$ and \star
Note: t^{α} $(\sqrt{\tau}) > 0$

Recall:

$$
dV_t^Z = \sum_1^N h_t^i dZ_t^i
$$

 Q is a martingale measure

⇓

 V^Z is a Q-martingale

⇓

$$
V_0 = V_0^Z = E^Q \left[V_T^Z \right] > 0
$$

No arbitrage

Tomas Björk, 2017 182 A All these statements also true for $V^{\boldsymbol{\tau}}_T$ instead of V_T

Choice of Numeraire

The **numeraire** price S_t^0 can be chosen arbitrarily. The most common choice is however that we choose S^0 as the bank account, i.e.

$$
S_t^0=B_t
$$

where

$$
dB_t = r_t B_t dt
$$

Here r is the (possibly stochastic) short rate and we have

$$
B_t = e^{\int_0^t r_s ds}
$$

$$
\left(\text{quormalize}\ \mathbf{B}_t = e^{\int_0^t r_s ds}\right)
$$

Example: The Black-Scholes Model

$$
dS_t = \alpha S_t dt + \sigma S_t dW_t,
$$

$$
dB_t = rB_t dt.
$$

Look for martingale measure. We set $Z = S/B$.

$$
dZ_t = Z_t(\alpha - r)dt + Z_t\sigma dW_t,
$$

Girsanov transformation on $[0, T]$:

$$
\begin{cases} dL_t = L_t \varphi_t dW_t, \\ L_0 = 1. \end{cases}
$$

$$
dQ = L_T dP, \text{ on } \mathcal{F}_T
$$

Girsanov:

$$
dW_t = \varphi_t dt + dW_t^Q,
$$

where W^Q is a Q -Wiener process.

The Q -dynamics for Z are given by

$$
dZ_t = Z_t [\alpha - r + \sigma \varphi_t] dt + Z_t \sigma dW_t^Q.
$$

Unique martingale measure Q , with Girsanov kernel given by $27 - w²$

$$
\varphi_t = \frac{r - \alpha}{\sigma}, \text{ then } d\mathcal{Z}_{\uparrow} = \mathcal{Z}_{\downarrow} \mathbb{F}_{\alpha} dW_{\downarrow}
$$

 Q -dynamics of S : (side remark

$$
dS_t = rS_t dt + \sigma S_t dW_t^Q.
$$

Conclusion: The Black-Scholes model is free of arbitrage.

Pricing

We consider a market $B_t, S^1_t, \ldots, S^N_t$.

Definition:

A contingent claim with delivery time T , is a random variable

$$
X\in\mathcal{F}_T.
$$

"At $t = T$ the amount X is paid to the holder of the claim".

Example: (European Call Option)

$$
X = \max\left[S_T - K, 0\right]
$$

Let X be a contingent T -claim.

Problem: How do we find an arbitrage free price process $\Pi_t[X]$ for X?

Solution

must be arbitrage free, so there must exist a martingale measure Q for $(S_t, \Pi_t[X])$. In particular

> $\Pi_t\left[X\right]$ B_t

must be a Q -martingale, i.e.

$$
\frac{\Pi_t[X]}{B_t} = E^Q \left[\frac{\Pi_T[X]}{B_T} \middle| \mathcal{F}_t \right]
$$

Since we obviously (why?) have

$$
\Pi _{T}\left[X\right] =X
$$

we have proved the main pricing formula.

Risk Neutral Valuation

Theorem: For a T -claim X , the arbitrage free price is given by the formula

$$
\Pi_{t}[X] = E^{Q} \left[e^{-\int_{t}^{T} r_{s} ds} \times X \middle| \mathcal{F}_{t} \right],
$$
\n
$$
\hat{A} \oint \partial B_{t} = \int_{t}^{T} \partial_{t} \partial_{t} \cdot \left[\partial_{t} \partial_{t} \cdot \frac{\partial \partial_{t} \partial_{t}}{\partial_{t}^{2}} \right]
$$
\n
$$
\Pi_{t}(x) = e^{-\int_{t}^{T} (\mathcal{F}_{t} - \mathcal{F}_{t})^{2}} \mathbb{E}^{Q} \left[\mathcal{X} \middle| \mathcal{F}_{t} \right]
$$

Example: The Black-Scholes Model

Q-dynamics:

$$
dS_t = rS_t dt + \sigma S_t dW_t^Q.
$$

NB: S is a Markov process makes Q.

$$
X = \Phi(S_T),
$$

$$
\Pi_t [X] = e^{-r(T-t)} E^Q [\Phi(S_T) | \mathcal{F}_t]
$$

Kolmogorov \Rightarrow $(\text{Ncm}(x) \text{ property})$

$$
\Pi_t [X] = F(t, S_t)
$$

where $F(t, s)$ solves the Black-Scholes equation:

$$
\begin{cases} \frac{\partial F}{\partial t} + rs \frac{\partial F}{\partial s} + \frac{1}{2} \sigma^2 s^2 \frac{\partial^2 F}{\partial s^2} - rF = 0, \\ F(T, s) = \Phi(s). \end{cases}
$$

[Flynman - Kac]

Tomas Björk, 2017 189

Problem

Recall the valuation formula $(p\cdot\sqrt{8})$

$$
\Pi_t \left[X \right] = E^Q \left[e^{-\int_t^T r_s ds} \times X \middle| \mathcal{F}_t \right]
$$

What if there are several different martingale measures Q ?

This is connected with the completeness of the market.

Hedging

Def: A portfolio is a **hedge** against X ("replicates X ") if $\begin{matrix} 1 \\ 1 \end{matrix}$

- \bullet h is self financing
- $V_T = X$, $P a.s$.

Def: The market is **complete** if every X can be hedged.

Pricing Formula:

If h replicates X , then a natural way of pricing X is

$$
\Pi_t[X] = V_t^h \qquad \left(\text{see } p. \text{ 101 for a } \text{ given from } 10 \right)
$$

When can we hedge?

Existence of hedge

$\hat{\psi}$

Existence of stochastic integral representation

Fix T-claim X.

If h is a hedge for X then

$$
\bullet\ \ V^Z_T = \tfrac{X}{B_T}
$$

•
$$
h
$$
 is self financing, i.e.

g, i.e.
\n
$$
dV_t^Z = \sum_1^K h_t^i \left(\frac{\partial^2 V}{\partial t^2} + \frac{\partial^2 V}{\partial t^2} + \frac{\partial^2 V}{\partial t^2}\right)^{-1/2}
$$

Thus V^Z is a Q-martingale. \Rightarrow

$$
V_t^Z = E^Q \left[\frac{X}{B_T} \middle| \mathcal{F}_t \right]
$$

Lemma:

Fix T -claim X . Define martingale M by

$$
M_t = E^Q \left[\frac{X}{B_T} \middle| \mathcal{F}_t \right]
$$

Suppose that there exist predictable processes h^1,\cdots,h^N such that

$$
M_t = x + \sum_{i=1}^{N} \int_0^t h_s^i dZ_s^i,
$$

Then X can be replicated.

Proof

We guess that
\n
$$
M_t^{\frac{1}{2}} = V_t^Z = h_t^B \cdot 1 + \sum_{i=1}^N h_t^i Z_t^i
$$

Define: h^B by

$$
h_t^B = M_t - \sum_{i=1}^N h_t^i Z_t^i.
$$

We have $M_t=V_t^Z$, and we get , by assumption,

$$
dV_t^Z = dM_t = \sum_{i=1}^N h_t^i dZ t^i,
$$

so the portfolio is self financing. Furthermore:

$$
V_T^Z = M_T \underbrace{=}_{\text{det } M} E^Q \left[\frac{X}{B_T} \middle| \mathcal{F}_T \right] = \frac{X}{B_T} \underbrace{=}_{\text{leage}},
$$

end of lecture Gb

Second Fundamental Theorem $FTAP2$

The second most important result in arbitrage theory is the following.

Theorem:

The market is complete

iff

the martingale measure Q is unique.

Proof: It is obvious $(why?)$ that if the market is complete, then Q must be unique. The other is complete, then Q must be unique. The other implication is very hard to prove. It basically relies on duality arguments from functional analysis.

For all At F_1 , lab, can be hedged and hence has a unique pire: for any 2 $\pi_t(1_A B_T) = \frac{E^Q[A_A \overline{H}]}{B_L}$. For $t=0: \frac{m \text{ i} \text{ s.t. } \pi_0(A \overline{H})}{Q(A) \Rightarrow R}$ with $\equiv Q(A) \Rightarrow R$ unique

Black-Scholes Model

 Q -dynamics (recall z_E ⁼ \overline{z}_E $dS_t = rS_t dt + \sigma S_t dW_t^Q,$ $dZ_t = Z_t \sigma dW_t^Q$

$$
M_t = E^Q \left[e^{-rT} X \middle| \mathcal{F}_t \right],
$$

Representation theorem for Wiener processes ⇓ there exists g such that

$$
M_t = M(0) + \int_0^t g_s dW_s^Q.
$$

Thus

$$
M_t = M_0 + \int_0^t h_s^1 dZ_s,
$$

with $h_t^1 = \frac{g_t}{\sigma Z_t}$.

Result: from lemma on g. M4, 195 X can be replicated using the portfolio defined by

$$
h_t^1 = g_t/\sigma Z_t,
$$

$$
h_t^B = M_t - h_t^1 Z_t.
$$

Moral: The Black Scholes model is complete.

Here we didn't need (as on p. 102 that X is if the form $X = \bigcup_{i=1}^n (S_i)$ but see next pagers

Special Case: Simple Claims

Assume X is of the form $X = \Phi(S_T)$ $M_t = E^Q \left[e^{-rT} \Phi(S_T) \right]$ $\vert \, {\bf \mathcal{F}}_{t} \vert$ " , Kolmogorov backward equation $\Rightarrow M_t = f(t, S_t)$ k (Sig & \int ∂f $\frac{\partial f}{\partial t} + rs \frac{\partial f}{\partial s} + \frac{1}{2} \sigma^2 s^2 \frac{\partial^2 f}{\partial s^2} = 0,$ $f(\tilde{T},\tilde{s}) = e^{-rT}\Phi(s).$ Itô \Rightarrow $dM_t = \sigma S_t$ ∂f ∂s $dW^Q_t,$ so $g_t = \sigma S_t \ \cdot$ ∂f ∂s , Replicating portfolio h : h_t^B ∂f , normalized price Markov $dM_t = f_t dt + f_s dS_t = [use PDE] =$ $\mu_{p}^{(0)} = e^{rt}f(t,s)$
 $F(t,s) = e^{rt}f(t,s)$ \mathbf{b}_t

$$
h_t^B = f - S_t \frac{\partial f}{\partial s},
$$
\n
$$
\mathcal{R}_t = \frac{\partial f}{\partial z_t} \leq \frac{S_t \frac{\partial f}{\partial s}}{z_t} = h_t^1 = B_t \frac{\partial f}{\partial s}.
$$
\nInterpretation: $f(t, S_t) = V_t^Z$, *normalized* \mathcal{P}^{th}

Define
$$
F(t, s)
$$
 by
\n
$$
F(t, s) = e^{rt} f(t, s)
$$
\nso $F(t, S_t) = V_t$. Then, from probability $\int e^{rt} f(t, s) ds$ for $\int e^{$

where F solves the Black-Scholes equation

$$
\begin{cases}\n\frac{\partial F}{\partial t} + rs\frac{\partial F}{\partial s} + \frac{1}{2}\sigma^2 s^2 \frac{\partial^2 F}{\partial s^2} - rF = 0, \\
F(T,s) = \Phi(s).\n\end{cases}
$$
\nUse PDE on P-199 and

\n
$$
\frac{\partial F}{\partial t} = r\Phi_t \frac{\partial f}{\partial t} + \Phi_t \frac{\partial f}{\partial t}, \frac{\partial f}{\partial s} = \Phi_t \frac{\partial f}{\partial s} \text{ and } \text{PDF for }
$$

Main Results

- The market is arbitrage free ⇔ There exists a martingale measure Q
- The market is complete $\Leftrightarrow Q$ is unique.
- Every X must be priced by the formula

$$
\Pi_t\left[X\right] = E^Q\left[e^{-\int_t^T r_s ds} \times X \middle| \mathcal{F}_t\right], \text{ (only let } \mathcal{F}_t
$$

for some choice of Q.

- In a non-complete market, different choices of Q will produce different prices for X .
- For a hedgeable claim X , all choices of Q will produce f the same price for X:

$$
\pi_t[X] = V_t = E^Q \left[e^{-\int_t^T r_s ds} \times X \middle| \mathcal{F}_t \right]
$$
\nExample 2017

\nExample 2017

Completeness vs No Arbitrage Rule of Thumb

Question:

When is a model arbitrage free and/or complete?

Answer:

Count the number of risky assets, and the number of random sources.

 $R =$ number of random sources

$$
N = number of risky assets
$$

Intuition:

If N is large, compared to R , you have lots of possibilities of forming clever portfolios. Thus lots of chances of making arbitrage profits. Also many chances of replicating a given claim. $\begin{bmatrix} a_1 & b_1 & b_2 \end{bmatrix}$

Rule of thumb

Generically, the following hold.

• The market is arbitrage free if and only if

$$
N\leq R
$$

• The market is complete if and only if

$$
N \geq R
$$

Example:

The Black-Scholes model.

$$
dS_t = \alpha S_t dt + \sigma S_t dW_t,
$$

$$
dB_t = rB_t dt.
$$

For B-S we have $N = R = 1$. Thus the Black-Scholes model is arbitrage free and complete.

Stochastic Discount Factors

pricing formula under ^P

Given a model under P . For every EMM Q we define the corresponding Stochastic Discount Factor, or SDF, by $\frac{1}{2}$

$$
D_t = e^{-\int_0^t r_s ds} L_t, \quad \Rightarrow \quad \downarrow \downarrow \quad \downarrow \quad \downarrow
$$

where

$$
L_t = \frac{dQ}{dP}, \quad \text{on } \mathcal{F}_t
$$

There is thus a one-to-one correspondence between EMMs and SDFs.

The risk neutral valuation formula for a T-claim X can now be expressed under P instead of under Q .

Proposition: With notation as above we have

$$
\Pi_t[X] = \frac{1}{D_t} E^P[D_T X | \mathcal{F}_t]
$$
\n
$$
\begin{aligned}\n\text{Stan } \text{from } \Pi_t(x) = \mathcal{E} \left[\frac{x}{B_t} \right] \\
\text{Proof: Bayes' formula:} \\
= \frac{E^P \left[\frac{x}{X} \right] \mathcal{F}_t}{\mathcal{E}_t} \mathcal{F}_t} \\
\text{Tomas Björk, 2017} \\
= \frac{E^P \left[\frac{x}{X} \mathcal{F}_t \right] \mathcal{F}_t}{\mathcal{E}_t} \mathcal{F}_t} \\
\text{Let } \mathcal{E} \left[\frac{x}{X} \mathcal{F}_t \right] \mathcal{F}_t\n\end{aligned}
$$

Tomas Björk, 2017

Martingale Property of $S \cdot D$

Proposition: If S is an arbitrary price process, then the process

 S_tD_t

is a P -martingale.

Proof: Bayes' formula. Same trick: we know $E^2\left[\frac{S}{R_0}\right]$ $F_t\left[\frac{S_t}{R_L}\right]$ $E^P\left[\frac{\frac{1}{2} \sum_{i=1}^{n} \left(\frac{1}{2} \right) \bar{J}_t}{\bar{J}_t} \right] = \frac{\mathcal{S}_1}{\mathcal{S}_1}$

Cent of Lecture 4cl