Proof of the Verification theorem

Look at Slide 340 for the formulation of the theorem, or at Theorem 19.6 in Björk's book (3rd Edition).

Proof We will show that the solution H of the HJB equation is in fact the optimal value function V, and, parallel to that, that the optimal control $\hat{\mathbf{u}}$ is given by $\hat{\mathbf{u}}(t,x) = g(t,x)$.

Consider an arbitrary control law \mathbf{u} and recall the dynamics of the process $X^{\mathbf{u}}$, in abbreviated notation,

$$dX^{\mathbf{u}} = \mu^{\mathbf{u}} dt + \sigma^{\mathbf{u}} dW.$$

Apply the Itô formula to $H(t, X_t^{\mathbf{u}})$ to get, again in abbreviated notation and with H_t and H_x the first order partial derivatives,

$$H(T, X_T^{\mathbf{u}}) = H(t, x) + \int_t^T (H_t + \mathcal{A}^{\mathbf{u}} H) \, \mathrm{d}s + \int_t^T H_x \sigma^{\mathbf{u}} \, \mathrm{d}W. \tag{1}$$

Since H solves the HJB equation, one has the equality

$$H_t(t,x) + \sup_{u} \left(F(t,x,u) + \mathcal{A}^u H(t,x) \right) = 0.$$

Hence, for any u one gets

$$H_t(t,x) + F(t,x,u) + A^u H(t,x) < 0.$$

which also implies (note the alternative notation, see the slides)

$$H_t(t, X_t^{\mathbf{u}}) + F^{\mathbf{u}}(t, X_t^{\mathbf{u}}) + \mathcal{A}^{\mathbf{u}}H(t, X_t^{\mathbf{u}}) \le 0.$$

Use this inequality in (1) to get, now written in full detail

$$H(T, X_T^{\mathbf{u}}) \le H(t, x) - \int_t^T F^{\mathbf{u}}(s, X_s^{\mathbf{u}}) \, \mathrm{d}s + \int_t^T H_x(s, X_s^{\mathbf{u}}) \sigma^{\mathbf{u}}(s, X_s^{\mathbf{u}}) \, \mathrm{d}W.$$

Recall the boundary condition for $H, H(T, x) = \Phi(x)$, to rewrite this inequality as

$$\Phi(X_T^{\mathbf{u}}) \le H(t,x) - \int_t^T F^{\mathbf{u}}(s, X_s^{\mathbf{u}}) \, \mathrm{d}s + \int_t^T H_x(s, X_s^{\mathbf{u}}) \sigma^{\mathbf{u}}(s, X_s^{\mathbf{u}}) \, \mathrm{d}W.$$

In the next step we take expectations in the above inequality. Under sufficient technical conditions, the expectation of the Itô integral will vanish, and we end up with

$$\mathbb{E}\Phi(X_T^{\mathbf{u}}) \le H(t, x) - \mathbb{E}\int_t^T F^{\mathbf{u}}(s, X_s^{\mathbf{u}}) \, \mathrm{d}s,$$

which we rewrite as

$$H(t,x) \ge \mathbb{E}\Phi(X_T^{\mathbf{u}}) + \mathbb{E}\int_t^T F^{\mathbf{u}}(s, X_s^{\mathbf{u}}) \, \mathrm{d}s.$$

The right hand side of the latter inequality we recognize, see slide 329, as the value function $\mathcal{J}(t, x, \mathbf{u})$. So, we obtain

$$H(t,x) > \mathcal{J}(t,x,\mathbf{u}).$$

This inequality is valid for any control law **u**. Hence, one also has

$$H(t,x) \ge \sup_{\mathbf{u}} \mathcal{J}(t,x,\mathbf{u}).$$

But, here the right hand side is by definition the optimal value function V at (t, x), see slide 329 again. So we conclude

$$H(t,x) \ge V(t,x)$$
.

Recall our aim, showing that H(t,x) = V(t,x). We accomplish this by showing the companion inequality $H(t,x) \leq V(t,x)$. This will be done as follows.

Choose the function g as given by the statement of the Verification theorem, i.e., this function attains the supremum in $H_t(t,x) + \sup_u (F(t,x,u) + \mathcal{A}^u H(t,x))$, so

$$H_t(t,x) + F(t,x,g(t,x)) + A^g H(t,x) = 0.$$

This relation we substitute in (1) to get (with the **u** now replaced with **g**)

$$H(T, X_T^{\mathbf{g}}) = H(t, x) - \int_t^T F^{\mathbf{g}}(s, X_s^{\mathbf{g}}) \, \mathrm{d}s + \int_t^T H_x(s, X_s^{\mathbf{g}}) \sigma^{\mathbf{g}}(s, X_s^{\mathbf{g}}) \, \mathrm{d}W.$$

Taking expections, one now gets by similar reasoning as above,

$$\mathbb{E}\Phi(X_T^{\mathbf{g}}) = H(t, x) - \mathbb{E}\int_t^T F^{\mathbf{g}}(s, X_s^{\mathbf{g}}) \, \mathrm{d}s,$$

rearranged to

$$H(t,x) = \mathbb{E} \int_{t}^{T} F^{\mathbf{g}}(s, X_{s}^{\mathbf{g}}) ds + \mathbb{E}\Phi(X_{T}^{\mathbf{g}}),$$

where we recognize the right hand side as $\mathcal{J}(t, x, \mathbf{g})$. By the optimality of the function V, one trivially has $\mathcal{J}(t, x, \mathbf{g}) \leq V(t, x)$, and it follows that

$$H(t,x) \le V(t,x),$$

as desired. We conclude that H(t,x) = V(t,x).

Moreover, we now also obtain the equality $V(t, x) = \mathcal{J}(t, x, \mathbf{g})$, which shows the optimality of the control law \mathbf{g} .