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Pure Currency Contracts

Consider two markets, domestic (England) and foreign
(USA).

rd = domestic short rate

rf = foreign short rate

X = exchange rate

NB! The exchange rate X is quoted as

units of the domestic currency

unit of the foreign currency

Tomas Björk, 2017 250

4 generally
different

If 1EUR 1,0g USD then

to



Simple Model (Garman-Kohlhagen)

The P -dynamics are given as:

dXt = Xtαdt + XtσdWt,

dBd
t = rdBd

t dt,

dBf
t = rfBf

t dt,

Main Problem:
Find arbitrage free price for currency derivative, Z, of
the form

Z = Φ(XT )

Typical example: European Call on X.

Z = max [XT − K, 0]
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Naive idea

For the European Call, use the standard Black-Scholes
formula, with S replaced by X and r replaced by rd.

Is this OK?
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NO!

WHY?
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Main Idea

• When you buy stock you just keep the asset until
you sell it.

• When you buy dollars, these are put into a bank
account, giving the interest rf .

Moral:
Buying a currency is like buying a dividend-paying
stock with dividend yield q = rf .
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Technique

• Transform all objects into domestically traded
asset prices.

• Use standard techniques on the transformed model.
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Transformed Market

1. Investing foreign currency in the foreign bank gives
value dynamics in foreign currency according to

dBf
t = rfBf

t dt.

2. Bf units of the foreign currency is worth X · Bf in
the domestic currency.

3. Trading in the foreign currency is equivalent to
trading in a domestic market with the domestic
price process

B̃f
t = Bf

t · Xt

4. Study the domestic market consisting of

B̃f , Bd
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Market dynamics

dXt = Xtαdt + XtσdW

B̃f
t = Bf

t · Xt

Using Itô we have domestic market dynamics

dB̃f
t = B̃f

t

(
α + rf

)
dt + B̃f

t σdWt

dBd
t = rdBd

t dt

Standard results gives us Q-dynamics for domestically
traded asset prices:

dB̃f
t = B̃f

t rddt + B̃f
t σdWQ

t

dBd
t = rdBd

t dt

Itô gives us Q-dynamics for Xt = B̃f
t /Bf

t :

dXt = Xt(r
d − rf)dt + XtσdWQ

t
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Risk neutral Valuation

Theorem: The arbitrage free price Πt [Φ] is given by
Πt [Φ] = F (t, Xt) where

F (t, x) = e−rd(T−t)EQ
t,x [Φ(XT )]

The Q-dynamics of X are given by

dXt = Xt(r
d − rf)dt + XtσdWQ

t
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Pricing PDE

Theorem:The pricing function F solves the boundary
value problem

∂F

∂t
+ x(rd − rf)

∂F

∂x
+

1

2
x2σ2∂2F

∂x2
− rdF = 0,

F (T, x) = Φ(x)
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Currency vs Equity Derivatives

Proposition: Introduce the notation:

• F 0(t, x) = the pricing function for the claim Z =
Φ(XT ), where we interpret X as the price of an
ordinary stock without dividends.

• F (t, x) = the pricing function of the same claim
when X is interpreted as an exchange rate.

Then the following holds

F (t, x) = F0

(
t, xe−rf(T−t)

)
.
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Currency Option Formula

The price of a European currency call is given by

F (t, x) = xe−rf(T−t)N [d1] − e−rd(T−t)KN [d2] ,

where

d1 =
1

σ
√

T − t

{
ln
( x

K

)
+

(
rd − rf +

1

2
σ2

X

)
(T − t)

}

d2 = d1(t, x) − σ
√

T − t
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Martingale Analysis

Qd = domestic martingale measure

Qf = foreign martingale measure

Lt =
dQf

dQd
, Ld

t =
dQd

dP
, Lf

t =
dQf

dP

P -dynamics of X

dXt = Xtαtdt + XtσtdWt

where α and σ are arbitrary adapted processes and W
is P -Wiener.

Problem: How are Qd and Qf related?
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Main Idea

Fix an arbitrary foreign T -claim Z.

• Compute foreign price and change to domestic
currency. The price at t = 0 will be

Π0 [Z] = X0E
Qf
[
e−

R T
0 rf

s dsZ
]

This can be written as

Π0 [Z] = X0E
Qd
[
LTe−

R T
0 rf

s dsZ
]

• Change into domestic currency at T and then
compute arbitrage free price. This gives us

Π0 [Z] = EQd
[
e−

R T
0 rd

sdsXT · Z
]

• These expressions must be equal for all choices of
Z ∈ FT .
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We thus obtain

EQd
[
e−

R T
0 rd

sdsXT · Z
]

= X0E
Qd
[
LTe−

R T
0 rf

s dsZ
]

for all T -claims Z. This implies the following result.

Theorem: The exchange rate X is given by

Xt = X0e
R t
0 (rd

s−rf
s )dsLt

alternatively by

Xt = X0
Df

t

Dd
t

where Dd
t is the domestic stochastic discount factor

etc.

Proof: The last part follows from

L =
dQf

dQd
=

dQf

dP

/
dQd

dP
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Qd-Dynamics of X

In particular, since L is a Qd-martingale the Qd

dynamics of L are of the form

dLt = LtϕtdW d
t

where W d is Qd-Wiener. From

Xt = X0e
R t
0 (rd

s−rf
s )dsLt

the Qd-dynamics of X follows as

dXt = (rd
t − rf

t )Xtdt + XtϕtdW d
t

so the Girsanov kernel ϕ equals the exchange rate
volatility σ and we have the general Qd dynamics.

Theorem: The Qd dynamics of X are of the form

dXt = (rd
t − rf

t )Xtdt + XtσtdW d
t
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Market Prices of Risk

Recall
Dd

t = e−
R t
0 rd

sdsLd
t

We also have
dLd

t = Ld
tϕ

d
tdWt

where −ϕd
t = λd is the domestic market price of risk

and similar for ϕf etc. From

Xt = X0
Df

t

Dd
t

we now easily obtain

dXt = Xtαtdt + Xt

(
λd

t − λf
t

)
dWt,

where we do not care about the exact shape of α. We
thus have

Theorem: The exchange rate volatility is given by

σt = λd
t − λf

t
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Siegel’s Paradox

Assume that the domestic and the foreign markets are
risk neutral and assume constant short rates. We now
have the following surprising (?) argument.

A: Let us consider a T claim of 1 dollar. The arbitrage
free dollar value at t = 0 is of course

e−rfT

so the Euro value at at t = 0 is given by

X0e
−rfT .

The 1-dollar claim is, however, identical to a T -claim
of XT euros. Given domestic risk neutrality, the Euro
value at t = 0 is then

e−rdTEP [XT ] .

We thus have

X0e
−rfT = e−rdTEP [XT ]
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Siegel’s Paradox ct’d

B: We now consider a T -claim of one Euro and
compute the dollar value of this claim. The Euro
value at t = 0 is of course

e−rdT

so the dollar value is

1

X0
e−rdT .

The 1-Euro claim is identical to a T -claim of X−1
T

Euros so, by foreign risk neutrality, we obtain the
dollar price as

e−rfTEP

[
1

XT

]

which gives us

1

X0
e−rdT = e−rfTEP

[
1

XT

]
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Siegel’s Paradox ct’d

Recall our earlier results

X0e
−rfT = e−rdTEP [XT ]

1

X0
e−rdT = e−rfTEP

[
1

XT

]

Combining these gives us

EP

[
1

XT

]
=

1

EP [XT ]

which, by Jensen’s inequality, is impossible unless XT

is deterministic. This is sometimes referred to as (one
formulation of) “Siegel’s paradox.”

It thus seems that Americans cannot be risk neutral at
the same time as Europeans.

What is going on?
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Formal analysis of Siegel’s Paradox

Question: Can we assume that both the domestic and
the foreign markets are risk neutral?

Answer: Generally no.

Proof: The assumption would be equivalent to
assuming the P = Qd = Qf i.e.

λd
t = λf

t = 0

However, we know that

σt = λd
t − λf

t

so we would need to have σt = 0 i.e. a non-stochastic
exchange rate.
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Moral

The previous slide gave us the mathematical result, but
the intuitive question remains why Americans cannot
be risk neutral at the same time as Europeans.

The solution is roughly as follows.

• Risk neutrality (or risk aversion) is always defined
in terms of a given numeraire.

• It is not an attitude towards risk as such.

• You can therefore not be risk neutral w.r.t two
different numeraires at the same time unless the
ratio between them is deterministic.

• In particular we cannot have risk neutrality w.r.t.
Dollars and Euros at the same time.
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Continuous Time Finance

Change of Numeraire

Ch 26

Tomas Björk
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Recap of General Theory

Consider a market with asset prices

S0
t , S1

t , . . . , SN
t

Theorem: The market is arbitrage free

iff

there exists an EMM, i.e. a measure Q such that

• Q and P are equivalent, i.e.

Q ∼ P

• The normalized price processes

S0
t

S0
t

,
S1

t

S0
t

, . . . ,
SN

t

S0
t

are Q-martingales.
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Recap continued

Recall the normalized market

(
Z0

t , Z1
t , . . . ZN

t

)
=

(
S0

t

S0
t

,
S1

t

S0
t

. . . ,
SN

t

S0
t

)

• We obviously have

Z0
t ≡ 1

• Thus Z0 is a risk free asset in the normalized
economy.

• Z0 is a bank account in the normalized economy.

• In the normalized economy the short rate is zero.
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Dependence on numeraire

• The EMM Q will obviously depend on the choice
of numeraire, so we should really write Q0 to
emphasize that we are using S0 as numeraire.

• So far we have only considered the case when the
numeraire asset is the bank account, i.e. when
S0

t = Bt. In this case, the martingale measure
QB is referred to as “the risk neutral martingale
measure”.

• Henceforth the notation Q (without upper case
index) will only be used for the risk neutral
martingale measure, i.e. Q = QB.

• We will now consider the case of a general
numeraire.
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General change of numeraire.

• Consider a financial market, including a bank
account B.

• Assume that the market is using a fixed risk neutral
measure Q as pricing measure.

• Choose a fixed asset S as numeraire, and denote
the corresponding martingale measure by QS.

Problems:

• Determine QS, i.e. determine

Lt =
dQS

dQ
, on Ft

• Develop pricing formulas for contingent claims using
QS instead of Q.
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Constructing QS

Fix a T -claim X. From general theory we know that

Π0 [X] = EQ

[
X

BT

]

Since QS is a martingale measure for the numeraire S,
the normalized process

Πt [X]

St

is a QS-martingale. We thus have

Π0 [X]

S0
= ES

[
ΠT [X]

ST

]
= ES

[
X

ST

]
= EQ

[
LT

X

ST

]

From this we obtain

Π0 [X] = EQ

[
LT

X · S0

ST

]
,
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For all X ∈ FT we thus have

EQ

[
X

BT

]
= EQ

[
LT

X · S0

ST

]

Recall the following basic result from probability theory.

Proposition: Consider a probability space (Ω,F, P )
and assume that

E [Y · X] = E [Z · X] , for all Z ∈ F.

Then we have

Y = Z, P − a.s.

From this result we conclude that

1

BT
= LT

S0

ST
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Main result

Proposition: The likelihood process

Lt =
dQS

dQ
, on Ft

is given by

Lt =
St

Bt
· 1

S0
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Easy exercises

1. Convince yourself that L is a Q-martingale.

2. Assume that a process At has the property that
At/Bt is a Q martingale. Show that this implies
that At/St is a QS-martingale. Interpret the result.
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Pricing

Theorem: For every T -claim X we have the pricing
formula

Πt [X] = StE
S

[
X

ST

∣∣∣∣Ft

]

Proof: Follows directly from the QS-martingale
property of Πt [X] /St.

Note 1: We observe St directly on the market.

Note 2: The pricing formula above is particularly
useful when X is of the form

X = ST · Y

In this case we obtain

Πt [X] = StE
S [Y | Ft]
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Important example

Consider a claim of the form

X = Φ
[
S0

T , S1
T

]

We assume that Φ is linearly homogeneous, i.e.

Φ(λx, λy) = λΦ(x, y), for all λ > 0

Using Q0 we obtain

Πt [X] = S0
t E0

[
Φ
[
S0

T , S1
T

]

S0
T

∣∣∣∣∣
Ft

]

Πt [X] = Πt [X] = S0
t E0

[
Φ

(
1,

S1
T

S0
T

)∣∣∣∣Ft

]
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Important example cnt’d

Proposition: For a claim of the form

X = Φ
[
S0

T , S1
T

]
,

where Φ is homogeneous, we have

Πt [X] = S0
t E0 [ϕ (ZT )| Ft]

where

ϕ (z) = Φ [1, z] , Zt =
S1

t

S0
t
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Exchange option

Consider an exchange option, i.e. a claim X given by

X = max
[
S1

T − S0
T , 0

]

Since Φ(x, y) = max [x − y, 0] is homogeneous we
obtain

Πt [X] = S0
t E0 [max [ZT − 1, 0]| Ft]

• This is a European Call on Z with strike price K.

• Zero interest rate.

• Piece of cake!

• If S0 and S1 are both GBM, then so is Z, and the
price will be given by the Black-Scholes formula.
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Identifying the Girsanov Transformation

Assume the Q-dynamics of S are known as

dSt = rtStdt + StvtdWQ
t

Lt =
St

S0Bt

From this we immediately have

dLt = LtvtdWQ
t .

and we can summarize.

Theorem: The Girsanov kernel is given by the
numeraire volatility vt, i.e.

dLt = LtvtdWQ
t .
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Recap on zero coupon bonds

Recall: A zero coupon T -bond is a contract which
gives you the claim

X ≡ 1

at time T .

The price process Πt [1] is denoted by p(t, T ).

Allowing a stochastic short rate rt we have

dBt = rtBtdt.

This gives us

Bt = e
R t
0 rsds,

and using standard risk neutral valuation we have

p(t, T ) = EQ
[
e−

R T
t rsds

∣∣∣Ft

]

Note:
p(T, T ) = 1
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The forward measure QT

• Consider a fixed T .

• Choose the bond price process p(t, T ) as numeraire.

• The corresponding martingale measure is denoted
by QT and referred to as “the T -forward measure”.

For any T claim X we obtain

Πt [X] = p(t, T )EQT
[

ΠT [X]

p(T, T )

∣∣∣∣Ft

]

We have

ΠT [X] = X, p(T, T ) = 1

Theorem: For any T -claim X we have

Πt [X] = p(t, T )EQT
[X| Ft]
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A general option pricing formula

European call on asset S with strike price K and maturity T .

X = max [ST − K, 0]

Write X as

X = (ST − K) · I {ST ≥ K} = ST I {ST ≥ K}− KI {ST ≥ K}

Use QS on the first term and QT on the second.

Π0 [X] = S0 · QS [ST ≥ K] − K · p(0, T ) · QT [ST ≥ K]

Tomas Björk, 2017 288

and use Note 2 on p287

bothforwardmealy PITAspicy
and p2818

Exercise find similar expression for TAX

end of lecture 6C


