1 Functions of bounded variation and Stieltjes
integrals

In this section we define functions of bounded variation and review some ba-
sic properties. Stieltjes integrals will be discussed subsequently. We consider
functions defined on an interval [a,b]. Next to these we consider partitions IT
of [a,b], finite subsets {tg,...,t,} of [a,b] with the convention ¢ty < --- < t,,
and p(II) denotes the mesh of II. Extended partitions, denoted IT*, are parti-
tions II, together with additional points 7;, with t;_1 < 7; < t;. By definition
p(IT*) = p(II). Along with a function «, a partition II, we define
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the variation of a over the partition II.

Definition 1.1 A function « is said to be of bounded variation if V(a) :=
supp V(a; ) < oo, the supremum taken over all partitions II. The variation
function v, : [a,b] — R is defined by v, (t) = V(alja,)-

A refinement II' of a partition IT satisfies by definition the inclusion IT C II'. In
such a case, one has p(I1") < p(II) and V(a; IT') > V(a; II). It follows from the
definition of V(«), that there exists a sequence (II,,) of partitions (which can
be taken as successive refinements) such that V(a;II,,) — V(a).

Example 1.2 Let a be continuously differentiable and assume that f; |/ (t)] dt

is finite. Then V(o) = f: |/ (t)| d¢. This follows, since V' (c;II) can be written
as a Riemann sum

Sl )l (6 — ),
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where the 7; satisfy t;_1 < 7; < ¢; and &/(1;) e

Note that v, is an increasing function with ve(a) = a and v,(b) = V(a).
Any monotone function « is of bounded variation and in this case V(o) =
|a(b) — a(a)| and v, (t) = |a(t) — a(a)|. Also the difference of two increasing
functions is of bounded variation. This fact has a converse.

Proposition 1.3 Let a be of bounded variation. Then there exists increasing
functions v and v, such that vl (a) = v, (a) = a, a(t) —ala) = vi(t) —v; (t).
Moreover, one can choose them such that v} + v, = v,.

Proof Define



We only have to check that these functions are increasing, since the other state-
ments are obvious. Let ¢’ > ¢. Then vl (') —vZ (t) = 3(vd (') —vd (t) + a(t') —

a(t)). The difference v} (') — v (t) is the variation of a over the interval [¢, '],

which is greater than or equal to |a(t') — a(t)|. Hence v7 (') — v} (t) > a, and
the same holds for v, (t') — v, (¢). O

The decomposition in this proposition enjoys a minimality property. If w' and
w_ are increasing functions, wt(a) = w™(a) = a and a(t) — a(a) = wT(t) —
w™ (t), then for all ¢’ > t one has w™ (') —w™ () > v (t') — vt () and w™ (') —
w™(t) > v, (t') — v, (t). This property is basically the same as its counterpart
for the Jordan decomposition of signed measures.

The following definition generalizes the concept of Riemann integral.

Definition 1.4 Let f,a : [a,b] — R and II* be an extended partition of [a, b].
Write

n
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We say that S(f, ) = lim, gy S(f, a; IT%), if for all € > a, there exists § > a
such that p(II*) < § implies |S(f, «) — S(f, a;II*)| < e. If this happens, we say
that f is integrable w.r.t. & and we commonly write [ f da for S(f, a), and call
it the Stieltjes integral of f w.r.t. a.

Proposition 1.5 Let f,a : [a,b] — R, f continuous and o of bounded varia-
tion. Then f is integrable w.r.t. oe. Moreover, the triangle inequality | [ f da| <
J | fldvy holds.

Proof (sketch) To show integrability of f w.r.t. «, the idea is to compare
S(f,a;II}) and S(f, o;II5) for two extended partitions II; and II5. By con-
structing another extended partition II* that is a refinement of 1I; and IIj in
the sense that all ¢; and ¢; from II} and II3 belong to II*, one can show from

1S(f, ;) =S(f, s )| < [S(f, s 1) =S (f, s I |+ [S(f, o5 1) =S (f, o )|

that the S(f, a;11*) form a Cauchy sequence if one chooses IT* from a sequence
(IT}) with p(IT}) — 0. The limit can be shown to exist independent of the
chosen sequence. The triangle inequality for the integrals is almost trivial. [

Proposition 1.6 Let f,a : [a,b] — R, be continuous and of bounded variation.
Then the following integration by parts formula holds.

[ raas [ads = o)) - r@ato).



Proof Choose points t, < --- < t, in [a,b] and 7; € [t;—1,8], ¢ = 1,...,n, to
which we add 79 = a and 7,41 = b. By Abel’s summation formula, we have

Z f(1i) (alts) — afti-1)) =
n+1
F®)a(b) = fla)a(a) = Y altiz) (f(7) = f(7im1))-
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The result follows by application of Proposition [1.5 U

This proposition can be used to define [ adf for functions a of bounded vari-
ation and continuous functions f, simply by putting

[adf=10a®) - f@ata) - [ fda.

It follows from Proposition [[.3|that o admits finite left and right limits at all ¢ in
[a,b]. By a we denote the function given by a4 (t) = lim, |, o(u) for ¢ € [a,b)
and a4 (b) = a(b). Note that a4 is right-continuous. We close this section with
a result relating Stieltjes and Lebesgue integrals. The proposition below gives
an example of such a connection, but can be substantially generalized.

Proposition 1.7 Let f,«a : [a,b] — R, f continuous and « of bounded vari-
ation. Let p = p, be the signed measure on ([a,b], B([a,b])) that is uniquely
defined by p((a, b)) = ay(b) — ay(a) for alla < a < b <b. Then the Lebesgue
integral [ fdp and the Stieltjes integral [ fdo are equal, [ fdu = [ fda.

Proof Exercise. (]
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