Back to finance:

2. Investment Theory (Section 19.6)

- Problem formulation.
- An extension of HJB.
- The simplest consumption-investment problem.
- The Merton fund separation results.

# **Recap of Basic Facts**

We consider a market with n assets.

$$S_t^i = \text{price of asset No } i,$$
  
 $h_t^i = \text{units of asset No } i \text{ in portfolio}$   
 $w_t^i = \text{portfolio weight on asset No } i \text{ previously } u,$   
 $X_t = \text{portfolio value } \text{previously denoted } V_t$   
 $\sim c_t = \text{consumption rate } \geq 0$ 

We have the relations

$$X_t = \sum_{i=1}^n h_t^i S_t^i, \quad w_t^i = \frac{h_t^i S_t^i}{X_t}, \quad \sum_{i=1}^n w_t^i = 1.$$

#### **Basic equation:**

Dynamics of self financing portfolio in terms of relative weights

$$dX_t = X_t \sum_{i=1}^n w_t^i \frac{dS_t^i}{S_t^i} - c_t dt$$

$$(dral to dividends, con p-2/2, 2/9, now$$
Tomas Björk, 2017 with a "minus term") 349

# Simplest model

Assume a scalar risky asset and a constant short rate.

$$dS_t = \alpha S_t dt + \sigma S_t dW_t$$
$$dB_t = r B_t dt$$

We want to maximize expected utility of consumption over time

**Dynamics** 

er time  

$$\max_{w^{0},w^{1},c} E\left[\int_{0}^{T} F(t,c_{t})dt\right] \left[\begin{array}{c} utility & F(t_{j}) \\ uw dm & um \\ uw dm & um \\ f(T,C_{t}) \\ con & bc \\ included \\ included$$

Constraints

$$c_t \geq 0, \forall t \geq 0,$$
  
 $w_t^0 + w_t^1 = 1, \forall t \geq 0.$   
Seufible groblem (finnelation)?  
.... become suspicious ....

# Nonsense!

# What are the problems?

- We can obtain unlimited utility by simply consuming arbitrary large amounts.
- The wealth will go negative, but there is nothing in the problem formulations which prohibits this.
- We would like to impose a constratin of type X<sub>t</sub> ≥ 0 but this is a state constraint and DynP does not allow this. (See p 34)

#### **Good News:**

DynP can be generalized to handle (some) problems of this kind.

The use of stopping times helps!

# **Generalized problem**

Let D be a nice open subset of  $[0, T] \times \mathbb{R}^n$  and consider the following problem.

$$\max_{u \in U} E\left[\int_{0}^{\tau} F(s, X_{s}^{\mathbf{u}}, \mathbf{u}_{s}) ds + \Phi\left(\tau, X_{\tau}^{\mathbf{u}}\right)\right].$$

Dynamics:

$$dX_t = \mu(t, X_t, u_t) dt + \sigma(t, X_t, u_t) dW_t,$$
  

$$X_0 = x_0, \qquad \text{(as before)}$$

The stopping time  $\tau$  is defined by

$$\tau = \inf \{t \ge 0 \mid (t, X_t) \in \partial D\} \land T. \leq T$$
  
a random time for a boundary of D
  
Tomas Björk, 2017
  
50, the problem books as before, but with the difference that the horizon is random

## **Generalized HJB**



Reformulated problem  

$$\sum_{c \ge 0, w \in R} E\left[\int_{0}^{\tau} F(t, c_{t})dt + \Phi(X_{T})\right]$$

$$\sum_{c \ge 0, w \in R} E\left[\int_{0}^{\tau} F(t, c_{t})dt + \Phi(X_{T})\right]$$

$$\sum_{c \ge 0, w \in R} E\left[\int_{0}^{\tau} F(t, c_{t})dt + \Phi(X_{T})\right]$$

$$\sum_{c \ge 0, w \in R} E\left[\int_{0}^{\tau} F(t, c_{t})dt + \Phi(X_{T})\right]$$

$$\sum_{c \ge 0, w \in R} E\left[\int_{0}^{\tau} F(t, c_{t})dt + \Phi(X_{T})\right]$$

$$\sum_{c \ge 0, w \in R} E\left[\int_{0}^{\tau} F(t, c_{t})dt + \Phi(X_{T})\right]$$

$$\sum_{c \ge 0, w \in R} E\left[\int_{0}^{\tau} F(t, c_{t})dt + \Phi(X_{T})\right]$$

$$\sum_{c \ge 0, w \in R} E\left[\int_{0}^{\tau} F(t, c_{t})dt + \Phi(X_{T})\right]$$

$$\sum_{c \ge 0, w \in R} E\left[\int_{0}^{\tau} F(t, c_{t})dt + \Phi(X_{T})\right]$$

$$\sum_{c \ge 0, w \in R} E\left[\int_{0}^{\tau} F(t, c_{t})dt + \Phi(X_{T})\right]$$

$$\sum_{c \ge 0, w \in R} E\left[\int_{0}^{\tau} F(t, c_{t})dt + \Phi(X_{T})\right]$$

$$\sum_{c \ge 0, w \in R} E\left[\int_{0}^{\tau} F(t, c_{t})dt + \Phi(X_{T})\right]$$

$$\sum_{c \ge 0, w \in R} E\left[\int_{0}^{\tau} F(t, c_{t})dt + \Phi(X_{T})\right]$$

$$\sum_{c \ge 0, w \in R} E\left[\int_{0}^{\tau} F(t, c_{t})dt + \Phi(X_{T})\right]$$

$$\sum_{c \ge 0, w \in R} E\left[\int_{0}^{\tau} F(t, c_{t})dt + \Phi(X_{T})\right]$$

$$\sum_{c \ge 0, w \in R} E\left[\int_{0}^{\tau} F(t, c_{t})dt + \Phi(X_{T})\right]$$

$$\sum_{c \ge 0, w \in R} E\left[\int_{0}^{\tau} F(t, c_{t})dt + \Phi(X_{T})\right]$$

$$\sum_{c \ge 0, w \in R} E\left[\int_{0}^{\tau} F(t, c_{t})dt + \Phi(X_{T})\right]$$

$$\sum_{c \ge 0, w \in R} E\left[\int_{0}^{\tau} F(t, c_{t})dt + \Phi(X_{T})\right]$$

$$\sum_{c \ge 0, w \in R} E\left[\int_{0}^{\tau} F(t, c_{t})dt + \Phi(X_{T})\right]$$

$$\sum_{c \ge 0, w \in R} E\left[\int_{0}^{\tau} F(t, c_{t})dt + \Phi(X_{T})\right]$$

$$\sum_{c \ge 0, w \in R} E\left[\int_{0}^{\tau} F(t, c_{t})dt + \Phi(X_{T})\right]$$

$$\sum_{c \ge 0, w \in R} E\left[\int_{0}^{\tau} F(t, c_{t})dt + \Phi(X_{T})\right]$$

$$\sum_{c \ge 0, w \in R} E\left[\int_{0}^{\tau} F(t, c_{t})dt + \Phi(X_{T})\right]$$

$$\sum_{c \ge 0, w \in R} E\left[\int_{0}^{\tau} F(t, c_{t})dt + \Phi(X_{T})\right]$$

$$\sum_{c \ge 0, w \in R} E\left[\int_{0}^{\tau} F(t, c_{t})dt + \Phi(X_{T})\right]$$

$$\sum_{c \ge 0, w \in R} E\left[\int_{0}^{\tau} F(t, c_{t})dt + \Phi(X_{T})\right]$$

$$\sum_{c \ge 0, w \in R} E\left[\int_{0}^{\tau} F(t, c_{t})dt + \Phi(X_{T})\right]$$

Thus no constraint on w.

Dynamics of simple model on p.350 become

$$dX_t = w_t \left[ \alpha - r \right] X_t dt + \left( rX_t - c_t \right) dt + w\sigma X_t dW_t,$$

$$\mathcal{O}$$
 for optimul  $\hat{c}, \hat{\omega} : \underbrace{\psi_{1} tf(t, \hat{c}) + \hat{w} x(x-r) \underbrace{\partial V}_{3x}(\cdots)}_{+ \cdots - = \nabla} (\mathcal{A})$ 

# **HJB Equation**

$$\begin{split} \frac{\partial V}{\partial t} + \sup_{c \ge 0, w \in R} \left\{ F(t, c) + wx(\alpha - r) \frac{\partial V}{\partial x} + (rx - c) \frac{\partial V}{\partial x} + \frac{1}{2} x^2 w^2 \sigma^2 \frac{\partial^2 V}{\partial x^2} \right\} &= 0, \\ \\ We now specialize (why?) to \\ and for simplicity we assume that \\ so we have to maximize \\ e^{-\delta t} c^{\gamma} + wx(\alpha - r) \frac{\partial V}{\partial x} + (rx - c) \frac{\partial V}{\partial x} + \frac{1}{2} x^2 w^2 \sigma^2 \frac{\partial^2 V}{\partial x^2}, \\ \\ W \cdot f(t, c) = e^{-\delta t} c^{\gamma} + wx(\alpha - r) \frac{\partial V}{\partial x} + (rx - c) \frac{\partial V}{\partial x} + \frac{1}{2} x^2 w^2 \sigma^2 \frac{\partial^2 V}{\partial x^2}, \end{split}$$

# Analysis of the HJB Equation

In the embedded static problem we maximize, over c and w, (repeat from  $p \cdot 356$ )

$$e^{-\delta t}c^{\gamma} + wx(\alpha - r)V_x + (rx - c)V_x + \frac{1}{2}x^2w^2\sigma^2 V_{xx},$$

First order conditions:

(1) 
$$\gamma c^{\gamma - 1} = e^{\delta t} V_x,$$
 (from  $\frac{\partial W}{\partial c} = 0$ )  
(1)  $w = \frac{-V_x}{x \cdot V_{xx}} \cdot \frac{\alpha - r}{\sigma^2},$  (from  $\frac{\partial W}{\partial W} = 0$ )

Ansatz:  

$$V(t,x) = e^{-\delta t}h(t)x^{\gamma}, \quad (\text{like F}(t,c))$$
Because of the boundary conditions, we must demand  
that  

$$h(T) = 0. \qquad \text{F=0} \qquad (5)$$

$$\frac{\delta ternatively}{you can \ try \ V(t,x)} = k(t)x^{t} \qquad 357$$

Given a V of this form we have (using  $\cdot$  to denote the time derivative)

$$V_t = e^{-\delta t} \dot{h} x^{\gamma} - \delta e^{-\delta t} h x^{\gamma}, \qquad (h \in h t)$$
$$V_x = \gamma e^{-\delta t} h x^{\gamma-1},$$
$$V_{xx} = \gamma (\gamma - 1) e^{-\delta t} h x^{\gamma-2}.$$

giving us

After rearrangements we obtain

$$\searrow x^{\gamma} \left\{ \dot{h}(t) + Ah(t) + Bh(t)^{-\gamma/(1-\gamma)} \right\} = 0,$$

where the constants A and B are given by tadiom  $A = \frac{\gamma(\alpha - r)^2}{\sigma^2(1 - \gamma)} + r\gamma - \frac{1}{2}\frac{\gamma(\alpha - r)^2}{\sigma^2(1 - \gamma)} - \delta = \frac{\gamma(\alpha - r)^2}{r\gamma} \delta$   $B = 1 - \gamma.$ 

If this equation is to hold for all x and all t, then we see that h must solve the ODE

$$\dot{h}(t) + Ah(t) + Bh(t)^{-\gamma/(1-\gamma)} = 0,$$
  
 $h(T) = 0.$ 

An equation of this kind is known as a **Bernoulli** equation, and it can be solved explicitly.

We are done.

Tomas Björk, 2017

end of lecture ga

359

Exercises (9.2, 19.3

# Merton's Mutal Fund Theorems

#### 1. The case with no risk free asset

We consider n risky assets with dynamics

$$dS_i = S_i \alpha_i dt + S_i \sigma_i dW, \quad i = 1, \dots, n$$
 ,  $\varsigma \in \mathbb{P}$ 

where W is Wiener in  $R^k$ . On vector form:

$$dS = D(S)\alpha dt + D(S)\sigma dW.$$

where

$$\alpha = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} \stackrel{n \text{ or } \alpha}{\underset{\sigma}{=}} \begin{bmatrix} -\sigma_1 - \\ \vdots \\ -\sigma_n - \end{bmatrix} \in \mathbb{R}^{n \times k}$$

D(S) is the diagonal matrix

$$D(S) = diag[S_1, \dots, S_n]. \quad \not \in \mathbb{R}^n$$

Tomas Björk, 2017

1xk

# Formal problem

$$\max_{c,w} E\left[\int_{0}^{T} F(t,c_{t})dt\right]$$
  
given the dynamics (use the SF condition on  $p$ . 34g)  
$$dX = Xw'\alpha dt - cdt + Xw'\sigma dW_{g}$$
  
additional to the  $dS_{t}^{T}$  equations  
and constraints  
$$\sum_{i=1}^{T} w_{t}^{i} = e'w_{t} = 1, \quad c \geq 0.$$
  $W_{t} = [w_{t}^{i}, \cdots, w_{t}^{n}]'$ 

$$\sum_{i=1}^{L} w_{t}^{i} = e'w_{t} = 1, \quad c \ge 0.$$

#### **Assumptions:**

- The vector  $\alpha$  and the matrix  $\sigma$  are constant and deterministic.
- row • The volatility matrix  $\sigma$  has full rank so  $\sigma\sigma'$  is positive definite and invertible.  $\Longrightarrow$  arbitrage free and complete market if n=k

**Note:** S does not turn up in the X-dynamics so V is of the form

$$V(t, x, s) = V(t, x)$$
  
Would result from  $d(x_{1}) = \dots dt + \dots du$   
 $\delta t$   $361$   
 $q$   
 $V(t, x, s) = V(t, x)$   
 $\delta t$   $361$   
 $\delta t$   $361$   
 $\delta t$   $\delta t$   $\delta t$ 

The HJB equation is

$$\begin{cases} V_t(t,x) + \sup_{e'w=1, c \ge 0} \{F(t,c) + \mathcal{A}^{c,w}V(t,x)\} = 0, \\ V(T,x) = 0, \\ V(t,0) = 0. \end{cases}$$

7 see h-328 for A

where

$$\mathcal{A}^{c,w}V = xw'\alpha V_x - cV_x + \frac{1}{2}x^2w'\Sigma w \ V_{xx},$$

The matrix  $\boldsymbol{\Sigma}$  is given by

$$\Sigma = \sigma \sigma'.$$

Tomas Björk, 2017

p. 7

The HJB equation & then be comes

$$\begin{cases} V_t + \sup_{w'e=1, \ c \ge 0} \left\{ F(t,c) + (xw'\alpha - c)V_x + \frac{1}{2}x^2w'\Sigma wV_{xx} \right\} = 0, \\ V(T,x) = 0, \\ V(t,0) = 0. \end{cases}$$

where  $\Sigma = \sigma \sigma'$ .

If we relax the constraint w'e = 1, the Lagrange function for the static optimization problem is given by  $L = F(t,c) + (xw'\alpha - c)V_x + \frac{1}{2}x^2w'\Sigma wV_{xx} + \lambda (1 - w'e).$ 

Repeat:  

$$L = F(t,c) + (xw'\alpha - c)V_x$$

$$+ \frac{1}{2}x^2w'\Sigma wV_{xx} + \lambda (1 - w'e).$$

The first order condition for c is

$$F_c = V_x.$$

 $(\frac{1}{2})^{2}$   $(\frac{1}{2})^{2}$   $(\frac{1}{2})^{2}$   $(\frac{1}{2})^{2}$   $(\frac{1}{2})^{2}$   $(\frac{1}{2})^{2}$   $(\frac{1}{2})^{2}$ 

The first order condition for w is

$$x\alpha' V_x + x^2 V_{xx} w' \Sigma = \lambda e', \quad (now vector)$$

so we can solve for w in order to obtain

$$\hat{w} = \Sigma^{-1} \left[ \frac{\lambda}{x^2 V_{xx}} e - \frac{x V_x}{x^2 V_{xx}} \alpha \right].$$

Using the relation e'w = 1 this gives  $\lambda$  as

$$\lambda = \frac{x^2 V_{xx} + x V_x e' \Sigma^{-1} \alpha}{e' \Sigma^{-1} e},$$

$$I = e' \mathcal{W} = \lambda \underbrace{e' \Sigma' e}_{\mathcal{W} \mathcal{W} \mathcal{W}} - \underbrace{f' \mathcal{V}_{\mathcal{W}} e' \Sigma' e'}_{\mathcal{W} \mathcal{W} \mathcal{W}}$$
Tomas Björk, 2017



Inserting  $\lambda$  gives us, after some manipulation,

$$\begin{split} \hat{w} &= \frac{1}{e'\Sigma^{-1}e}\Sigma^{-1}e + \underbrace{V_x}_{xV_{xx}}\Sigma^{-1} \left[ \frac{e'\Sigma^{-1}\alpha}{e'\Sigma^{-1}e}e - \alpha \right]. \end{split}$$
 We can write this as 
$$\hat{w}(t) &= g + Y(t)h, \end{split}$$

where the fixed vectors g and h are given by

$$g = \frac{1}{e'\Sigma^{-1}e}\Sigma^{-1}e,$$
  
$$h = \Sigma^{-1}\left[\frac{e'\Sigma^{-1}\alpha}{e'\Sigma^{-1}e}e - \alpha\right],$$

whereas Y is given by

$$Y(t) = \frac{V_x(t, X(t))}{X(t)V_{xx}(t, X(t))}.$$

We had

$$\hat{w}(t) = g + Y(t)h,$$

Ś

Thus we see that the optimal portfolio is moving stochastically along the one-dimensional "optimal portfolio line"

$$g + sh$$
,

in the (n-1)-dimensional "portfolio hyperplane"  $\Delta$ , where

$$\Delta = \left\{ w \in \mathbb{R}^n \mid e'w = 1 \right\}.$$

If we fix two points on the optimal portfolio line, say  $w^a = g + ah$  and  $w^b = g + bh$ , then any point w on the line can be written as an affine combination of the basis points  $w^a$  and  $w^b$ . An easy calculation shows that if  $w^s = g + sh$  then we can write

$$w^s = \mu w^a + (1 - \mu) w^b,$$

where

$$\mu = \frac{s-b}{a-b}.$$

Summary:

# **Mutual Fund Theorem**

There exists a family of mutual funds, given by  $w^s = g + sh$ , such that

- 1. For each fixed s the portfolio  $w^s$  stays fixed over time.
- 2. For fixed a, b with  $a \neq b$  the optimal portfolio  $\hat{\mathbf{w}}(t)$  is, obtained by allocating all resources between the fixed funds  $w^a$  and  $w^b$ , i.e.

$$\hat{w}(t) = \mu^{a}(t)w^{a} + \mu^{b}(t)w^{b},$$

$$M^{a}(t) = \frac{\gamma(t) - b}{b - a}, \quad w^{b}(t) = 1 - \hat{u}(t)$$

$$(\text{vol}(h^{a}(t) + h^{b}(t) = 1))$$

## The case with a risk free asset

Again we consider the standard model

$$dS = D(S)\alpha dt + D(S)\sigma dW(t),$$

We also assume the risk free asset B with dynamics

$$dB = rBdt.$$

We denote  $B = S_0$  and consider portfolio weights  $(w_0, w_1, \ldots, w_n)'$  where  $\sum_0^n w_i = 1$ . We then eliminate  $w_0$  by the relation 11

$$w_0 = 1 - \sum_{i=1}^{n} w_i$$
, (method could used used)

and use the letter w to denote the portfolio weight vector for the risky assets only. Thus we use the notation

$$w = (w_1, \ldots, w_n)',$$

Note:  $w \in \mathbb{R}^{n}$  without constraints. (no "Laplace" needed, Tomas Björk, 2017 (Note: Tomas Björk, 2017) Tomas Digital constraints (Note: Tomas Björk, 2017)

# HJB

We obtain (again from the SF condition)  

$$dX = X \cdot w'(\alpha - re)dt + (rX - c)dt + X \cdot w'\sigma dW,$$
  
where  $e = (1, 1, ..., 1)'.$  (note: w'e  $\neq$  1 in general here)

The HJB equation now becomes

$$\begin{cases} V_t(t,x) + \sup_{c \ge 0, w \in \mathbb{R}^n} \{F(t,c) + \mathcal{A}^{c,w}V(t,x)\} = 0, \\ V(T,x) = 0, \\ V(t,0) = 0, \end{cases}$$

where

$$\mathcal{A}^{c}V = xw'(\alpha - re)V_{x}(t, x) + (rx - c)V_{x}(t, x) + \frac{1}{2}x^{2}w'\Sigma wV_{xx}(t, x).$$

#### First order conditions

We maximize

 $F(t,c) + xw'(\alpha - re)V_x + (rx - c)V_x + \frac{1}{2}x^2w'\Sigma wV_{xx}$ 

with  $c \ge 0$  and  $w \in \mathbb{R}^n$ .

The first order conditions are (parallel + p.364)

$$F_{c} = V_{x},$$
  
$$\hat{w} = -\frac{V_{x}}{xV_{xx}} \sum_{w \in \mathcal{F}_{c}}^{-1} (\alpha - re),$$
  
wf  $\in \mathbb{P}_{c}$  only is leg weights

with geometrically obvious economic interpretation.

like on p. 366 actimition p. 371

# **Mutual Fund Separation Theorem**

- 1. The optimal portfolio consists of an allocation between two fixed mutual funds  $w^0$  and  $w^f$ .
- 2. The fund  $w^0$  consists only of the risk free asset.
- 3. The fund  $w^f$  consists only of the risky assets, and is given by

$$w^f = \Sigma^{-1}(\alpha - re).$$

and relative allocations of wealter are  $\mu f = -\frac{V_{x}}{xV_{xx}}$  (everything depending on t, XH)  $M_0 = 1 - \mu f$ 

More (alternative) theory

# **Continuous Time Finance**

# The Martingale Approach to Optimal Investment Theory

Ch 20

essential ingreatent is <u>Completeness</u> of the market

# Contents

- Decoupling the wealth profile from the portfolio choice.
  - Lagrange relaxation. (Seen before)
  - Solving the general wealth problem.
  - Example: Log utility.
  - Example: The numeraire portfolio.

# **Problem Formulation**

Standard model with internal filtration

$$dS_t = D(S_t)\alpha_t dt + D(S_t)\sigma_t dW_t,$$
  
$$dB_t = rB_t dt.$$

#### **Assumptions:**

- Drift and diffusion terms are allowed to be arbitrary adapted processes.
- The market is **complete**.
- We have a given initial wealth  $x_0$

#### **Problem:**

$$\max_{h \in \mathcal{H}} E^{P} \left[ \Phi(X_T) \right] \qquad ( \underbrace{\bullet} E^{P} \left[ \Phi(X_T) \right] \qquad \underbrace{\bullet} E$$

where

 $\mathcal{H} = \{ \mathsf{self financing portfolios} \}$ 

given the initial wealth  $X_0 = x_0$ .

# Some observations

• In a complete market, there is a unique martingale measure Q.

 $e^{-rT}E^Q[Z] = x_0,$ 

• Every claim Z satisfying the budget constraint

 $\begin{array}{c} - & [\mathcal{L}] - x_0, \\ \text{is attainable by an } h \in \mathcal{H} \text{ and vice versa.} \\ \mathbf{w}_0 = & \mathbf{w}_0 = \mathbf{w}_0 \mathbf{u}_0 \mathbf{u}$ 

• We can thus write our problem as

$$\max_{Z} \quad E^{P}\left[\Phi(Z)\right]$$

subject to the constraint

$$e^{-rT}E^Q\left[Z\right] = x_0.$$

• We can forget the wealth dynamics! (for the

Aine being, see step 2 below) Tomas Björk, 2017

375

also  $f_{r}$ t = 0

# **Basic Ideas**

Our problem was

$$\max_{Z} \quad E^{P}\left[\Phi(Z)\right]$$

subject to  $e^{-rT}E^Q[Z] = x_0.$ 

#### Idea I:

We can **decouple** the optimal portfolio problem into:

- 1. Finding the optimal wealth profile  $\hat{Z}$ .
- 2. Given  $\hat{Z}$ , find the replicating portfolio.

#### Idea II:

- Rewrite the constraint under the measure *P*.
- Use Lagrangian techniques to relax the constraint.

Tomas Björk, 2017

end of lecture gb

376

# Lagrange formulation

Recall Problem:

V

subject to

$$e^{-rT}E^{P}[L_{T}Z] = x_{0}.$$
  
(constraint in terms of measure P)

Here L is the likelihood process, i.e.

$$L_t = \frac{dQ}{dP}, \quad \text{on } \mathcal{F}_t, \quad 0 \le t \le T$$
  
Renale  $\mathcal{E}^{\mathbb{Q}} \not\subseteq \mathcal{I} \subseteq \mathcal{E}^{\mathbb{P}}[\lim \mathcal{I}]$ 

The Lagrangian of the problem is

$$\mathcal{L} = E^P \left[ \Phi(Z) \right] + \lambda \left\{ x_0 - e^{-rT} E^P \left[ L_T Z \right] \right\}$$

$$\mathcal{L} = E^P \left[ \Phi(Z) - \lambda e^{-rT} L_T Z \right] + \lambda x_0$$

Tomas Björk, 2017

i.e.

expectations under P.

#### The optimal wealth profile

Given enough convexity and regularity we now expect, given the dual variable  $\lambda$ , to find the optimal Z by maximizing

$$\mathcal{L} = E^P \left[ \Phi(Z) - \lambda e^{-rT} L_T Z \right] + \lambda x_0$$

over unconstrained Z, i.e. to maximize

$$\int_{\Omega} \left\{ \Phi(Z(\omega)) - \lambda e^{-rT} L_T(\omega) Z(\omega) \right\} dP(\omega)$$

This is a trivial problem! (if you (ork at it the right We can simply maximize  $Z(\omega)$  for each  $\omega$  separately.

$$\max_{z} \{\Phi(z) - \lambda e^{-rT} L_T z\} \qquad (L_T = L_T(\omega))$$
  
under the integral

#### The optimal wealth profile

Our problem: (lplat from previous slide)  

$$\max_{z} \quad \left\{ \Phi(z) - \lambda e^{-rT} L_T z \right\}$$

First order condition

$$\Phi'(z) = \lambda e^{-rT} L_T$$

The optimal Z is thus given by  

$$\hat{Z} = G \left(\lambda e^{-rT} L_T\right) \hat{Z} Aependon \lambda^{-1}$$
where  

$$G(y) = \left[\Phi'\right]^{-1}(y). \qquad \begin{array}{c} \text{(if } \Phi & how \\ \text{viverse with} \\ \text{y in its annain} \end{array}$$

I he dual variable  $\lambda$  is determined by the constraint

$$e^{-rT}E^P\left[L_T\hat{Z}\right] = x_0.$$

#### **Example – log utility**

Assume that  $\Phi(x) = \ln(x) , \quad (x) = \frac{1}{x} \Rightarrow$ Then interse if p' is  $g(y) = \frac{1}{y} , \quad (x) = \frac{1}{y}$ 

Thus

$$\hat{Z} = G\left(\lambda e^{-rT}L_T\right) = \frac{1}{\lambda}e^{rT}L_T^{-1}$$

Finally  $\lambda$  is determined by

$$e^{-rT}E^P\left[L_T\hat{Z}\right] = x_0.$$

i.e.

$$e^{-rT}E^P\left[L_T\frac{1}{\lambda}e^{rT}L_T^{-1}\right] = x_0.$$

so  $\lambda = x_0^{-1}$  and

$$\hat{Z} = x_0 e^{rT} L_T^{-1}$$
(to be interpreted as optimal wealth at time T

Tomas Björk, 2017

380

#### The optimal wealth process

• We have computed the optimal **terminal** wealth profile

$$\widehat{Z} = \widehat{X}_T = x_0 e^{rT} L_T^{-1} \qquad ( )$$

• What does the optimal wealth **process**  $\widehat{X}_t$  look like?

We have (why?) (discounted fraded assets are R-martingoles)  $\widehat{X}_{t} = e^{-r(T-t)} E^{Q} \left[ \widehat{X}_{T} \middle| \mathcal{F}_{t} \right] \quad (2)$ 

so we obtain from (1) and (2):

$$\widehat{X}_{t} = x_{0}e^{rt}E^{Q}\left[L_{T}^{-1}\middle|\mathcal{F}_{t}\right]$$

$$\overset{\text{abstract Heorgs}}{=} \frac{\mathcal{F}_{T}}{\mathcal{F}_{T}} = \frac{\mathcal{F}_{Q}}{\mathcal{Q}_{Q}} \quad \mathcal{F}_{T}$$
But  $L^{-1}$  is a Q-martingale (why?) so we obtain

$$\widehat{X}_t = x_0 e^{rt} L_t^{-1}.$$

# **The Optimal Portfolio**

- We have computed the optimal wealth process;  $\dot{X}_{t}$
- How do we compute the optimal portfolio?

Assume for simplicity that we have a standard Black-Scholes model (complete!)

$$dS_t = \mu S_t dt + \sigma S_t dW_t,$$
  
$$dB_t = r B_t dt$$

Recall that

$$\widehat{X}_t = x_0 e^{rt} L_t^{-1}.$$

$$\begin{aligned} & \begin{bmatrix} 1 \\ 1 \end{bmatrix} Satisfies (firsanov theory) an \\ equation like dif': It' tt dwr for \\ some ft \\ \\ & \\ \end{bmatrix} \\ \end{bmatrix} \\ \end{bmatrix} \\ \begin{bmatrix} 1 \\ 2 \end{bmatrix} \\$$

# Basic Program $2_1 = 20 e^{r_1} L_1,$ you "know" Le

1. Use Ito and the formula for  $\widehat{X}_t$  to compute  $d\widehat{X}_t$  like

$$d\widehat{X}_t = \widehat{X}_t(\ )dt + \widehat{X}_t\beta_t dW_t \quad (fud \beta_t)$$

where we do not care about (\* ). 2. Recall that (for some  $\hat{u}_{t}$ , portfolio weight with the dwg

$$d\widehat{X}_t = \widehat{X}_t \left\{ (1 - \widehat{u}_t) \frac{dB_t}{B_t} - \widehat{u}_t \frac{dS_t}{S_t} \right\}$$

which we write as

$$d\widehat{X}_t = \widehat{X}_t \left\{ \begin{array}{c} \\ \end{array} \right\} dt + \widehat{X}_t \widehat{u}_t \sigma dW_t$$

3. We can identify  $\hat{u}$  as

$$\hat{u}_t = \frac{\beta_t}{\sigma}$$

$$\implies \hat{u}_t = \frac{\mu - r}{\sigma^2}$$

Note that  $\hat{u}$  is a "myopic" portfolio in the sense that it does not depend on the time horizon T.

# A Digression: The Numeraire Portfolio

#### Standard approach:

- Choose a fixed numeraire (portfolio) N.
- Find the corresponding martingale measure, i.e. find  $Q^N$  s.t.

$$\frac{B}{N}$$
, and  $\frac{S}{N}$ 

are  $Q^N$  -martingales.

#### Alternative approach:

- Gome R.
- Choose a fixed measure  $Q \sim P$ . Find numeraire N such that  $Q = Q^N$ : Special coses

#### **Special case:**

- Set Q = P
- Find numeraire N such that  $Q^N = P$  i.e. such that

$$\frac{B}{N}, \text{ and } \frac{S}{N}$$
 are  $Q^N$ -martingales under the **objective** measure  $P.$ 

• This N is called the **numeraire portfolio**.

# Log utility and the numeraire portfolio

#### **Definition:**

The growth optimal portfolio (GOP) is the portfolio which is optimal for log utility (for arbitrary terminal > veaeth process to be (P-38)) is X = 20et be (P-38)) date T.

#### **Theorem:**

Assume that X is GOP. Then X is the numeraire portfolio.

#### **Proof**:

We have

We have to show that the process

$$Y_t = \frac{S_t}{X_t}$$
  
is a P martingale. (and also  $\frac{B_t}{X_t} = x_0^{-1} L_t$ )  
We have  
$$\frac{S_t}{X_t} = x_0^{-1} e^{-rt} S(L_t) \qquad d\theta \quad m \neq t$$

which is a P martingale, since  $x_0^{-1}e^{-rt}S_t$  is a Q use Bayes" (Additional exercise 3 = exercise C.g in the book) martingale.

end of lecture 9C

and this is also the end of the course

Thank you for your attention

and I hope it will be useful for you!