
2. Investment Theory

• Problem formulation.

• An extension of HJB.

• The simplest consumption-investment problem.

• The Merton fund separation results.
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Recap of Basic Facts

We consider a market with n assets.

Si
t = price of asset No i,

hi
t = units of asset No i in portfolio

wi
t = portfolio weight on asset No i

Xt = portfolio value

ct = consumption rate

We have the relations

Xt =
n∑

i=1

hi
tS

i
t, wi

t =
hi

tS
i
t

Xt
,

n∑

i=1

wi
t = 1.

Basic equation:
Dynamics of self financing portfolio in terms of relative
weights

dXt = Xt

n∑

i=1

wi
t

dSi
t

Si
t

− ctdt
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Simplest model

Assume a scalar risky asset and a constant short rate.

dSt = αStdt + σStdWt

dBt = rBtdt

We want to maximize expected utility of consumption
over time

max
w0,w1,c

E

[∫ T

0
F (t, ct)dt

]

Dynamics

dXt = Xt

[
w0

t r + w1
tα
]
dt − ctdt + w1

t σXtdWt,

Constraints

ct ≥ 0, ∀t ≥ 0,

w0
t + w1

t = 1, ∀t ≥ 0.
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Nonsense!

Tomas Björk, 2017 351



What are the problems?

• We can obtain unlimited utility by simply consuming
arbitrary large amounts.

• The wealth will go negative, but there is nothing in
the problem formulations which prohibits this.

• We would like to impose a constratin of type Xt ≥ 0
but this is a state constraint and DynP does not
allow this.

Good News:
DynP can be generalized to handle (some) problems
of this kind.
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Generalized problem

Let D be a nice open subset of [0, T ]×Rn and consider
the following problem.

max
u∈U

E

[∫ τ

0
F (s, Xu

s ,us)ds + Φ (τ,Xu

τ )

]
.

Dynamics:

dXt = µ (t, Xt, ut) dt + σ (t,Xt, ut) dWt,

X0 = x0,

The stopping time τ is defined by

τ = inf {t ≥ 0 |(t, Xt) ∈ ∂D} ∧ T.
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Generalized HJB

Theorem: Given enough regularity the follwing hold.

1. The optimal value function satisfies






∂V

∂t
(t, x) + sup

u∈U
{F (t, x, u) + AuV (t, x)} = 0, ∀(t, x) ∈ D

V (t, x) = Φ(t, x), ∀(t, x) ∈ ∂D.

2. We have an obvious verification theorem.
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Reformulated problem

max
c≥0, w∈R

E

[∫ τ

0
F (t, ct)dt + Φ(XT )

]

The “ruin time” τ is defined by

τ = inf {t ≥ 0 |Xt = 0} ∧ T.

Notation:

w1 = w,

w0 = 1 − w

Thus no constraint on w.

Dynamics

dXt = wt [α − r] Xtdt + (rXt − ct) dt + wσXtdWt,
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HJB Equation

∂V

∂t
+ sup

c≥0,w∈R

(

F (t, c) + wx(α − r)
∂V

∂x
+ (rx − c)

∂V

∂x
+

1

2
x2w2σ2∂2V

∂x2

)

= 0,

V (T, x) = 0,

V (t, 0) = 0.

We now specialize (why?) to
F (t, c) = e−δtcγ,

and for simplicity we assume that
Φ = 0,

so we have to maximize

e−δtcγ + wx(α − r)
∂V

∂x
+ (rx − c)

∂V

∂x
+

1

2
x2w2σ2∂2V

∂x2
,
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Analysis of the HJB Equation

In the embedded static problem we maximize, over c
and w,

e−δtcγ + wx(α − r)Vx + (rx − c)Vx +
1

2
x2w2σ2Vxx,

First order conditions:

γcγ−1 = eδtVx,

w =
−Vx

x · Vxx
· α − r

σ2
,

Ansatz:
V (t, x) = e−δth(t)xγ,

Because of the boundary conditions, we must demand
that

h(T ) = 0. (5)
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Given a V of this form we have (using · to denote the
time derivative)

Vt = e−δtḣxγ − δe−δthxγ,

Vx = γe−δthxγ−1,

Vxx = γ(γ − 1)e−δthxγ−2.

giving us

ŵ(t, x) =
α − r

σ2(1 − γ)
,

ĉ(t, x) = xh(t)−1/(1−γ).

Plug all this into HJB!
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After rearrangements we obtain

xγ
{

ḣ(t) + Ah(t) + Bh(t)−γ/(1−γ)
}

= 0,

where the constants A and B are given by

A =
γ(α − r)2

σ2(1 − γ)
+ rγ − 1

2

γ(α − r)2

σ2(1 − γ)
− δ

B = 1 − γ.

If this equation is to hold for all x and all t, then we
see that h must solve the ODE

ḣ(t) + Ah(t) + Bh(t)−γ/(1−γ) = 0,

h(T ) = 0.

An equation of this kind is known as a Bernoulli
equation, and it can be solved explicitly.

We are done.
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Merton’s Mutal Fund Theorems

1. The case with no risk free asset

We consider n risky assets with dynamics

dSi = Siαidt + SiσidW, i = 1, . . . , n

where W is Wiener in Rk. On vector form:

dS = D(S)αdt + D(S)σdW.

where

α =




α1
...

αn



 σ =




− σ1 −

...
− σn −





D(S) is the diagonal matrix

D(S) = diag[S1, . . . , Sn].
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Formal problem

max
c,w

E

[∫ τ

0
F (t, ct)dt

]

given the dynamics

dX = Xw′αdt − cdt + Xw′σdW.

and constraints

e′w = 1, c ≥ 0.

Assumptions:

• The vector α and the matrix σ are constant and
deterministic.

• The volatility matrix σ has full rank so σσ′ is positive
definite and invertible.

Note: S does not turn up in the X-dynamics so V is
of the form

V (t, x, s) = V (t, x)
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The HJB equation is






Vt(t, x) + sup
e′w=1, c≥0

{F (t, c) + Ac,wV (t, x)} = 0,

V (T, x) = 0,

V (t, 0) = 0.

where

Ac,wV = xw′αVx − cVx +
1

2
x2w′Σw Vxx,

The matrix Σ is given by

Σ = σσ′.

Tomas Björk, 2017 362

y
see p

328 for
A

g
boundary
condition

Mgmt



The HJB equation is
8

>

>

>

>

<

>

>

>

>

:

Vt + sup
w′e=1, c≥0



F (t, c) + (xw′α − c)Vx +
1

2
x2w′ΣwVxx

ff

= 0,

V (T, x) = 0,

V (t, 0) = 0.

where Σ = σσ′.

If we relax the constraint w′e = 1, the Lagrange function for the static
optimization problem is given by

L = F (t, c) + (xw′α − c)Vx +
1

2
x2w′ΣwVxx + λ (1 − w′e) .
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L = F (t, c) + (xw′α − c)Vx

+
1

2
x2w′ΣwVxx + λ (1 − w′e) .

The first order condition for c is

Fc = Vx.

The first order condition for w is

xα′Vx + x2Vxxw′Σ = λe′,

so we can solve for w in order to obtain

ŵ = Σ−1

[
λ

x2Vxx
e − xVx

x2Vxx
α

]
.

Using the relation e′w = 1 this gives λ as

λ =
x2Vxx + xVxe′Σ−1α

e′Σ−1e
,
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Inserting λ gives us, after some manipulation,

ŵ =
1

e′Σ−1e
Σ−1e +

Vx

xVxx
Σ−1

[
e′Σ−1α

e′Σ−1e
e − α

]
.

We can write this as

ŵ(t) = g + Y (t)h,

where the fixed vectors g and h are given by

g =
1

e′Σ−1e
Σ−1e,

h = Σ−1

[
e′Σ−1α

e′Σ−1e
e − α

]
,

whereas Y is given by

Y (t) =
Vx(t, X(t))

X(t)Vxx(t, X(t))
.
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We had
ŵ(t) = g + Y (t)h,

Thus we see that the optimal portfolio is moving
stochastically along the one-dimensional “optimal
portfolio line”

g + sh,

in the (n − 1)-dimensional “portfolio hyperplane” ∆,
where

∆ = {w ∈ Rn |e′w = 1} .

If we fix two points on the optimal portfolio line, say
wa = g + ah and wb = g + bh, then any point w on
the line can be written as an affine combination of the
basis points wa and wb. An easy calculation shows
that if ws = g + sh then we can write

ws = µwa + (1 − µ)wb,

where

µ =
s − b

a − b
.
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Mutual Fund Theorem

There exists a family of mutual funds, given by
ws = g + sh, such that

1. For each fixed s the portfolio ws stays fixed over
time.

2. For fixed a, b with a '= b the optimal portfolio ŵ(t)
is, obtained by allocating all resources between the
fixed funds wa and wb, i.e.

ŵ(t) = µa(t)wa + µb(t)wb,
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The case with a risk free asset

Again we consider the standard model

dS = D(S)αdt + D(S)σdW (t),

We also assume the risk free asset B with dynamics

dB = rBdt.

We denote B = S0 and consider portfolio weights
(w0, w1, . . . , wn)′ where

∑n
0 wi = 1. We then

eliminate w0 by the relation

w0 = 1 −
n∑

1

wi,

and use the letter w to denote the portfolio weight
vector for the risky assets only. Thus we use the
notation

w = (w1, . . . , wn)′,

Note: w ∈ Rn without constraints.
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HJB

We obtain

dX = X · w′(α − re)dt + (rX − c)dt + X · w′σdW,

where e = (1, 1, . . . , 1)′.

The HJB equation now becomes






Vt(t, x) + sup
c≥0,w∈Rn

{F (t, c) + Ac,wV (t, x)} = 0,

V (T, x) = 0,

V (t, 0) = 0,

where

AcV = xw′(α − re)Vx(t, x) + (rx − c)Vx(t, x)

+
1

2
x2w′ΣwVxx(t, x).
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First order conditions

We maximize

F (t, c) + xw′(α − re)Vx + (rx − c)Vx +
1

2
x2w′ΣwVxx

with c ≥ 0 and w ∈ Rn.

The first order conditions are

Fc = Vx,

ŵ = − Vx

xVxx
Σ−1(α − re),

with geometrically obvious economic interpretation.
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Mutual Fund Separation Theorem

1. The optimal portfolio consists of an allocation
between two fixed mutual funds w0 and wf .

2. The fund w0 consists only of the risk free asset.

3. The fund wf consists only of the risky assets, and
is given by

wf = Σ−1(α − re).
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Continuous Time Finance

The Martingale Approach to Optimal

Investment Theory

Ch 20

Tomas Björk
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Contents

• Decoupling the wealth profile from the portfolio
choice.

• Lagrange relaxation.

• Solving the general wealth problem.

• Example: Log utility.

• Example: The numeraire portfolio.

Tomas Björk, 2017 373

I

seen beforeI



Problem Formulation

Standard model with internal filtration

dSt = D(St)αtdt + D(St)σtdWt,

dBt = rBtdt.

Assumptions:

• Drift and diffusion terms are allowed to be arbitrary
adapted processes.

• The market is complete.

• We have a given initial wealth x0

Problem:
max
h∈H

EP [Φ(XT )]

where
H = {self financing portfolios}

given the initial wealth X0 = x0.
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Some observations

• In a complete market, there is a unique martingale
measure Q.

• Every claim Z satisfying the budget constraint

e−rTEQ [Z] = x0,

is attainable by an h ∈ H and vice versa.

• We can thus write our problem as

max
Z

EP [Φ(Z)]

subject to the constraint

e−rTEQ [Z] = x0.

• We can forget the wealth dynamics!
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Basic Ideas

Our problem was

max
Z

EP [Φ(Z)]

subject to e−rTEQ [Z] = x0.

Idea I:

We can decouple the optimal portfolio problem into:

1. Finding the optimal wealth profile Ẑ.

2. Given Ẑ, find the replicating portfolio.

Idea II:

• Rewrite the constraint under the measure P .

• Use Lagrangian techniques to relax the constraint.
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Lagrange formulation

Problem:
max

Z
EP [Φ(Z)]

subject to
e−rTEP [LTZ] = x0.

Here L is the likelihood process, i.e.

Lt =
dQ

dP
, on Ft, 0 ≤ t ≤ T

The Lagrangian of the problem is

L = EP [Φ(Z)] + λ
{
x0 − e−rTEP [LTZ]

}

i.e.
L = EP

[
Φ(Z) − λe−rTLTZ

]
+ λx0
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The optimal wealth profile

Given enough convexity and regularity we now expect,
given the dual variable λ, to find the optimal Z by
maximizing

L = EP
[
Φ(Z) − λe−rTLTZ

]
+ λx0

over unconstrained Z, i.e. to maximize

∫

Ω

{
Φ(Z(ω)) − λe−rTLT (ω)Z(ω)

}
dP (ω)

This is a trivial problem!

We can simply maximize Z(ω) for each ω separately.

max
z

{
Φ(z) − λe−rTLTz

}
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The optimal wealth profile

Our problem:

max
z

{
Φ(z) − λe−rTLTz

}

First order condition

Φ′(z) = λe−rTLT

The optimal Z is thus given by

Ẑ = G
(
λe−rTLT

)

where
G(y) = [Φ′]

−1
(y).

The dual varaiable λ is determined by the constraint

e−rTEP
[
LT Ẑ

]
= x0.
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Example – log utility

Assume that
Φ(x) = ln(x)

Then

g(y) =
1

y
Thus

Ẑ = G
(
λe−rTLT

)
=

1

λ
erTL−1

T

Finally λ is determined by

e−rTEP
[
LT Ẑ

]
= x0.

i.e.

e−rTEP

[
LT

1

λ
erTL−1

T

]
= x0.

so λ = x−1
0 and

Ẑ = x0e
rTL−1

T
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The optimal wealth process

• We have computed the optimal terminal wealth
profile

Ẑ = X̂T = x0e
rTL−1

T

• What does the optimal wealth process X̂t look like?

We have (why?)

X̂t = e−r(T−t)EQ
[
X̂T

∣∣∣Ft

]

so we obtain

X̂t = x0e
rtEQ

[
L−1

T

∣∣Ft

]

But L−1 is a Q-martingale (why?) so we obtain

X̂t = x0e
rtL−1

t .
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The Optimal Portfolio

• We have computed the optimal wealth process.

• How do we compute the optimal portfolio?

Assume for simplicity that we have a standard Black-
Scholes model

dSt = µStdt + σStdWt,

dBt = rBtdt

Recall that
X̂t = x0e

rtL−1
t .
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Basic Program

1. Use Ito and the formula for X̂t to compute dX̂t like

dX̂t = X̂t( )dt + X̂tβtdWt

where we do not care about ( ).

2. Recall that

dX̂t = X̂t

{
(1 − ût)

dBt

Bt
+ ût

dSt

St

}

which we write as

dX̂t = X̂t { } dt + X̂tûtσdWt

3. We can identify û as

ût =
βt

σ
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We recall
X̂t = x0e

rtL−1
t .

We also recall that

dLt = LtϕdWt,

where
ϕ =

r − µ

σ
From this we have

dL−1
t = ϕ2L−1

t dt − L−1
t ϕdWt

and we obtain

X̂t = X̂t { } dt − X̂tϕdWt

Result: The optimal portfolio is given by

ût =
µ − r

σ2

Note that û is a “myopic” portfolio in the sense that
it does not depend on the time horizon T .
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A Digression: The Numeraire Portfolio

Standard approach:

• Choose a fixed numeraire (portfolio) N .

• Find the corresponding martingale measure, i.e. find QN s.t.

B

N
, and

S

N

are QN -martingales.

Alternative approach:

• Choose a fixed measure Q ∼ P .

• Find numeraire N such that Q = QN .

Special case:

• Set Q = P

• Find numeraire N such that QN = P i.e. such that

B

N
, and

S

N

are QN-martingales under the objective measure P .

• This N is called the numeraire portfolio.
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Log utility and the numeraire portfolio

Definition:
The growth optimal portfolio (GOP) is the portfolio
which is optimal for log utility (for arbitrary terminal
date T .

Theorem:
Assume that X is GOP. Then X is the numeraire
portfolio.

Proof:
We have to show that the process

Yt =
St

Xt

is a P martingale.

We have

St

Xt
= x−1

0 e−rtStLt

which is a P martingale, since x−1
0 e−rtSt is a Q

martingale.
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and this is also the

end of the course

Thank you foryour attention

and I hope it will

beuseful for you


