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2. Investment Theory
e Problem formulation.
e An extension of HJB.
e The simplest consumption-investment problem.

e The Merton fund separation results.
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Recap of Basic Facts

We consider a market with n assets.

S’ = price of asset No i,

h: = units of asset No i in portfolio aly

w! = portfolio weight on asset No i é‘g‘/\m’ﬁ% ‘ )

X; = portfolio value CF(“W A2 el \/—bj
__> ¢t = consumption rate =)

We have the relations

LI . hiSe LI
Xy = g hySy, w; = )t(tt, g w; = 1.
i=1

1=1

Basic equation:
Dynamics of self financing portfolio in terms of relative
weights

- dS’
= X, Z wt — cdt

ZMM 4o Mwwu N-w)w , Wow
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Simplest model

Assume a scalar risky asset and a constant short rate.

dSt OéStdt + O'Stth
dBt = TBtdt

We want to maximize expected utility of consumption
—_

ti .
over time W,é(‘/\’cﬁ § ?(-573
e [t v
max E / F(t, ct)dt] %CTJ r)
wV,wt,c 0 oo é"’w
Dynamics un
=~ @ (7 )J

dXt Xt [’th + wt ] dt — Ctdt + Wy O'Xtth,

Constraints

Ct Z O\V/t>0

w) +w; = 1, ¥Vt >0. 7
Weﬂvm’be
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Nonsense!
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What are the problems?

e \We can obtain unlimited utility by simply consuming
arbitrary large amounts.

e The wealth will go negative, but there is nothing in
the problem formulations which prohibits this.

e \We would like to impose a constratin of type X; > 0
but this is a state constraint and DynP does not

allow this. (565 (Y%) —_—

Good News:

DynP can be generalized to handle (some) problems
of this kind.

The nie 3t chvWCMﬁ 5o “6*(«095!
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Generalized problem

Let D be a nice open subset of [0, T x R™ and consider
the following problem. \

2"

max E[ / F(S,X;‘,us)ds—l—(I)(T,Xf)].

Dynamics:
dXt = u(t,Xt,ut) dt + O'(t,Xt,ut) th,
Xo = a0, (6r \eefore

The stopping time 7 is defined by

T=inf{t >0 |(t,X;) €D} ANT. £ T *‘
l

AL (Ondow Hunz +

st _— £ D
Tomas Bjork, 2017 353
o *Lw P{OW\M 483‘»- A Lg%-cc it IWW'{

Mfer o thar e L"N’B‘\" z



Generalized HJB

Theorem: Given enough regularity the follwing hold. l
et

1. The optimal value function satisfies /4 V

A
Q\ .
oV / L st |

{ E(t’ T) + 225 {F(t,z,u) + A"V (t,x)}
Vit x)

It\ |

2. We have an obvious verification theorem¢ I’éf&»f—@ 6»? -
H{T,0) o 37-?9‘4‘4 Lg HEtz)= @Z%Z’))
Vi) eb
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Reformulated problem 9

s
max E[ /O F(t,ct)dt+<I>(XT)]
= (o, oa) KK/
o 5
The “ruin time"  is def Gotesp tmds T
e “ruin time" 7 is defined by D;Q O(BD>

T:inf{t20|Xt:lO}/\T %

ALY =
VX2 - {ﬁr&)eb
‘)c-—v;or*f"_

Notation:

w! = w,

w® 1 —w

Thus no constraint on w.

Dynamics @jr Qmpﬁ& ol v P%S”D bew\/v\l

dXt — W¢ [Oé — 7“] Xtdt + (TXt — Ct) dt + ’UJO'Xtth,
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Y N R Al AR AT A Ly
> 0 % im0 (¥

HJB Equation

— + sup F(tc)—i—’w:r;(oz—r)——l—(r:r;—c)——l— ST W o
x

oV oV oV 1 , , ,0°V
Ot  ¢>0,weR
@C‘.‘Q = V(T,z) = 0,
V(t,0) = 0.
We now specialize (why?) to

and for simplicity we assume that

so we have to maximize

oV OV 1 5, 4 ,0°V

_5t7—|—w:r;(oz—7°)——|—(7°:r;—c)— Ewwa
Wt 20 amd We WK
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Analysis of the HJB Equation

In the embedded static problem we maximize, over c

and w, (/(arw*' fom 9366

1
et +wa(a — r)Vy + (re — )V, + §x2w202vm,

First order conditions:

(1) v Tl = eV, (feos ;%T =)
@, I N 5.
YT TV, o [ffmm W =0)

A :

Because of the boundary condltlons, we must demand

that \ $-o

h(T) = 0. (5)
wﬁ\ﬁudﬁ / (
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Given a V of this form we have (using - to denote the
time derivative)

Vi = e %ha? —de ha”, ['6\; «Kéb)

Va: — 76_6th$’y_1,
Viee = 7(7 - 1)6_6th$’y_2.
giving us
wC ﬂ)?ﬂv’} ) Q,.) ; ’(/j}(t’ aj) — a—r (@ows+amf{' )

o?(1—=7)

we P99, W)+ et,x) = zh(t)”YI), M’“\"’” \M‘L>

Plug all this into HIB!I (md bry 9 &7V

@) M

Tomas Bjork, 2017 358



1
After rearrangéznts we obtain
/\/\/\/\'

wa“""“fmi
(o — 7)? 1v(a —1)? gL A
8 21— T 221 =) —59}0%?5\

B

|

—

|
D

equation is to hold for all x and all ¢, then we

see that h must solve the ODE

h(t) + Ah(t) + Bh(t)/(0=7 = 0,
WT) = 0.

An equation of this kind is known as a Bernoulli
equation, and it can be solved explicitly. <2

B (g-2, L@-%

We are done.
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Merton’s Mutal Fund Theorems
SZeA v \g}

1. The case with no risk free asset

We consider n risky assets with dynamics

1 xk
dS; = S;o;dt + S;o,dW, 1=1,...,n ) G:l el
yd
where W is Wiener in RF. @n vector form:
dS = D(S)adt + D(S)odW.
where
A
[y | (p:noﬂ\_—al—_ mmx\c
B 029 _ | On — i

D(S) is the diagonal matrix

n
D(S) = diag[Sy,...,S,]. &£ &
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Formal problem

max [ / "R ct)dt]

c,w

given the dynamics /[is< Hs ST con B o M/(f ?7(’[9)

dX = Xw'adt — cdt + Xw'odW,
RANR oL oy e ASL czzu,a{\W‘A

and constraints

w /
[ _..‘/V )
: ew =1, > 0. W= (9,

"
C
';W 4 +

=l

Assumptions:

e [he vector ¢ and the matrix o are constant and
deterministic.

e The volatility matrix o has full,\rank SO 00 is p05|t|ve

definite and invertible. ’9 dé{l,zj-c, " \{Vl
\V Yo/ 4 -

Note: S does not turn up in the X—dynamlcs so Vs
of the form
Vit,z,s) =V(t,x)

N Y a
Would (Gud 1o Afg)c\
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O

g~ f
The HJB equation is /’
( Vit,a)+ sup {F(t ) + ASUV(L )} = 0, W0
; e/w=1, ¢>0 \D,DVJ-’ ﬂfl’
V(T,z) = ) }/\
\ V(t,0) =
where Q 07%6

1
APV = xw'aV, — cV, + §x2w’2w Vias

The matrix X is given by
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The HJB equation “[,/LJ/V\ w w6

/ L5
Vi4+ sup {F(t,c) + (zw' « —C)Vm+§$ wa‘wam} = 0,
w’e=1, ¢>0
< V(T,z) = o0,
\ V(t,0) = 0.

where 3 = oo’.

If we relax the constraint w'e = 1, theﬁ.\ag@mction for the static

timizati blem is given b 4 beclon
optimization problem is given by P [ @%_ﬁ)\{_
L=F(t,c) + (zw'a—c)V, + %x2w/Eme + A (1 —w'e).
l 2P
L(. , W
__/é\ w2ax Lonftanr s

L)W ,'ﬂ
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Kapuarts

L = F(tc)+ (zw'a—c)V,

1
+ 5% 22w YWV, + A (1 —w'e). a(ﬁ‘
L
o

)
[Q/W’ZW) zw’i)

'V, + 22V w'S = \e', (WW VC@@B‘/}

The first order condition for ¢ is
The first order condition for w is

so we can solve for w in order to obtain

A

] é;o@.mfm W)
Vo 2Va3a3

w:2*[

Using the relation ¢/w = 1 this gives \ as

2?Vow + 2Vee'Y e
e’y le ’

1~
N A e )L U
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&,,K

7Y

W
Inserting A gives us, after some manipulation,
A 1 ) V. L[
W = Y e - e — ol .
e~ le xV, e~ le

We can write this as \}

W(t) =g+ Y (t)h,

where the fixed vectors g and h are given by

1

_ —1
= 6/2_162 ©
NN —1
a2
ho= 2 [6/2_166_&] ’
whereas Y is given by
Va(t, X (1))

Tomas Bjork, 2017 365



We had

@(t) = g+ Y ()h, W@é‘ﬂ e

Thus we see that the optimal portfolio is moving
stochastically along the one-dimensional “optimal

portfolio line”
g + sh,

in the (n — 1)-dimensional “portfolio hyperplane” A,
where
A={weR"|w=1}.

If we fix two points on the optimal portfolio line, say
w® = g 4+ ah and w® = g + bh, then any point w on

the line can be written as an affine combination of the

basis points w® and w® An easy calculation shows

that if w® = g 4+ sh then we can write

w® = pw® + (1 — p)w®,

where
_S—b
M_a—b'
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Mutual Fund Theorem

There exists a family of mutual funds, given by
w?® = g + sh, such that

1. For each fixed s the portfolio w?® stays fixed over
time.

2. For fixed a, b with a # b the optimal portfolio w(t)

is, obtained by allocating all resources between the
fixed funds w® and w?, i.e.

w(t) = p(t)yw® + p’(t)w’,

o ey = X oD
\o,_,/b

(ot WD+ 1) 1)
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The case with a risk free asset

Again we consider the standard model
dS = D(S)adt + D(S)adW (t),
We also assume the risk free asset B with dynamics

dB = rBdt.

, W1, ..., w,) where > Jw; = 1.  We then

We denote B = Sy and consider portfolio weights
éminate wq by the relation

vlo\
_1_Zw“ ( ?Md(ﬂ'sz)
1 \M‘

and use the letter w to denote the portfolio weight
vector for the risky assets only. Thus we use the
notation

w = (wi,...,wy,),
(l i/ Aed
Note: w € R™ without constraints. [VW WW&C@ Wik,
wo'k
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HJB

We obtain [%W Atvn Hr §F oomm'ﬁwx
dX = X -w'(a—re)dt + (rX —c)dt + X - w'ocdW,

p wse
where e = (1,1,...,1)". (wobc we# "‘"3”“'& >

The HJB equation now becomes

( Vi(t,z)+ sup {F(t,c)+ A"V (t,x)} = 0,
c>0,weR™

< V(T,2) = 0,
. V(t,()) = 0,

where

AV = zw'(a—re)Vi(t,z) + (rx — )V, (t, )
1
+ §x2w’2wvm(t, T).
- - g
%W h A
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First order conditions

We maximize

1
F(t,c) +zw'(a —re)Vy + (re — o)V, + §x2w’2wvm

with ¢ > 0 and w € R".

The first order conditions are épma\ldl ‘174 F'}é&/)

Fc — an

W o= — Y a —re), s
xvxw e~ w :

with geometrically obvious economic 'nterpretatior}.

lhe ov b3 LR
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Mutual Fund Separation Theorem

1. The optimal portfolio consists of an allocation
between two fixed mutual funds w® and w/.

2. The fund w" consists only of the risk free asset.

3. The fund w/ consists only of the risky assets, and
is given by
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Continuous Time Finance

The Martingale Approach to Optimal

Investment Theory

Ch 20

Tomas Bjork
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Contents

_—V.W the wealth profile from the portfolio

choice.

e Lagrange relaxation. KQ’ZZN\/ \04»{@)

e

e Solving the general wealth problem.
e Example: Log utility.

e Example: The numeraire portfolio.
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Problem Formulation

Standard model with internal filtration

dSt = D(St)&tdt + D(St)O'tth,
dBt = TBtdt.

Assumptions:

e Drift and diffusion terms are allowed to be arbitrary
adapted processes.

e The market is complete.
/

e \We have a given initial wealth x

Problem:

P f[?/(\/vv\uwé
max F [(I)(XT)] [ WB

heH
where

H = {self financing portfolios}

given the initial wealth Xy = xg.
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Some observations

e In a complete market, there is a unique martingale
measure ().

e Every claim Z satisfying the budget constraint

| ot
"'/Q
‘b

T
[~ g
is attamable by an h € ‘H and vice versa l,» - <

e_TTEQ [Z] — Xy,

'w ?°

e \We can thus write our problem as e\¢/|o

(./\ €
max EY [®(2)] 1

/
subject to the constraint
o’ %’J
e "TEQ (7] = a0. &7 0"

e We can forget the wealth dynamics! //{D{M
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Basic ldeas

Our problem was

max EFY [®(2)]

subject to T FQ 7] = 0.

Idea |:

We can decouple the optimal portfolio problem into:

1. Finding the optimal wealth profile Z.

2. Given Z, find the replicating portfolio.

Idea |I:

e Rewrite the constraint under the measure P.

p—

e Use Lagrangian techniques to relax the constraint.
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Lagrange formulation

Recaly

Problem:

max B [®(Z)] 2e S

subject to
e "' EY [L1Z] = .

[(,ov\,@xa/\}\n+ w s “D{' Lo € ?3

Here L is the likelihood process, i.e.

Lt:—, Onft, OStST

Rewage. €72 E?v«%/.l
The Lagrangian of the problem is

L=E"[®Z)+ A xzog—e ""E" [LrZ]}

L=E"[®(Z)— X e ""LrZ] + Az
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The optimal wealth profile

Given enough convexity and regularity we now expect,
given the dual variable A\, to find the optimal Z by
maximizing

L=E"[®(Z)— X e ""LrZ] + \xo

over unconstrained Z, i.e. to maximize

/Q [B(Z(w)) — e T Lp(w)Z(w)} dP(w)

This is a trivial problem! (\{ you (o, ot i Wﬁ\ﬁ(nt

Wa >
We can simply maximize Z(w) for each w separately. J

z

Uy e v‘v)t%(wz,

\
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The optimal wealth profile

Our problen‘((&\—»@a\k /H’(sw\ d\%(’/\f@w& iz )

max {®(z) — Ae "' Lrz}

z

First order condition

®'(2) = e 'Ly

The optimal Z is thus given by % \
7 =G ( _TTLT):Z MW
(,mn
where 1 { 5 wj
Gly) =127 (). " V-m &S e Ao

The dual vargiable A is determinedby{c;nstraint
e TE” | LrZ| = mo Wﬂdﬂdwﬁ/

Vou \naeto gooe D (% 9,;(%\\
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Example — log utility

Assume that

e =h@) , G b= >
Then vexe ¢ Q. 4o .
9= Ao all 420

7 =G ()\e_TTLT) — %

Thus
eTTL—l

Finally A\ is determined by

e "TEY [LTZA} = x0.

1
e "TEY [LTXeTTL:Fl] = xg.

1

so A =x, and

o xoerTL 1
r\-‘wmw(
(o e gk e )
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The optimal wealth process

e \WWe have computed the optimal terminal wealth
profile

7 = )/(\'T = erTTLZFl C ] )

e \What does the optimal wealth process )A(t look like?

We have (why?) [MSOO;(:‘ 2 »Wéwl-%uéa (S )

P

X, = e (TR [)?T‘ ]-"t} cz)

so we obtain ~€(5VV\ {'ﬂ orad. ()\ :

)?t — et E¥ [L:Fl‘ ft}

o Ao Hagocn LT = &P/JQ_"W(‘FT
But L=1! is a Q-martingale (why?) so we obtain

—

v rtr—1
Xt =xpe' "Ly .
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The Optimal Portfolio

N
e We have computed the optimal wealth process: )<71/,

e How do we compute the optimal portfolio?

Assume for simplicity that we have a standard Black-

Scholes model [OOVV'J)LCJ(, >

dSt — uStdt + O'Stth,
dBt = TBtdt

Recall that R
X, = zoe™ L7

[/:\ SQ/HCM ((%'\r Sdrnan »(/CWB) A
Qb 7y ”l‘/;‘

Tomas Bjork, 2017 — (/:E {:_ij{‘% l,zir\kt 38 W/t



A
Basic Program n ’%zﬂ Lt J
/ \/511:/\ ‘WV\’ (/,e

1. Use Ito and the formula for )/(\'t to compute d)?t like

dX, = X,( )dt 4 X, 8,dW, ((éw)%k
t@ Roer )

where we do not care about )_!
\

W
2. Recall that [/]%( Pdvure CLL/, ")N’\'%\M W/%}WX -4

Y RS N O
dX; = Xy {(1 — Ut)Ft + ut
¢

which we write as

d)?t —

3. We can
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[

Q“),%‘L
b~ ,
\v{ Q7 C(
We recall R
é'{l) Xt = azOeTtLt_l. /Y
We also recall that
éé/d- oM %/kA) st Lt@th,
where _— /W\wv"f Ueu%m
p = o

o
. -

From this we have [:BJ;S L{'e( L)c 4
(QJ dL; 1 — g02L Ldt — Ly gOth = (_pl:%d\/\/ﬂ

and we obtain /@svv, (’) ) i (2) ,
A.Xt Xt }dt — )?tQDth —2 [%'6; —'(F

€
Result: The optimal portfolio is given by M’—L—"‘ @’

Note that u is a “myopic” portfolio in the sense that
it does not depend on the time horizon T'.
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A Digression: The Numeraire Portfolio

Standard approach:
e Choose a fixed numeraire (portfolio) V.

e Find the corresponding martingale measure, i.e. find Q" s.t.

B S
—, and —
N N
are Q" -martingales.
GovZ
Alternative approach: & N (Rrgel2
\ (/]
e Choose a fixed measure Q ~ P. ét v @ “we iwg“g
e Find numeraire N such that Q = Q¥; Ne RF" " U

Special case:
e SetQ =P
e Find numeraire N such that Q¥ = P i.e. such that
B S
—, and —
T N N
]
are QN—martingaIes under the objective measure P.

e This N is called the numeraire portfolio.
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Log utility and the numeraire portfolio

Definition:
The growth optimal portfolio (GOP) is the portfolio
which is optimal for log utility (for arbitrary terminal

date 1. WW»W, . oS by (-3 )

Theorem: ) o A7
Assume that X is GOP. Then X is the numeraire

portfolio.

Proof:
We have to show that the process

is a P martingale. (ﬂ/th olpd ?/b

We have
’C
_t = 16—7"758@

which is a P martingale, since z5'e™"'S; is a Q

martingale. Ug)cli%oy%n (‘AM\HMC(/ CWO\SC‘E‘, :(o L)
e GEt C'9 w il oo
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