Stochastic Finance in Continuous Time

Additional exercises based on notes by José Cruz

Exercises

1 Solve the Black-Scholes PDE for the pricing function F for a claim Φ and show that the solution coincides with the Feynman-Kac formula. Do this at the hand of the following steps.

(a) Define a new function u by $u(t,x) = F(t, e^{x+(r-\frac{1}{2}\sigma^2)t})$ and show that u satisfies the *backward heat equation*

$$u_t + \frac{1}{2}\sigma^2 u_{xx} = 0.$$

Express the boundary condition on u(T, x) in terms of Φ .

- (b) Let $p_{t,x}(\cdot)$ be the density of a normal N(x, T-t) distribution for $0 \le t < T$. Show that p also satisfies the backward heat equation.
- (c) Put $u(t,x) = \int_{-\infty}^{\infty} u(T,y) p_{t,x}(y) \, dy$. Show that this *u* solves the backward heat equation.
- (d) Write u(t, x) as the expectation of a certain function (in terms of Φ) of a random variable with an appropriate normal distribution.
- (e) Recognize the Feynman-Kac formula by recalling that in the Black-Scholes model $\log S(T) \log S(t)$ has a normal $N((r \frac{1}{2}\sigma^2)(T-t), \sigma^2(T-t))$ distribution under the measure \mathbb{Q} .

2 Let W be a Wiener process under a probability measure \mathbb{P} . Consider a market consisting of two assets with prices $S^1(t)$ and $S^2(t)$. Consider also a bank account B(t) with constant short rate r. Consider then the following model.

$$dS^{1}(t) = \alpha_{1}S^{1}(t) dt + \sigma_{1}S^{1}(t) dW(t)$$

$$dS^{2}(t) = \alpha_{2}S^{2}(t) dt + \sigma_{2}S^{2}(t) dW(t)$$

$$dB(t) = rB(t) dt.$$

- (a) Discuss informally absence of arbitrage and completeness in the market in this model using the Meta theorem.
- (b) Use the martingale approach to provide precise conditions for absence of arbitrage and completeness in the market.

3 Consider a filtered probability space $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t\geq 0}, \mathbb{P})$ and a measure $\mathbb{Q} \sim \mathbb{P}$ on \mathcal{F}_T , for some T > 0. Let $L_t, 0 \leq t \leq T$ denote

the likelihood process. Also let X be an adapted process. Prove (for $0 \le t \le T$) that X is a Q-martingale if and only if LX is a \mathbb{P} -martingale. [This is Exercise C.9.]

4 Let *D* be a stochastic discount factor for a financial market. Prove that the process $\Pi_t D_t$, $(t \ge 0)$ is a \mathbb{P} -martingale for every price process Π_t , $(t \ge 0)$.

5 Consider the SDE

$$dX_t = \alpha f(X_t) dt + \sigma(X_t) dW_t, X_0 = x_0.$$

We assume that f, σ are known functions and α is an unknown parameter. Also the SDE possesses a unique solution for every fixed choice of α . Construct a dynamical statistical model and compute the maximum likelihood estimator for α based upon observations of X_t . [This is also Exercise 11.2.]

6 Consider a financial market with arbitrary number of assets and a bank account with constant short rate r. Consider the following price process S_t with dynamics under the measure \mathbb{P} ,

$$\mathrm{d}S_t = \alpha_t S_t \,\mathrm{d}t + \sigma_t S_t \,\mathrm{d}W_t.$$

We also consider the *T*-claim *Y* of the form $Y = S_T X$ where X is some random variable such that $X \in \mathcal{F}_T$. As usual we consider the standard risk-neutral formula $\Pi_t[Y] = e^{-r(T-t)} \mathbb{E}_t^{\mathbb{Q}}[S_T X]$.

- (a) Prove that $E^{\mathbb{Q}}e^{-rT}\frac{S_T}{S_0} = 1.$
- (b) Define the random variable L_T by $L_T = e^{-rT} \frac{S_T}{S_0}$. Since L_T and $E^{\mathbb{Q}}[L_T] = 1$, we can use L_T as a Radon-Nikodym derivative and define a new measure by $d\mathbb{Q}^S = L_T d\mathbb{Q}$ on \mathcal{F}_T . Write down a pricing formula $\Pi_0[Y]$ using the new measure \mathbb{Q}^S .
- (c) Define the process L by L_t equal to $\frac{d\mathbb{Q}^S}{d\mathbb{Q}}$ on \mathcal{F}_t . Derive a formula for L_t and prove that L has \mathbb{Q} -dynamics given by $dL_t = \sigma_t L_t dW_t^{\mathbb{Q}}$.
- (d) Write down a pricing formula $\Pi_t[Y]$ using the new measure \mathbb{Q}^S .
- 7 Derive the relevant PDE when X is a non-traded asset,

$$F_t + (\mu - \lambda\sigma)F_x + \frac{1}{2}\sigma^2 F_{xx} - rF = 0.$$

8 Consider the Black-Scholes model and compute the price of an asset-or-nothing option where the payoff is given by $X = S(T)\mathbf{1}_{\{S(T) \leq K\}}$ by using the asset price process S as a numéraire.

9 Let the stock prices $S^1(t), S^2(t)$ and the bank account B(t) have the following dynamics

$$dS^{1}(t) = \alpha_{1}S^{1}(t) dt + \sigma_{1}S^{1}(t) dW^{1}(t)$$

$$dS^{2}(t) = \alpha_{2}S^{2}(t) dt + \sigma_{2}S^{2}(t) dW^{2}(t)$$

$$dB(t) = rB(t) dt,$$

where the Wiener processes W^1 and W^2 are assumed to be independent. Compute the price of the *T*-claim *X* defined by $X = S^1(T) \mathbf{1}_{\{S^2(T) \leq K\}}$. You may use S^1 a numéraire.

10 Let the stock prices $S^1(t), S^2(t)$ and the bank account B(t) have the following dynamics

$$dS^{1}(t) = \alpha_{1}S^{1}(t) dt + \sigma_{1}S^{1}(t) dW^{1}(t) dS^{2}(t) = \alpha_{2}S^{2}(t) dt + \sigma_{2}S^{2}(t) dW^{2}(t) dB(t) = rB(t) dt,$$

where the Wiener processes W^1 and W^2 are assumed to be independent. Compute the price of an exchange option defined by $X = \max\{S^2(T) - S^1(T), 0\}.$

11 Let the stock prices $S^1(t), S^2(t)$ and the bank account B(t) have the following dynamics

$$dS^{1}(t) = \alpha_{1}S^{1}(t) dt + \sigma_{1}S^{1}(t) dW^{1}(t)$$

$$dS^{2}(t) = \alpha_{2}S^{2}(t) dt + \sigma_{2}S^{2}(t) dW^{2}(t)$$

$$dB(t) = rB(t) dt,$$

where the Wiener processes W^1 and W^2 are assumed to be independent. Compute the price of a maximum option defined by $X = \max\{S^2(T), S^1(T)\}.$

12 Derive the hedging portfolio for a claim of the form $\Phi(S_T)$ under the Black-Scholes model in the case of dividends.

13 Prove for the Black-Scholes model, in the case of dividends, that if f gives the arbitrage free price of a derivative then $f(t, S_t)$ is a Q-martingale. [Use the Black-Scholes PDE for this situation.]

14 Deduce the price $F(t,T,\mathcal{Y})$ of a futures contract based on some claim \mathcal{Y} , $F(t,T,\mathcal{Y}) = E_{t,X_t}^{\mathbb{Q}}[\mathcal{X}]$ where X is the underlying factor process and \mathcal{Y} is an appropriate function of X_T . [This is basically the content of Proposition 29.6.]

15 Compute the price of a futures option with maturity date T, strike price K, where the Futures contract is a future on S with delivery date T_1 , $T_1 > T$. [This has everything to do with Proposition 7.13.]

16 Assume the following exchange rate model,

$$dX(t) = \alpha_X X(t) dt + \sigma_X X(t) dW(t),$$

$$dB_d(t) = r_d B_d(t) dt,$$

$$dB_f(t) = r_f B_f(t) dt.$$

All markets are assumed to be frictionless.

- (a) Derive an expression for L_t , the Radon-Nikodym derivative $\frac{\mathrm{d}\mathbb{Q}^f}{\mathrm{d}\mathbb{O}^d}$ on \mathcal{F}_t .
- (b) Find the Girsanov transformation between the domestic martingale measure \mathbb{Q}^d and the foreign martingale measure \mathbb{Q}^f , i.e., how $W^{\mathbb{Q}^d}$ and $W^{\mathbb{Q}^f}$ are related.
- (c) Finally give the expression for the dynamics of the exchange rate X under the martingale measure \mathbb{Q}^d .