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1. Dynamic programming.

2. Investment theory.
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1. Dynamic Programming

• The basic idea.

• Deriving the HJB equation.

• The verification theorem.

• The linear quadratic regulator.
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Problem Formulation

max
u

E

[∫ T

0
F (t, Xt, ut)dt + Φ(XT )

]

subject to

dXt = µ (t,Xt, ut) dt + σ (t,Xt, ut) dWt

X0 = x0,

ut ∈ U(t, Xt), ∀t.

We will only consider feedback control laws, i.e.
controls of the form

ut = u(t, Xt)

Terminology:

X = state variable

u = control variable

U = control constraint

Note: No state space constraints.
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Main idea

• Embedd the problem above in a family of problems
indexed by starting point in time and space.

• Tie all these problems together by a PDE: the
Hamilton Jacobi Bellman equation.

• The control problem is reduced to the problem of
solving the deterministic HJB equation.
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Some notation

• For any fixed vector u ∈ Rk, the functions µu, σu

and Cu are defined by

µu(t, x) = µ(t, x, u),

σu(t, x) = σ(t, x, u),

Cu(t, x) = σ(t, x, u)σ(t, x, u)′.

• For any control law u, the functions µu, σu, Cu(t, x)
and F u(t, x) are defined by

µu(t, x) = µ(t, x,u(t, x)),

σu(t, x) = σ(t, x,u(t, x)),

Cu(t, x) = σ(t, x,u(t, x))σ(t, x,u(t, x))′,

F u(t, x) = F (t, x,u(t, x)).
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More notation

• For any fixed vector u ∈ Rk, the partial differential
operator Au is defined by

Au =
n∑

i=1

µu
i (t, x)

∂

∂xi
+

1

2

n∑

i,j=1

Cu
ij(t, x)

∂2

∂xi∂xj
.

• For any control law u, the partial differential
operator Au is defined by

Au =
n∑

i=1

µu

i (t, x)
∂

∂xi
+

1

2

n∑

i,j=1

Cu

ij(t, x)
∂2

∂xi∂xj
.

• For any control law u, the process Xu is the solution
of the SDE

dXu

t = µ (t, Xu

t ,ut) dt + σ (t, Xu

t ,ut) dWt,

where
ut = u(t, Xu

t )
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Embedding the problem

For every fixed (t, x) the control problem Pt,x is defined
as the problem to maximize

Et,x

[∫ T

t
F (s, Xu

s , us)ds + Φ (Xu

T )

]

,

given the dynamics

dXu

s = µ (s,Xu

s ,us) ds + σ (s,Xu

s ,us) dWs,

Xt = x,

and the constraints

u(s, y) ∈ U, ∀(s, y) ∈ [t, T ] × Rn.

The original problem was P0,x0.
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The optimal value function

• The value function

J : R+ × Rn × U → R

is defined by

J (t, x,u) = E

[∫ T

t
F (s, Xu

s ,us)ds + Φ (Xu

T )

]

given the dynamics above.

• The optimal value function

V : R+ × Rn → R

is defined by

V (t, x) = sup
u∈U

J (t, x,u).

• We want to derive a PDE for V .
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Assumptions

We assume:

• There exists an optimal control law û.

• The optimal value function V is regular in the sense
that V ∈ C1,2.

• A number of limiting procedures in the following
arguments can be justified.
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Bellman Optimality Principle

Theorem: If a control law û is optimal for the time
interval [t, T ] then it is also optimal for all smaller
intervals [s, T ] where s ≥ t.

Proof: Exercise.
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Basic strategy

To derive the PDE do as follows:

• Fix (t, x) ∈ (0, T ) × Rn.

• Choose a real number h (interpreted as a “small”
time increment).

• Choose an arbitrary control law u on the time inerval
[t, t + h].

Now define the control law u! by

u!(s, y) =

{
u(s, y), (s, y) ∈ [t, t + h] × Rn

û(s, y), (s, y) ∈ (t + h, T ] × Rn.

In other words, if we use u! then we use the arbitrary
control u during the time interval [t, t + h], and then
we switch to the optimal control law during the rest of
the time period.
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Basic idea

The whole idea of DynP boils down to the following
procedure.

• Given the point (t, x) above, we consider the
following two strategies over the time interval [t, T ]:

I: Use the optimal law û.

II: Use the control law u! defined above.

• Compute the expected utilities obtained by the
respective strategies.

• Using the obvious fact that û is least as good
as u!, and letting h tend to zero, we obtain our
fundamental PDE.
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Strategy values

Expected utility for û:

J (t, x, û) = V (t, x)

Expected utility for u!:

• The expected utility for [t, t + h) is given by

Et,x

[∫ t+h

t
F (s, Xu

s ,us) ds

]

.

• Conditional expected utility over [t + h, T ], given
(t, x):

Et,x

[
V (t + h,Xu

t+h)
]
.

• Total expected utility for Strategy II is

Et,x

[∫ t+h

t
F (s,Xu

s ,us) ds + V (t + h,Xu

t+h)

]

.
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Comparing strategies

We have trivially

V (t, x) ≥ Et,x

[∫ t+h

t
F (s, Xu

s ,us) ds + V (t + h,Xu

t+h)

]

.

Remark
We have equality above if and only if the control law
u is the optimal law û.

Now use Itô to obtain

V (t + h,Xu

t+h) = V (t, x)

+

∫ t+h

t

{
∂V

∂t
(s, Xu

s ) + AuV (s, Xu

s )

}
ds

+

∫ t+h

t
∇xV (s, Xu

s )σudWs,

and plug into the formula above.

Tomas Björk, 2017 335

U results from optimal is strategy
I is optimal

trivial

Yonatmaexptation EE IE70
of a truemartingale
At or p 334



We obtain

Et,x

[∫ t+h

t

{
F (s, Xu

s ,us) +
∂V

∂t
(s, Xu

s ) + AuV (s, Xu

s )

}
ds

]

≤ 0.

Going to the limit:
Divide by h, move h within the expectation and let h tend to zero.
We get

F (t, x, u) +
∂V

∂t
(t, x) + AuV (t, x) ≤ 0,
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Recall

F (t, x, u) +
∂V

∂t
(t, x) + AuV (t, x) ≤ 0,

This holds for all u = u(t, x), with equality if and only
if u = û.

We thus obtain the HJB equation

∂V

∂t
(t, x) + sup

u∈U
{F (t, x, u) + AuV (t, x)} = 0.
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The HJB equation

Theorem:
Under suitable regularity assumptions the follwing hold:

I: V satisfies the Hamilton–Jacobi–Bellman equation

∂V

∂t
(t, x) + sup

u∈U
{F (t, x, u) + AuV (t, x)} = 0,

V (T, x) = Φ(x),

II: For each (t, x) ∈ [0, T ] × Rn the supremum in the
HJB equation above is attained by u = û(t, x), i.e. by
the optimal control.
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Logic and problem

Note: We have shown that if V is the optimal value
function, and if V is regular enough, then V satisfies
the HJB equation. The HJB eqn is thus derived
as a necessary condition, and requires strong ad hoc

regularity assumptions, alternatively the use of viscosity
solutions techniques.

Problem: Suppose we have solved the HJB equation.
Have we then found the optimal value function and
the optimal control law? In other words, is HJB a
sufficient condition for optimality.

Answer: Yes! This follows from the Verification
Theorem.
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The Verification Theorem

Suppose that we have two functions H(t, x) and g(t, x), such
that

• H is sufficiently integrable, and solves the HJB equation
8

>

<

>

:

∂H

∂t
(t, x) + sup

u∈U
{F (t, x, u) + AuH(t, x)} = 0,

H(T, x) = Φ(x),

• For each fixed (t, x), the supremum in the expression

sup
u∈U

{F (t, x, u) + AuH(t, x)}

is attained by the choice u = g(t, x).

Then the following hold.

1. The optimal value function V to the control problem is given
by

V (t, x) = H(t, x).

2. There exists an optimal control law û, and in fact

û(t, x) = g(t, x)

.
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Handling the HJB equation

1. Consider the HJB equation for V .

2. Fix (t, x) ∈ [0, T ] × Rn and solve, the static optimization
problem

max
u∈U

[F (t, x, u) + AuV (t, x)] .

Here u is the only variable, whereas t and x are fixed
parameters. The functions F , µ, σ and V are considered as
given.

3. The optimal û, will depend on t and x, and on the function
V and its partial derivatives. We thus write û as

û = û (t, x; V ) . (4)

4. The function û (t, x; V ) is our candidate for the optimal
control law, but since we do not know V this description is
incomplete. Therefore we substitute the expression for û into
the PDE , giving us the highly nonlinear (why?) PDE

∂V

∂t
(t, x) + F û(t, x) + Aû (t, x) V (t, x) = 0,

V (T, x) = Φ(x).

5. Now we solve the PDE above! Then we put the solution V
into expression (4). Using the verification theorem we can
identify V as the optimal value function, and û as the optimal
control law.
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Making an Ansatz

• The hard work of dynamic programming consists in
solving the highly nonlinear HJB equation

• There are no general analytic methods available
for this, so the number of known optimal control
problems with an analytic solution is very small
indeed.

• In an actual case one usually tries to guess a
solution, i.e. we typically make a parameterized
Ansatz for V then use the PDE in order to identify
the parameters.

• Hint: V often inherits some structural properties
from the boundary function Φ as well as from the
instantaneous utility function F .

• Most of the known solved control problems have,
to some extent, been “rigged” in order to be
analytically solvable.
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The Linear Quadratic Regulator

min
u∈R

E

[∫ T

0

{
QX2

t + Ru2
t

}
dt + HX2

T

]

,

with dynamics

dXt = {AXt + But} dt + CdWt.

We want to control a vehicle in such a way that it stays
close to the origin (the terms Qx2 and Hx2) while at
the same time keeping the “energy” Ru2 small.

Here Xt ∈ R and ut ∈ R, and we impose no control
constraints on u.

The real numbers Q, R, H , A, B and C are assumed
to be known. We assume that R is strictly positive.
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Handling the Problem

The HJB equation becomes






∂V

∂t
(t, x) + infu∈R

{
Qx2 + Ru2 + Vx(t, x) [Ax + Bu]

}

+ 1
2

∂2V
∂x2 (t, x)C2 = 0,

V (T, x) = Hx2.

For each fixed choice of (t, x) we now have to solve the static unconstrained
optimization problem to minimize

Qx2 + Ru2 + Vx(t, x) [Ax + Bu] .
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The problem was:

min
u

Qx2 + Ru2 + Vx(t, x) [Ax + Bu] .

Since R > 0 we set the u-derivative to zero and obtain

2Ru = −VxB,

which gives us the optimal u as

û = −1

2

B

R
Vx.

Note: This is our candidate of optimal control law,
but it depends on the unkown function V .

We now make an educated guess about the structure
of V .
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From the boundary function Hx2 and the term Qx2 in
the cost function we make the Ansatz

V (t, x) = P (t)x2 + q(t),

where P (t) and q(t) are deterministic functions.

With this trial solution we have,

∂V

∂t
(t, x) = Ṗ x2 + q̇,

Vx(t, x) = 2Px,

Vxx(t, x) = 2P

û = −B

R
Px.

Inserting these expressions into the HJB equation we
get

x2

{
Ṗ + Q − B2

R
P 2 + 2AP

}

+q̇PC2 = 0.
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We thus get the following ODE for P

{
Ṗ = B2

R P 2 − 2AP − Q,

P (T ) = H.

and we can integrate directly for q:

{
q̇ = −C2P,

q(T ) = 0.

The is ODE for P is a Riccati equation. The equation
for q can then be integrated directly.

Final Result for LQ:

V (t, x) = P (t)x2 +

∫ T

t
C2P (s)ds,

û(t, x) = −B

R
P (t)x.
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