Continuous Time Finance

Stochastic Control Theory
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1. Dynamic programming.

2. Investment theory.
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1. Dynamic Programming

e T he basic idea.
e Deriving the HJB equation.

e [ he verification theorem.

e The linear quadratic regulator. [ lass\c OXgrpe 'IEBW'
Systome thascy \
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Problem Formulation

T
max E / F(t, Xt, ut)dt + (I)(XT)
v 0
: W
subject to Mol P{OCQD’S e fired u /X%;b(%,
dXti: v (t, Xt, ut) dt + o (t, Xt, ut) th
XO — o,

—

w € ULX,), vt o =W (fralltx)

We will only consider feedback control laws, i.e.
controls of the form

ur = ul(t, X o S by
: ( t) " Mﬁl cHul f‘@%\w‘/
¥
Terminology: .
X = state variable X((;éR
. @\L
uw = control variable U\,bé v
U = control constraint u < P

Note: No state space constraints. {4.9. ><£ =z 0)

—
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Main idea

e Embedd the problem above in a family of problems
indexed by starting point in time and space. Se= p 23

e Tie all these problems together by a PDE: the
Hamilton Jacobi Bellman equation. §S<e p.32%

e The control problem is reduced to the problem of
solving the deterministic HJB equation.
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Some notation

e For any fixed vector u € RF, the functions u, o
and C'" are defined by

qu(t’ LC) — :u( )
c“(t,z) = o(t,x,u),
C"(t,x) = o(t,z,u)o(t,z,u)"

(—@"I'Z. Uy = u (‘6;7‘3

e For any control law u, the functions p*, o, C(t, x)
and F(t,x) are defined by

ptz) = plt z,ua(x)),
c'(t,x) = o(t,z,u(t,x)),
C(t,z) = o(t,z,u(t,x))o(t, z,u(t,z)),
FY(t,z) = F(t,z,u(t,x))
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More notation

e For any fixed vector u € RE the partial differential
operator A" is defined by

=)
[é'wwaxaz n& x“)

e For any control law u, the partial differential
operator A" is defined by

:;Mi(t,x ZC txaxi(?xj.

’Lj—

" 0
Z C (¢, x) (9:13@-(?:133-'

’Lj—

e For any control law u, the process X '.is the solution

of the SDE nobekion |

dXtu — U (t, X;l, ut) dt + o (t, X;l, ut) th,

where
w = u(t, X}
$3- ﬂXi /u[-% Xf U/‘tx \\JJG+V[ )
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Embedding the problem o P-d2Y

Malys M% of- prodems %,x

For every fixed (¢, z) the control problem P; . is defined
as the problem to maximize

T
Et,a: F(87 X;Jl? uS)dS + P (X%) ’
t
T ° T ~
=80 ¢ For QR o, =€ [[ Fuerp [y
given the dynamics /k\

Yiaclev
dXY = pu(s, X us)ds+o(s, X, us)dWs,
Xt - &€,

and the constraints

u(s,y) € U, V(s,y)€lt,T] x R".

The original problem was Py ., &) épC(/iM f‘/V\QWW\(L

- ™ ?'L 38
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The optimal value function

e [he value function
J: Ry xR"xU— R

is defined by  ((2eilr tue dwi Kol valwe at
Hiwe 1)

T
T(t ) = E / F(s, X" u,)ds + & (X2)
t

given the dynamics above.

e The optimal value function
V: R_|_ x R" — R

is defined by note:
V(t,x) =sup J(t,z,u). V C‘T,%) ‘§ )

uclU

e \We want to derive a PDE for V.

% Bup 1 abtid ) T
&< L=Ut = U L)
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Assumptions

We assume:

e There exists an optimal control law 1. [’.» Ul te,x)

v, xe)s

e The optimal value function V' is regular in the sense
that V € C'2.

e A number of limiting procedures in the following
arguments can be justified. [we Wil weale bw? §+c¢g>
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Bellman Optimality Principle

Theorem: If a control law 1 is optimal for the time

interval [t,T] then it is also optimal for all smaller
intervals [s, T'| where s > t.

Proof: Exercise. [w&o a_ Cown tastecmce.Ho
A G o ajeitvie  Hout
o A were

X perftmang

\
|

-
+ 5 T

ond. o [etiuxe Yoo
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Basic strategy

To derive the PDE do as follows:

e Fix (t,z) € (0,T) x R™.

e Choose a real number h (interpreted as a “small”
time increment).

e Choose an arbitrary control law u on the time in%rval
/
t,t + hl.

Now define the control law u* by

. | u(s,y), (s,y)elt,t+h] xR"
u(s,y)—{ u(s,y), (s,y)e({t+hT]xR"

A~

In other words, if we use u* then we use the arbitrary
control u during the time interval [t,t + h], and then
we switch to the optimal control law during the rest of

the time period.
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Basic idea

The whole idea of DynP boils down to the following
procedure. v

e Given the point (t,x) above, we consider the
following two strategies over the time interval [t, T:

I: Use the optimal law 1.

I1: Use the control law u* defined abovesn, | -332
Ui you can]
o g\o/rm/oy;\e/ the expected utilities obtained by the
respective strategies.
l
e Using the M fact that u is least as good

as u*, and letting h tend to zero, we obtain our
fundamental PDE.
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Strategy values
17« Expected utility for u:
J(t,x,0) =V(t, ) Z"[??J% )M"‘.‘m\"
vV >
jL-. Expected utility for u*: gp(j\,-b e une WWV%E’FJ’

e The expected utility for [t,t 4+ h) is given by

t+h
E / F (s, X" u,)ds
t

t,x

e Conditional expected utility over [t + h,T], given

(t,x): i \\,.,4—
E,, [V(t+h,@] Far’d fm

hdngd 7
e Total expected utility for Strategy Il is g W V’v@’ W

t+h
/ F (s, X" u.)ds + V(¢ + h, Xt+h)]. ©
t

\p = "=
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Comparing strategies

We have trivially (\/ (esuits fﬁpw» Gy‘ﬂuw«& &\) hetgy

T % ptind)
t+h
Q’*} V(t,x) > E,, / F(s, X}, us)ds+V(t+h,Xi,)|=
(
Remark (4nvial ) - V‘Tl”

We have equality above if and only if the control law
u is the optimal law 1.

Now use |to to obtain

V(t+h,Xh,) =V(tx)

t+h
—I—/ {%—‘;(S,X;l)—l-AuV(S,X;)}dS
t

t+h

—I—/ V.V(s, XHo"dWs,

W — - E{ ’
Lo condrtimal expeifebm Sl E]’V

and plug into the formula above.

i o buewottivgals
(Zg—)m ID'-%%V/ =
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We obtain/ ol \Arf’V:/"J (M) /

E

t,x

t+h oV
/ {F(S,Xu us)—i—g(s Xu)—‘rAuV(S Xu)}dS SO
t

Going to the limit:
Divide by h, move h within the expectation and let & tend to zero.

We get/ ceoall. )L\é__,..'_r

F(t T, u) + %_‘t/(t x)+ AV (t,z) <0,

1 [ GDtr > gHY A
¥ o >

forkuacs

Tomas Bjork, 2017



Recall I’F(M ?{(/\[.IOKB mu:

F(t,z,u) + %—‘t/(t, xz)+ AV (t,x) <0,

This holds for all © = u(t, x), with equality if and only

. A ————
if u=nu.

We thus obtain the HJB equation

8—V(t, x) + sup {F(t,z,u) + AV (t,z)} = 0.
ot uelU
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The HJB equation

Theorem:

: : : 0.
Under Wwassumptlons the foH/wmg hold:

I: V satisfies the Hamilton—Jacobi—Bellman equation

O (ta) + sup (F(t2.u) + AV (6,2)} = 0,

0 uelU
V(T,z) = ®(x),

Il: For each (¢,z) € [0,T] x R™ the supremum in the
HJB equation above is attained by v = u(¢, x), i.e. by
the optimal control.
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Logic and problem

Note: We have shown that if V' is the optimal value
function, and if V is regular enough, then V satisfies
the HJB equation. The HJB eqgn is thus derived
as aondition, and requires strong ad hoc
regularity assumptions, alternatively the use of viscosity
solutions techniques.

Problem: Suppose we have solved the HJB equation.
Have we then found the optimal value function and
the optimal control law? In other words, is HIB a
sufficient condition for optimality.

Answer: Yes! This follows from the Verification
Theorem.

mh b letbwe VY
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The Verification Theorem

Suppose that we have two functions H (¢, x) and g(t, x), such
that -

e H is sufficiently integrable, and solves the HJB equation

oOH
_(tam) —|—8up{F(t,:L',u) —|—AuH(t,$)} = 0,
ot uelU

H(T,z) = ®(x),
e For each fixed (¢, x), the supremum in the expression

ig(g{F(t,w,u) + A"H (t,z)} & ‘322; %

is attained by the choice u = g(t, x). endn H’)X‘B

Then the following hold.
i el
1. The optimal value function V' to the/gontrol problem is given

by .
V(t,z) = H(t,x), ¥ v hor SL0K

2. There exists an optimal control law 1, and in fact
u(t, z) = g(t, x)

’PC-W'%( ?/((’l\apg ZC—cz beok L ()-ﬂl "1o}>
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Handling the HJB equation («QW”"‘ ‘9’9)

1. Consider the HJB equation for V.
2. Fix (t,xz) € [0, T] x R"™ and solve, the static optimization
problem

(maxiwinget i ) max [F(t, z,u) + AV (t,z)] &} stiae 340

Here u is the only variable, whereas t and x are fixed
parameters. The functions F', i, o and V' are considered as
given.

3. The optimal @, will depend on t and x, and on the function
V' and its partial derivatives. We thus write @ as

a=u(t,z;V). (4)

4. The function G (t,x; V) is our candidate for the optimal
control law, but since we do not know V' this description is

incomplete. Therefore we substitute the expression for 4 into
the PDE , giving us the highly nonlinear (why?) PDE

%_Z<t,w>+Fﬁ(t,as>+Aﬁ tz)V(it,z) = 0,
] V((T,z) = &(x).
s

5. Now we solve the PDE above! Then we put the solution V
into expression (4). Using the verification theorem we can
identify V' as the optimal value function, and 4 as the optimal

control law. i .
Does e Wi . %
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Making an Ansatz

e The hard work of dynamic programming consists in
solving the highly nonlinear HJB equation

e There are no general analytic methods available
for this, so the number of known optimal control

problems with an analytic solution is very small
indeed.

e In an actual case one usually tries to guess a
solution, i.e. we typically make a parameterized
Ansatz for V then use the PDE in order to identify
the parameters.

e Hint: V often inherits some structural properties
from the boundary function ® as well as from ’Ehe
instantaneous utility function F. [% v qEriene )

e Most of the known solved control problems have,
to some extent, been “rigged” in order to be
analytically solvable.

Tomas Bjork, 2017 342



EYAMPLE T
%WAW(OL’ o Jon§ &
o N
/ '?WWWI (owte
The Linear Quadratic Regulator
\ [szdﬁm la -S \

T 1
/ {QX; + Ru;}dt + HX7 | , Xt F
0

W
T

with dynamics

dXt = {AXt + But} dt + Cth WAM%DU\MA{\«A(
A o Exid U His gy GEM R o Xt OU prowess
LOG owsmC Prokow,

Er0~pli\Ne want to control a vehicle in such a way that it stays
close to the origin (the terms Qz? and Hz?) while at
the same time keeping the “energy” Ru? small.

Here X; € R and u; € R, and we impose no control
constraints on w.

The real numbers ), R, H, A, B and C are assumed
to be known. We assume that R is strictly positive.
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Handling the Problem

(RSN
A= o +Q'Fm
The HJB equation becomes [M’b e WAZ: o\Kﬁ “ o(fl_,,g—”w\/

%

E(t’ r) + infucgr {Q£E2 + Ru? + V,(t,z) [Az + Bu]}
| + 1%V pyc2 =0,
. V(T,z) = Haz"

For each fixed choice of (¢, x) we now have to solve the static unconstrained
optimization problem to minimize

Qx* + Ru® + V,(t,z) [Az + Bu).
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The problem was:
muin Qx? + Ru? + V,(t,z) [Az + Bu].
Since R > 0 we set the u-derivative to zero and obtain
2Ru = -V, B,

which gives us the optimal u as

Note: This is our candidate of optimal control law,
but it depends on the unkown function V.

We now make an educated guess about the structure
of V.
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From the boundary function Hz? and the term Qz? in )
the cost function we make the Ansatz 1,) M

—  \oe V@
V(t,x) = P(t)z” +&(t),
where P(t) and ¢(t) are deterministic function7/{30 %IW

,_/WN./

With this trial solution we have,

%

E(tﬁlz) — P$2 ‘|‘£, é
Vi(t,z) = 2Pz, (P =Pk) erc.)
U = —%PJZ. (}"‘ ¢ - 3‘/{‘)

Inserting these expressions into the HJB equation we
get

:I:2{P+Q—B—2P2+2AP}
FAPTZ N T Q+PC=0) &J
' Z
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We thus get the following ODE for P

. 2
P — %P2 - 2AP _ Q?
P(T) = H AL
- War:
and we can integrate directly for@?. - \,l(;(/)
= —C?P,
Qg = -cp
Q(T) = 0.

The # ODE for P is a Riccati equation. The equation
for @ can then be integrated directly, pmcc gom fuwe P

Final Result for LQ: (Wotb HuA T o wot @ )
m\:{»a/

Vt,z) = P(t)a*+ TC2P(s)ds,
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