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Preface

These lecture notes have originally been written for and during the course Port-
folio Theory at the Universiteit van Amsterdam in Fall 2007.

The aim of the course is to introduce the fundamental concepts that underly
the problem of portfolio optimization. Needed for this is also an exposition of
the fundamental notions of financial markets, such as absence of arbitrage and
completeness. Other concepts that will be developed are preference relations
and utility. All this will first be done for a one-period market and later on
extended to markets with a larger horizon. In the latter case we show how to
use Dynamic Programming for optimization problems. We confine ourselves to
models in discrete time, although portfolio optimization in continuous time is a
topic that equally well deserves a place in this set of lecture notes. This will be
a topic of future consideration.

The lecture notes are for a large deal based on the book Stochastic Finance,
An Introduction in Discrete Time by Alexander Schied and Hans Föllmer.
But also other sources like Introduction to Mathematical Finance by Stanley
R. Pliska have been consulted, as well as Stochastic systems: estimation, iden-
tification and adaptive control by P.R. Kumar and Pravin Varaiya.

Finally, these lectures notes are constantly in a state of revision. Through-
out the years, many errors and omissions in earlier versions have been corrected,
thanks to careful reading by Attila Herczegh, Demeter Kiss and Kamil Kosiński,
who were among the first students that took this course. Later on, Johan du
Plessis, Hailong Bao, Nicos Starreveld, Laurens Sluijterman and Hymke ten
Have provided me with more very useful feedback that resulted in the elimi-
nation of other inaccuracies. But it is almost inevitable that some remained,
or new ones appear. Readers are kindly invited to report remaining mistakes.
Suggestions for improvements are equally welcome.

Amsterdam, Spring 2021 Peter Spreij





1 Valuation in a one-period model

Let (Ω,F ,P) be a probability space. We will assume that all random variables
that we encounter below are defined on this space and real valued. We assume
that there are only two relevant time instants, t = 0 and t = 1. First we describe
a market consisting of d+ 1 assets. The assets are numbered from 0 to d. The
zero-th asset is a non-risky asset. Given an interest rate r > −1 and a price π0

of the asset at time t = 0, its price at t = 1 is given by S0 = π0(1 + r) > 0. We
will make the convention that π0 = 1. The other d assets are risky. This means
that their prices πi at t = 0 are known deterministic nonnegative numbers, but
their prices Si at t = 1 are not exactly known at t = 0 and are modeled as
nonnegative random variables. Next to prices, we also have quantities, which
are for the i-th asset given by real constants ξi. Note that negative ξi are
allowed, this has to be interpreted as borrowing, or short selling products. Also
non-integer quantities are allowed, one can buy or sell log 12 units of an asset.
We introduce the following vectors.

The price vector at t = 0 of these assets will be denoted by π̄ = (π0, π),
where π denotes the vector of the d risky assets. At t = 1 we have with similar
notation S̄ = (S0, S). Likewise we have for the quantities ξ̄ = (ξ0, ξ). The
vector ξ̄ will often be referred to as a portfolio. The value of the portfolio at
t = 0 is then W0 = ξ̄ · π̄ and t = 1 it is W1 = ξ̄ · S̄. The dot here denotes the
ordinary inner product.

1.1 Arbitrage

In a realistic market there will not exist arbitrage opportunities, making a sure
profit by investing in a portfolio. We give a formal definition of this.

Definition 1.1 A portfolio ξ̄ is an arbitrage opportunity if W0 ≤ 0, W1 ≥ 0 a.s.
and P(W1 > 0) > 0. A market is called arbitrage free, if arbitrage opportunities
don’t exist.

Remark 1.2 Consider an arbitrage free market, with πi = 0 for some asset i.
Take the portfolio consisting of 1 unit of asset i only. Then W1 = Si. Since this
portfolio is not an arbitrage opportunity, we must have that Si = 0 a.s. Hence
this asset is always worthless, and therefore we exclude zero initial prices. All
πi will be assumed strictly positive.

It will turn out useful to characterize arbitrage opportunities in terms of the
risky assets only.

Lemma 1.3 The existence of an arbitrage opportunity is equivalent to the
existence of a vector ξ having the properties ξ ·S ≥ (1+r)ξ ·π a.s. and P(ξ ·S >
(1 + r)ξ · π) > 0.

Proof Let ξ̄ = (ξ0, ξ) be an arbitrage opportunity. Then

ξ · S − (1 + r)ξ · π = W1 − (1 + r)W0 ≥W1.
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Since also W1 ≥ 0 a.s. and P(W1 > 0) > 0, the characterization follows.
Conversely, assume that the characterization holds true for some vector ξ.

Choose ξ0 = −ξ · π. Then W0 = 0 and W1 = ξ · S − (1 + r)ξ · π. It follows that
ξ̄ is an arbitrage opportunity. �

We now proceed with another characterization of arbitrage opportunities. We
need the vector Y of discounted net gains. Its elements Yi (i = 1, . . . , d) are
given by

Yi =
Si

1 + r
− πi.

Corollary 1.4 Existence of an arbitrage opportunity is equivalent to the exis-
tence of a vector ξ such that ξ · Y ≥ 0 a.s and P(ξ · Y > 0) > 0. An arbitrage
free market is characterized by the implication ξ · Y ≥ 0 a.s. ⇒ ξ · Y = 0 a.s.

Proof This is an immediate consequence of Lemma 1.3. �

Definition 1.5 A probability measure P∗ on F is called a risk-neutral measure,
or a martingale measure, if

πi = E∗
Si

1 + r
, i = 0, . . . , d.

It follows that P∗ on F is a risk-neutral measure, iff E∗Y = 0. Notice that E∗Y
is well defined for any P∗, since each Yi is lower bounded by −πi. By P we
denote the set of all risk-neutral measures that are equivalent to P (they define
the same null sets). Elements of P are called equivalent martingale measures.

Theorem 1.6 below is a version of the (first) Fundamental Theorem of Asset
Pricing (FTAP).

Theorem 1.6 A market is free of arbitrage iff the set P is nonempty. In this
case there exists a P∗ ∈ P such that the Radon-Nikodym derivative dP∗

dP is
bounded.

Proof Let P be non-empty and take P∗ ∈ P. Let ξ be such that ξ ·Y ≥ 0 P-a.s.
Then the same is true under P∗. Since P∗ ∈ P, we have E∗ξ · Y = 0 and hence
ξ · Y = 0 P∗-a.s., but then also under P. The result follows from Corollary 1.4.

Conversely, assume that the market is arbitrage free. We have to show the
existence of a P∗ ∼ P such that E∗Y = 0. We first assume that E |Y | <∞. Put

Q = {Q : Q ∼ P and
dQ
dP

bounded},

and
C = {EQ Y : Q ∈ Q}.

Notice that C is well defined, since EQ |Y | <∞ for all Q ∈ Q. One easily shows
that Q is a convex set, and hence C is a convex subset of Rd. For any P∗ one
has E∗Y = 0, and we therefore show that 0 ∈ C.
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Assume the contrary, 0 /∈ C. By virtue of the Separating Hyperplane The-
orem, Theorem A.1, there exists a vector ξ ∈ Rd such that ξ · x ≥ 0 for all
x ∈ C and ξ · x0 > 0 for some x0 ∈ C. But elements of C are expectations,
so we have EQ ξ · Y ≥ 0 for all Q ∈ Q and EQ0

ξ · Y > 0 for some Q0 ∈ Q.
Since the latter expectation is strictly positive, we must have Q0(ξ ·Y > 0) > 0,
and by equivalence we then also have P(ξ · Y > 0) > 0. If we can show that
ξ ·Y ≥ 0 a.s., then we have shown existence of an arbitrage opportunity in view
of Lemma 1.3, a contradiction. Consider thereto the set A = {ξ · Y < 0}. The
following arguments are aimed at showing P(A) = 0.

Define for n ≥ 2 the functions φn by

φn = (1− 1

n
)1A +

1

n
1Ac .

Note that 1
n ≤ φn ≤ 1− 1

n as n ≥ 2, from which we obtain that Eφn ≥ 1/n > 0.

We can therefore define the probability measures Qn by dQn
dP = cnφn, where

cn = 1/Eφn. The Qn are in Q as now dQn
dP ≤ n − 1. We have the following

string of equalities (we also use the Dominated Convergence Theorem)

E (ξ · Y 1{ξ·Y <0}) = E (ξ · Y 1A)

= E (ξ · Y limφn)

= limE (ξ · Y φn)

= lim
1

cn
EQn(ξ · Y ) ≥ 0.

So the nonpositive random variable ξ ·Y 1{ξ·Y <0} has a nonnegative expectation.
This implies P(ξ · Y ≥ 0) = 1, which we wanted to prove.

The case E |Y | = ∞ is left as Exercise 1.3. Note that the assertion on the
existence of a bounded Radon-Nikodym derivative follows by the definition of
the set C. �

The following example shows that in an arbitrage free market, risk neutral
measures are in general not unique.

Example 1.7 Suppose that Ω = {ω1, . . . , ωn} with n ≥ 2. Assume that pi =
P({ωi}) > 0 for all i, there is only one risky asset S1 and si = S1(ωi) > 0 for
all i. Assume s1 < · · · < sn. Consider an arbitrage opportunity with ξ > 0.
Lemma 1.3 implies that si ≥ (1 + r)π for all i and hence s1 ≥ (1 + r)π. For an
arbitrage opportunity with ξ < 0, the same lemma implies that sn ≤ (1+r)π. If
no arbitrage exists we must have s1 < (1 + r)π < sn. Theorem 1.6 says that in
the latter case for every P∗, represented by a probability vector (p∗1, . . . , p

∗
n), the

p∗i solve
∑n
i=1 p

∗
i si = (1 + r)π1, next to

∑n
i=1 p

∗
i = 1, and thus that a solution

exists. Moreover, the risk-neutral measure is unique iff n = 2. This is related
to the content of Section 1.3, where we discuss completeness.

Definition 1.8 The set of attainable pay-offs isW = {ξ̄ ·S̄ : ξ̄ ∈ Rd+1}. So, the
elements ofW are the random variables that can be seen as values of portfolios.
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Lemma 1.9 Assume that the market is arbitrage free. Suppose that W ∈ W
can be represented both as ξ̄ ·S̄ and as ζ̄ ·S̄. Then the values of the two portfolios
at t = 0 are equal, ξ̄ · π̄ = ζ̄ · π̄.

Proof Any P∗ ∈ P (which is non-empty) satisfies E∗S̄ = (1 + r)π̄. Hence
E∗W = E∗(ξ̄ · S̄) = E∗(ζ̄ · S̄) yields (1 + r)ξ̄ · π̄ = (1 + r)ζ̄ · π̄. �

The above lemma yields the principle, or law, of one price. The price at t = 0
of an attainable pay-off W is equal to and defined by E∗W

1+r , for any P∗ ∈ P.
This can be rephrased by saying that two portfolios which generate the same
pay-off at t = 1 must have the same price at t = 0, which is then given by the
expectation under any of the risk-neutral measures. Check that if the initial
price vector π̄ is different from E∗S̄

1+r , an arbitrage opportunity can explicitly be
constructed.

1.2 Contingent claims and derivatives

There are many financial products other then portfolios (whose pay-off is at-
tainable by definition). Some of these depend on the underlying risky assets,
like call options. An example is the European call option whose pay-off is
C := (S1 − K)+ (the constant K is called the strike price). We see that this
pay-off is a function of S1. We will also consider pay-offs that are (in principle)
not functions of S̄.

Definition 1.10 A contingent claim C is by definition a nonnegative random
variable (so C is F-measurable). Such a C is called a derivative if C is σ(S̄) =
σ(S)-measurable.

In this definition we require nonnegativity to ensure existence of an expecta-
tion. Alternatives to this are conceivable, like C lower bounded, or E |C| <∞.
Another reason for nonnegativity is that we now treat C similar to the given
assets, which are always assumed to have a nonnegative payoff.

Since we have seen how to price portfolios in arbitrage free markets (at
t = 0), the natural question is how to price contingent claims. By analogy, an
obvious candidate is E∗C

1+r . It turns out that this is true, but also that in general
this price is not unique and that, unlike for attainable pay-offs, it depends on
the specific choice of the risk neutral measure.

Since absence of arbitrage is the key to finding a pricing rule for a contingent
claim, we will look at the extended market. Next to the assets we already have,
we consider the extra security Sd+1 = C and its price πd+1 at t = 0. No
arbitrage considerations in the extended market will give the possible values of
πd+1.

Definition 1.11 A (nonnegative) real number πC is called an arbitrage free
price of the contingent claim C if the extended market with πd+1 = πC is free
of arbitrage. We denote by Π(C) the set of all prices πC .
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The next theorem confirms the conjecture made at the beginning of this section
and gives a precise formulation.

Theorem 1.12 Let C be a contingent claim. Suppose that the original market
is arbitrage free (so P 6= ∅). Then also Π(C) is non-empty and in fact, one has

(1.1) Π(C) = {E∗ C

1 + r
: P∗ ∈ P such that E∗C <∞}.

Proof We first show that the set on the right hand side of (1.1) is not empty.
Call this set E. Introduce a probability measure P̃ by dP̃ = c

1+C dP, where c

is the normalizing constant. One sees that P̃ ∼ P and that ẼC < ∞. From
the equivalence it follows that the market is also free of arbitrage under P̃.
Then Theorem 1.6 yields the existence of a risk-neutral measure P∗ equivalent
to P̃ (and then also to P) with dP∗

dP̃ bounded, by B say. Then we have E∗C =

Ẽ (dP∗
dP̃ C) ≤ BẼC < ∞. Hence the number E∗C

1+r belongs to the set E, which is
thus not empty.

We now show that Π(C) ⊂ E. If Π(C) = ∅, there is nothing to prove.
Therefore we assume that we can pick πC ∈ Π(C). By definition of the arbitrage
price, the extended market is free of arbitrage, so in view of Theorem 1.6 there
exists a probability measure P̂ equivalent to P such that Ê Si

1+r = πi, for all

i = 0, . . . , d + 1. In particular we have that Ê C
1+r = πC < ∞ (take i = d + 1).

Since P̂ is then also a risk-neutral measure for the original market, we have
Π(C) ⊂ E.

To show the reversed inclusion, we take P∗ ∈ P and define πd+1 = πC :=
E∗C
1+r . This definition turns P∗ into a risk-neutral measure for the extended
market as well, and so we have E ⊂ Π(C). �

In the proof of Theorem 1.16 the concept of non-redundancy comes in handy.

Definition 1.13 A market is called non-redundant if the implication ξ̄ · S̄ = 0
P-a.s. ⇒ ξ̄ = 0 holds.

If the implication in Definition 1.13 doesn’t hold for some portfolio ξ̄, it has
a nonzero element, ξi say. It follows that Si = − 1

ξi

∑
j 6=i ξjSj . So, the i-th

asset price is a linear combination of the other ones, a form of redundancy. In
an arbitrage free market we then also have (take expectations under any risk-
neutral measure) πi = − 1

ξi

∑
j 6=i ξjπj , again a linear combination and with the

same coefficients, and likewise Yi is the same linear combination of the Yj .

Proposition 1.14 The following holds.

(i) Any (finite) market can be reduced to a non-redundant market in the sense
that there exists a non-redundant market such that for any portfolio of
assets in the original market one can find a portfolio in the non-redundant
market with exactly the same payoff.
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(ii) In a non-redundant market the implication ξ ·Y = 0 P-a.s. ⇒ ξ = 0 holds.
Conversely, if this implication holds and the market is arbitrage free, then
the market is also non-redundant.

Proof Exercise 1.5. �

Remark 1.15 We will need later that Π(C) is an interval; this follows from
the characterization of Π(C) as the right hand side of (1.1), a convex set. This
motivates to study inf Π(C) and sup Π(C). Of course these quantities are of
independent interest. It gives upper and lower bounds for the possible arbitrage
free prices of a contingent claim C.

Theorem 1.16 Assume that the market is arbitrage free. Let

M0 = {m ∈ [0,∞] : ∃ξ ∈ Rd with m+ ξ · Y ≤ C

1 + r
P-a.s.}

and

M1 = {m ∈ [0,∞] : ∃ξ ∈ Rd with m+ ξ · Y ≥ C

1 + r
P-a.s.}.

Then inf Π(C) = maxM0 and sup Π(C) = minM1.

Proof We only give the proof of the characterization of the supremum. The
other assertion follows by similar arguments. We first notice that M1 6= ∅, since
∞ ∈M1 (take ξ = 0). Take m ∈M1 and ξ ∈ Rd such that m+ξ ·Y ≥ C

1+r P-a.s.

For any P∗ ∈ P we then have m ≥ E∗C
1+r . Taking the supremum on the right

hand side over all P∗ and then the infimum on the left hand side over all m ∈M1

yields inf M1 ≥ sup Π(C) in view of Theorem 1.12.
We proceed by showing the reversed inequality. Since this is trivial if

sup Π(C) = ∞, we assume that sup Π(C) < ∞. Pick m > sup Π(C). If we
can show that m ≥ inf M1, we are done by taking the limit m ↓ sup Π(C).
Since m /∈ Π(C), there exists an arbitrage opportunity in the extended market
with πd+1 = m and Sd+1 = C. From Corollary 1.4, applied to the extended mar-
ket (where the vector of net gains is the original Y appended with C

1+r −m),

we obtain the existence of a vector ξ ∈ Rd and a real number ξd+1 with the
properties that

(1.2) ξ · Y + ξd+1(
C

1 + r
−m) ≥ 0 P-a.s.

and strictly positive with positive P-probability. Since the original market is
arbitrage free, we can take P∗ ∈ P under which ξ ·Y +ξd+1( C

1+r−m) has strictly

positive expectation, E∗(ξd+1( C
1+r −m)) > 0. Because m > sup Π(C) ≥ E∗ C

1+r ,

we find that ξd+1 < 0. Consider the portfolio ζ = − ξ
ξd+1

. From (1.2) we obtain

that m + ζ · Y ≥ C
1+r . So m ∈ M1 and thus m ≥ inf M1, which we wanted to

show.
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The last thing to do is to show that the infimum is attained. If inf M1 =∞,
this is trivial. So, we assume that inf M1 <∞. Choose a sequence of mn ∈M1

that decreases to inf M1 and pick the corresponding ξn. We then have

(1.3) mn + ξn · Y ≥ C

1 + r
P-a.s.

If we would know that the sequence (ξn) had a finite limit ξ, we could take limits
in (1.3) to get inf M1 + ξ · Y ≥ C

1+r , in which case it follows that inf M1 ∈ M1

and is thus attained. In general, the existence of a limit ξ cannot be guaranteed,
but in the sequel we show that we can apply the above arguments along some
subsequence.

Without loss of generality, we may assume that the market is non-redundant.
Otherwise, we could replace the ξn ·Y by a linear combination of non-redundant
discounted net gains. Suppose that lim inf ||ξn|| = ∞. Then the vectors ηn :=
ξn

||ξn|| all lie on the (compact) unit circle and therefore converge along a subse-

quence (ηnk) to some vector η. Divide the inequality (1.3) by ||ξnk || and take
the limit for k → ∞ to obtain η · Y ≥ 0 P-a.s. Absence of arbitrage entails
η · Y = 0 P-a.s. and non-redundancy then yields η = 0 (see Proposition 1.14).
This contradicts ||η|| = 1. Hence lim inf ||ξn|| <∞. Choose then a subsequence
(again denoted by) (ξnk) converging to a finite limit ξ. Take along the same
subsequence limits in (1.3) to arrive at inf M1 + ξ · Y ≥ C

1+r P-a.s. This shows
that inf M1 ∈M1. �

Remark 1.17 The sets M0 and M1 in Theorem 1.16 are of interest in their
own rights. One can show that the set M1 coincides with the set of prices (at
t = 0) of portfolios that superhedge the claim C, where a portfolio ξ̄ superhedges
C if ξ̄ · S̄ ≥ C a.s. A similar characterization can be given for M0. See also
Exercise 1.2.

Definition 1.18 A contingent claim C is called attainable if C a.s. belongs to
the space of attainable pay-offs W, so C = ξ̄ · S̄ for some portfolio ξ̄. Such a
portfolio is called replicating portfolio, or hedge.

It is obvious that in an arbitrage free market, the arbitrage-free price of an
attainable claim equals that of the replicating portfolio and is thus unique, due
to the law of one price.

Proposition 1.19 Let C be a contingent claim in an arbitrage free market.
Then

(i) C is attainable iff it admits a unique arbitrage-free price.

(ii) If C is not attainable, Π(C) is the open interval (inf Π(C), sup Π(C)).

Proof (i) If C admits a unique price, the set Π(C) is not an open interval, so (i)
follows from (ii). We now prove the latter assertion. Let C be not attainable. As
observed in Remark 1.15, Π(C) is a non-empty interval. We only have to show
that it is open, which happens if both inf Π(C) and sup Π(C) are not contained in
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it. We only consider inf Π(C) and suppose that inf Π(C) ∈ Π(C). Theorem 1.16
then implies that there exists ξ ∈ Rd such that inf Π(C) + ξ · Y ≤ C

1+r P-a.s.

Since C is not attainable we have P(inf Π(C) + ξ · Y < C
1+r ) > 0. Extend the

original market with the risky asset having pay-off C endowed with the price
inf Π(C) and consider the risky portfolio −ξ augmented with one unit of the
extra risky asset. The total net discounted gain of this extended portfolio is
equal to −ξ · Y + C

1+r − inf Π(C). The above inequalities show that we have
constructed an arbitrage opportunity in the extended market. Hence inf Π(C)
is not an arbitrage free price for C and thus not an element of Π(C). �

1.3 Complete markets

In arbitrage free complete markets, as we shall see, every contingent claim has
a unique price. We start with a definition.

Definition 1.20 A market is called complete if every contingent claim is at-
tainable.

Given a probability space (Ω,F ,P), we denote for p ≥ 1 by Lp(Ω,F ,P) the
usual Banach space with the Lp-norm || · ||p defined by ||X||p = (E |X|p)1/p.
For p = ∞ we have ||X||∞ = inf{c ≥ 0 : P(|X| > c) = 0}. Also for 0 < p < 1
we consider Lp(Ω,F ,P), the set of X with E |X|p < ∞. By L0(Ω,F ,P) we
simply denote the linear space of a.s. finitely valued random variables. It can be
considered as a (complete) metric space by defining the metric ρ by ρ(X,Y ) =

E |X−Y |
1+|X−Y | . It then holds that Xn

ρ→ X iff Xn
P→ X. We will often use the same

notation Lp(Ω,F ,P) when its elements are finite-dimensional random vectors
X = (X1, . . . , Xk) with |X(ω)| denoting any norm of the vector X(ω), usually

|X(ω)| = (
∑k
j=1Xj(ω)2)1/2.

In every market W is a subset of the set of F-measurable random variables.
If C is the set of attainable claims, we have the inclusions C ⊂ W ⊂ L0(Ω,F ,P).
In a complete market we have L0(Ω,F ,P) = C+(−C) ⊂ W and so L0(Ω,F ,P) =
W. It follows that in this case L0(Ω,F ,P) is finite dimensional, with dimension
less than or equal to d+ 1 and also that F and σ(S) are identical modulo null
sets.

Recall the definition of an atom. A set A ∈ F is called an atom of (Ω,F ,P)
if P(A) > 0 and every measurable subset B of A either has probability zero or
P(A).

Proposition 1.21 Let N be the set of integers m for which there exists a
measurable partition of Ω into m sets with positive probability. For any p ∈
[0,∞] one has dimLp(Ω,F ,P) = supN . Moreover, n := dimLp(Ω,F ,P) < ∞
iff there exists a partition of Ω into n atoms.

Proof Suppose that there exists a measurable partition of m sets with pos-
itive probability, A1, . . . , Am say. Then the set of corresponding indicators
1A1

, . . . ,1Am is linearly independent in any Lp(Ω,F ,P). Therefore n ≥ m.
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If N is unbounded, we trivially have n = supN . Assume therefore that
n0 := supN < ∞. Since n0 ∈ N there exists a partition A1, . . . , An0 of atoms.
Indeed, if one of the Ai were not an atom, we split it into more sets of pos-
itive probability, but then n0 would not be maximal. Hence we have that
F = σ(A1, . . . , An0

) modulo null sets and every F-measurable function is al-
most surely constant on the Ai and hence a linear combination of the linearly
independent 1Ai . It follows that n = n0. �

The following theorem is known as the second Fundamental Theorem of Asset
Pricing.

Theorem 1.22 An arbitrage free market is complete iff there exists exactly
one risk-neutral measure. In this case dimL0(Ω,F ,P) ≤ d + 1 and Ω can be
decomposed into at most d+ 1 atoms.

Proof Let the market be complete. Consider the claim C = 1A(1+r) for some
A ∈ F . Then C is attainable and thus admits the unique fair price P∗(A), by
virtue of Proposition 1.19, valid for any P∗ ∈ P. But since A is arbitrary, this
shows that P∗ is unique.

Conversely, assume that P = {P∗}. Let C be a contingent claim. The-
orem 1.12 says that the set Π(C) of its arbitrage free prices has elements
E∗C
1+r <∞. But since P is a singleton, also Π(C) is a singleton and then Propo-
sition 1.19 says that C is attainable. As C is arbitrary, any claim is attainable
and thus the market is complete.

For a complete market we already observed that L0(Ω,F ,P) = W, and so
dimL0(Ω,F ,P) ≤ d + 1, since dimW ≤ d + 1. Proposition 1.21 then implies
that (Ω,F ,P) has at most d+ 1 atoms. �

It follows from Theorem 1.22 that for a complete market with finitely many
securities we can as well set up a model with a finite space Ω. Let us take an
example with n atoms, Ω = {ω1, . . . , ωn}. Let there be one risky asset with
initial price π and S as its price at t = 1. Let s1 = S(ω1) < · · · < sn =
S(ωn). We have seen before (Example 1.7) that any risk-neutral measure P∗,
represented by a vector (p1, · · · , pn) on the simplex, must satisfy

∑
i pisi =

(1 + r)π ∈ (s1, sn). It is obvious that P∗ is unique iff n = 2, which is then the
only case where the market is complete, in view of Theorem 1.22. Moreover, in

this case one easily computes p1 = s2−(1+r)π
s2−s1 and p2 = (1+r)π−s1

s2−s1 .
It is also straightforward to compute the replicating portfolio for a given

contingent claim C. Let ci = C(ωi), i = 1, 2. If the claim is attainable one
should find ξ0 and ξ1 such that ci = ξ0(1+r)+ξ1si, i = 1, 2. This linear system
of equations is solved by

ξ0 =
c1s2 − c2s1

(s2 − s1)(1 + r)

ξ1 =
c2 − c1
s2 − s1

.

One also easily computes an explicit expression for πC = ξ0 + ξ1E∗S
1+r . Further-

more, here we have dimLp(Ω,F ,P) = d+ 1 = 2.
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1.4 Exercises

1.1 Consider a financial market as in Example 1.7 and assume n = 3.

(a) Characterize explicitly the set P as a set of vectors (p∗1, p
∗
2, p
∗
3).

(b) Consider a call option C = (S1 −K)+ for some K > 0. The set Π(C) will
turn out to be an interval. What are the upper and lower limits?

1.2 Let C be a contingent claim in an arbitrage free market with discounted net
gains vector Y . Consider the set M1 of Theorem 1.16. Put π∗ := inf M1. Show
that π∗ is the lowest price of all portfolios ξ̄ that are such that ξ̄ · S̄ ≥ C a.s.

1.3 Finish the proof of Theorem 1.6, by considering the case E |Y | =∞. Hint:

Consider the auxiliary probability measure P̃ defined by dP̃
dP = c

1+|Y | , with c the

normalizing constant, and reason as in the proof of Theorem 1.12

1.4 Write π(W ) = π̄ · ξ̄ for W = ξ̄ · S̄. If π(W ) 6= 0 we define the return of W

by R(W ) := W−π(W )
π(W ) .

(a) Let W = S0, so ξ0 = 1 and the other ξi are zero. Compute R(W ).

(b) Assume an arbitrage free market. Show that E∗(W ) = (1 + r)π(W ), for
any W ∈ W. Compute, for every W ∈ W with π(W ) 6= 0, the expected
return E∗R(W ).

1.5 Here you prove Proposition 1.14.

(a) To prove the first statement you may proceed along the following pattern.
Let N = {ξ̄ ∈ Rd+1 : ξ̄ · S̄ = 0} and assume that dimN > 0. Let N⊥ be
the orthogonal complement of N in Rd+1 with dimN⊥ = k + 1 < d + 1.
Show that there exists a matrix B ∈ R(d+1)×(k+1) of full column rank and
a (k + 1)-dimensional random vector S̄′ such that S̄ = BS̄′.

(b) Show that any portfolio of assets in the original market has a counterpart,
a portfolio of assets in S̄′ with the same payoff.

(c) Show that the (k+1)-dimensional market described by S̄′ is non-redundant.
Does it have a riskless asset?

1.6 Consider a market defined on a finite probability space (as in Example 1.7)
with 1 riskless and d (instead of one) risky assets. Find a relation between
n and d if the market is non-redundant and complete. Show that this condi-
tion is not sufficient and provide a sufficient condition for non-redundancy and
completeness.

1.7 Consider next to the given market the alternative market with the original
non-risky asset and d risky assets whose values at t = 1 are represented by the
vector of discounted net gains Y . Assume that at t = 0 the non-risky asset has
price π′0 = π0 = 1 and the alternative risky assets have price vector π′ equal to
zero.

(a) Show that any portfolio in the original market has a counterpart in the
alternative market with same pay-off at t = 1.

10



(b) Show that the alternative market is arbitrage free iff the original market is
arbitrage free.

1.8 Assume that a markt admits an arbitrage opportunity. Show there exists a
ξ̄ ∈ Rd+1 such that W0 = 0 a.s., W1 ≥ 0 a.s., and P(W1 > 0) > 0. [Conversely,
such a ξ̄ is an arbitrage opportunity in the sense of Definition 1.1.]

1.9 Suppose that the initial price vector π̄ is different from E∗ S̄
1+r . Construct

an arbitrage opportunity.

1.10 Consider the sets M0 and M1 of Theorem 1.16. Show by a direct argument
that inf M1 ≥ supM0.

1.11 Complete the proof of Theorem 1.16, i.e. show that inf Π(C) = maxM0.

1.12 Complete the proof of Proposition 1.19, i.e. show that sup Π(C) /∈ Π(C).

1.13 Consider a probability space (Ω,F ,P) and assume Ω has three elements,
Ω = {ω1, ω2, ω3}. Suppose there is, next to the riskless S0, one risky asset S1

that is not constant. Construct a non-attainable claim C and show that the
market extended with C is complete.

1.14 Consider a market, defined on a probability space (Ω,F ,P), consisting of
d risky assets and one riskless asset. Assume that it is arbitrage free, complete
and non-redundant. Show that dimLp(Ω,F ,P) = d + 1 (for any p ∈ [0,∞]).
Conversely, if dimLp(Ω,F ,P) = d + 1, show that the market is arbitrage free,
complete and non-redundant. [This is a new exercise, not sure it is correct.]
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2 Preferences

In a market commodities are traded and an agent acting in this market will
have certain preferences of some commodities over others. Think that he likes
apples more than pears. Preferences will be made explicit by introducing pref-
erence relations. Traded commodities include risky assets as well, or contingent
claims. Future pay-offs of these products are uncertain, random. We have seen
in the previous section, that in a complete market such claims have a unique
(arbitrage free) price, computed as an expectation under the unique risk-neutral
measure. In incomplete markets, there is usually an interval of possible arbi-
trage free prices. To select one of these, preference relations or their numerical
counterparts, utility functions, are instrumental. Utility functions also describe
the attitude of an economic agent towards risk (incurred by the uncertain pay-
offs). In this case, the resulting price of a contingent claim depends on how risk
is quantified and for different utility functions, usually, different prices will be
the result. Utility functions can also be used in a complete market to choose be-
tween two portfolios that have the same price. The treatment of utility functions
is deferred to Section 4, here we study preference relations.

2.1 Preference relations

Let X be a non-empty set representing commodities or securities, or in general
possible choices an economic agent can make. Recall that a binary relation R
on X can be represented as a subset of X ×X and that xRy means (x, y) ∈ R.
The binary relations that are the topic of this section are denoted �, �, ≺ and
�.

Definition 2.1 A (strict) preference relation or preference order on X is a
binary relation � with the properties

(i) Asymmetry: If x � y, then y � x.

(ii) Negative transitivity: If x � y and z ∈ X , then x � z or z � y.

Definition 2.2 A weak preference relation on X is a binary relation � with the
properties

(i) Completeness: For all x, y ∈ X one has x � y or y � x.

(ii) Transitivity: If x � y and y � z, then x � z.

Proposition 2.3 Strict and weak preference relations are connected in the fol-
lowing way. If � is a strict preference relation on X , then x � y defined by y � x
yields a weak preference relation on X . Conversely, if � is a weak preference
relation, then x � y defined by y � x yields a strict preference relation.

Proof Exercise 2.1. �

When dealing with strict and weak preference relations � and �, we will always
assume that they are related as in Proposition 2.3. Given a weak preference

12



relation �, an indifference relation ∼ is defined by x ∼ y iff x � y and y � x.
One easily verifies that an indifference relation is an equivalence relation. Note
that we also have x � y iff x � y and x � y (see also Exercise 2.6).

Sometimes it is notationally convenient to use reverse preference relations.
So, instead of x � y we also write y ≺ x and likewise we use y � x for x � y.

2.2 Numerical representations

In a rather general setting abstract preference orders can be replaced with equiv-
alent numerical representations for which the usual order on R can be used.

Definition 2.4 A function U : X → R is called a numerical representation of
a preference relation �, if x � y is equivalent to U(x) > U(y).

An alternative definition of a numerical representation is obtained by putting

(2.1) x � y iff U(x) ≥ U(y)

instead of the equivalence in Definition 2.4. Of course, any strictly increasing
transformation of a numerical representation U yields another numerical rep-
resentation, so numerical representations are inherently non-unique. Numerical
representations and the underlying preference relations having certain additional
properties can be casted in terms of the so-called utility functions. We’ll come
back to this in Section 4.

Definition 2.5 Given a preference relation � on X , a subset Z of X is called
order dense (in X ) if for all x, y ∈ X with x � y, there exists a z ∈ Z such that
x � z � y.

Theorem 2.6 A given preference relation � on X admits a numerical repre-
sentation iff X contains a countable order dense subset.

Proof Let Z be a countable order dense subset of X . Choose a probability
measure µ on Z with µ(z) = µ({z}) > 0 for all z ∈ Z. Then we put

(2.2) U(x) :=
∑
z:x�z

µ(z)−
∑
z:z�x

µ(z).

Notice that existence of such a probability distribution is guaranteed by count-
ability of Z, that also makes U(x) well defined in terms of the given summations.
By construction we have x � y iff U(x) > U(y). To see this, we first compute
for x � y the difference

U(x)− U(y) =
∑

z:x�z�y

µ(z) +
∑

z:x�z�y

µ(z).

If x � y, then there is z0 ∈ Z such that x � z0 � y. By negative transitivity we
also have z0 � y or x � z0. Hence we have x � z0 � y or x � z0 � y, and we see
that at least one of the two sums in the display is strictly positive, which yields
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U(x) > U(y). If x � y, the right hand side of the displayed formula is still well
defined, has nonnegative terms (possibly zero) and hence U(x) ≥ U(y). It then
follows by contraposition that U(x) > U(y) implies x � y. We conclude that U
as in (2.2) is a numerical representation of �.

Conversely, we assume that a numerical representation is given. We also
assume that X is uncountable, otherwise there is nothing to prove. Let J :=
{[a, b] : a, b ∈ Q, a < b, U−1([a, b]) 6= ∅}. Then, for every I ∈ J , there exists
zI ∈ X with U(zI) ∈ I. Put A := {zI : I ∈ J } and observe that A is countable.
The set A is almost the set Z we are after. A naive approach could be as
follows. Suppose y � x, then U(y) > U(x) and there are rational a and b such
that U(x) < a < b < U(y). The problem arises that it is not guaranteed that
U−1([a, b]) is non-void.

To remedy this, we will enlarge the set A with certain elements of Ac and
consider thereto first the set C := {(x, y) ∈ Ac × Ac : y � x and ∀z ∈ A : x �
z or z � y}. Let (x, y) ∈ C, but suppose that there exists z ∈ X \ A such that
y � z � x. Then we can also find rational a and b such that U(x) < a < U(z) <
b < U(y) and therefore I := [a, b] ∈ J . By definition of A, we can then find
zI ∈ A that then also has the property U(x) < a ≤ U(zI) ≤ b < U(y) and hence
y � zI � x. This contradicts (x, y) ∈ C. We conclude that if (x, y) ∈ C, then
for all z ∈ X it holds that x � z or z � y.

This implies the following observation. If (x, y) ∈ C and (x′, y′) ∈ C, such
that U(x) 6= U(x′) or U(y) 6= U(y′), then (U(x), U(y))∩ (U(x′), U(y′)) = ∅. We
argue as follows. The situation x ∼ x′ and y ∼ y′ is ruled out by assumption.
Therefore assume w.l.o.g. that x � x′. Since (x, y) ∈ C, we must have x � x′ or
x′ � y, which implies that either U(x) ≥ U(x′) or U(x′) ≥ U(y). In the latter
case we are done. Let then the former inequality hold. Since also (x′, y′) ∈ C,
we have x′ � x or x � y′. The first of these possibilities can not happen,
since we ruled out x ∼ x′, and therefore the second one holds, and we obtain
U(x) ≥ U(y′), from which the conclusion follows as well.

Knowing that the intervals of the type (U(x), U(y)) with (x, y) ∈ C are
disjoint, we conclude that there are only countably many of them and it follows
that the collection of these intervals can be written as a collection of intervals
(U(x), U(y)), where x and y run through a countable subset of X , B say.

We put Z = A ∪ B, a countable set as well, and we will see that it is order
dense. Take x, y ∈ X \ Z with y � x. If there is z ∈ A such that y � z � x, we
are done. If such a z doesn’t exist, then (x, y) ∈ C, in which case we have for
instance U(x) = U(z) for some z ∈ B. But then y � z � x. �

Not every preference order admits a numerical representation. It turns out that
the lexicographical order on [0, 1] × [0, 1] provides us with a counterexample.
This order is defined by x � y iff x1 > y1 or x1 = y1 and x2 > y2.

Example 2.7 Let X = [0, 1]× [0, 1] endowed with the lexicographical order �.
Suppose that � admits a numerical representation U . Since (α, 1) � (α, 0), we
have d(α) := U(α, 1) − U(α, 0) > 0 for all α ∈ [0, 1], and hence [0, 1] = ∪nAn,
where An = {α ∈ [0, 1] : d(α) > 1

n}. Since [0, 1] is uncountable, there must be a
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set Am with infinitely many elements. In this set we can choose for any positive
integer N real numbers α0 < · · · < αN . Note that U(αi+1, 0) > U(αi, 1), and
so we get U(αi+1, 0)− U(αi, 0) > d(αi) >

1
m . Hence we get

U(1, 1)− U(0, 0) = U(1, 1)− U(αN , 0)

+

N−1∑
i=0

(U(αi+1, 0)− U(αi, 0))

+ U(α0, 0)− U(0, 0)

>
N

m
.

Letting N →∞ yields U(1, 1)− U(0, 0) =∞, which is excluded.

We now introduce various types of preference intervals. The first are ((x,→)) :=
{y ∈ X : y � x} and ((←, x)) := {y ∈ X : x � y}. We will also use the notation
((x, y)) for ((←, y)) ∩ ((x,→)). Likewise we define [[x,→)) = {y ∈ X : y � x},
((←, x]] = {y ∈ X : x � y} etc. In terms of preference intervals, negative
transitivity of � can be casted as ((←, x)) ∪ ((y,→)) = X if x � y.

Definition 2.8 Let X be a topological space. A preference relation � is called
continuous if for every x ∈ X the sets ((x,→)) and ((←, x)) are open.

Remark 2.9 Suppose that � admits a numerical representation U . Because of
the identity ((x,→)) = U−1(U(x),∞), it follows that � is continuous if U is a
continuous function. But there are also examples of preference orders that are
not continuous. Consider again the lexicographical order on X = [0, 1] × [0, 1].
Then {(y1, y2) ∈ X : (y1, y2) � ( 1

2 ,
1
2 )} is not open in the ordinary topology

(draw a picture).

Proposition 2.10 Let X be a Hausdorff space. On X ×X we use the product
topology. Then the following are equivalent.

(i) � is continuous.

(ii) The set {(x, y) : y � x} is open.

(iii) The set {(x, y) : y � x} is closed.

Proof First we show (i) ⇒ (ii): Let (x0, y0) ∈ M := {(x, y) : y � x}. We
show that there are open subsets U and V of X such that (x0, y0) ∈ U × V ⊂
M . Suppose first that ((x0, y0)) 6= ∅. Pick a z from this preference interval,
then y0 � z � x0. The sets U := ((←, z)) and V := ((z,→)) are open and
contain x0 and y0 respectively. Moreover, one quickly sees that U × V ⊂ M .
If the preference interval ((x0, y0)) is empty, we choose U = ((←, y0)) and
V = ((x0,→)). Take (x, y) ∈ U × V . Then y0 � x and y � x0. To show that
y � x, we assume the contrary. By negative transitivity we must have y0 � y.
But then y ∈ ((x0, y0)), which was empty. Contradiction.

(ii) ⇒ (iii): It follows from (ii) that also {(x, y) : x � y} is open. But its
complement is just {(x, y) : y � x}.
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(iii)⇒ (i): Since X is Hausdorff, every singleton {x} is closed and so {x}×X
is closed in the product topology. By assumption, then also {x}×{y : y � x} =
{x} × X ∩ {(u, y) : y � u} is closed. But then, the set {y : y � x} is closed in
X since a product set is closed iff all factors are closed, and so {y : x � y} is
open. In a similar way on proves that {y : y � x} is open. �

Proposition 2.11 Let X be a connected topological space endowed with a
continuous preference order �. Then every dense set Z of X is also order dense.
If X is separable, then there exists a numerical representation of �.

Proof First we rule out the trivial situation in which all elements of X are
indifferent. So, we can take x, y ∈ X with y � x. Observe that y ∈ ((x,→))
and x ∈ ((←, y)), so both open preference intervals are non-empty. Moreover,
their union is X , because of negative transitivity. Then we must have that
((x,→)) ∩ ((←, y)) 6= ∅, because X is connected. The intersection is open as
well, so it must contain a z from Z, since Z is dense. Then y � z � x, and so Z
is order dense. If X is separable, there exists a countable dense and thus order
dense subset. Apply Theorem 2.6. �

Connectedness is essential in Proposition 2.11. Here is a counterexample. Let
x0, y0 be irrational numbers in R with x0 < y0. Let X = (−∞, x0]∪ [y0,∞) and
let � be the usual order on R. Obviously Q ∩ X is dense in X , but not order
dense, since [x0, y0] := {x ∈ X : x0 ≤ x ≤ y0} (thus by definition a subset of X )
contains no rational numbers.

The assertion of Proposition 2.11, that every continuous preference relation
on a connected topological space has a numerical representation, can be sharp-
ened.

Theorem 2.12 Let X be a connected and separable topological space, en-
dowed with a continuous preference order. Then this preference order admits a
continuous numerical representation.

Proof We rule out the trivial case that x ∼ y for all x, y ∈ X . Let Z be a
countable dense subset in X , write Z = {z1, z2, . . .}. We will first construct a
representation U0 of � restricted to Z, and then give it a continuous extension
U on X . The construction will be recursive by ‘filling the holes’ and bears some
similarity with the construction of the Cantor function.

We define U0(z1) := 1
2 . Consider z2. Three possibilities arise. If z2 ∼ z1,

then U0(z2) = U0(z1). If z1 � z2, then U0(z2) := 1
4 and if z2 � z1 we put

U0(z2) = 3
4 . For later use we define Vn = {k2−n : k = 1, . . . , 2n − 1}. Notice

that U0(z1) ∈ V1 and U0(z2) ∈ V2, whatever z2, and that Vn ⊂ Vn+1 for all n.
We now give the general pattern. Supposing that U0(z1), . . . , U0(zn) (n ≥ 2)

have been defined and that U0(zk) ∈ Vk ⊂ Vn, for k ≤ n. We now define
U0(zn+1) after realizing that only four different situations can arise. Case 1:
zn+1 is indifferent to some zi with i ≤ n. Then U0(zn+1) := U0(zi) ∈ Vn ⊂ Vn+1.
Case 2: zi � zn+1 for all i ≤ n. Then U0(zn+1) = 1

2 min{U0(zi) : i = 1, . . . , n} ∈
Vn+1. Case 3: zn+1 � zi for all i ≤ n. Then U0(zn+1) = 1

2 (max{U0(zi) : i =
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1, . . . , n} + 1) ∈ Vn+1. Case 4: There exist in, jn ∈ {1, . . . , n} such that for all
other i ∈ {1, . . . , n} it holds that either zin � zi or zi � zjn and zjn � zn+1 �
zin . In this case we put U0(zn+1) = 1

2 (U0(zin) + U0(zjn)) ∈ Vn+1.
Let V = ∪nVn, u0 = inf U0(Z) and u1 = supU0(Z). Notice that u0 < u1.
Obviously, U0(Z) ⊂ V , but we claim that also V ∩ (u0, u1) ⊂ U0(Z). To see
that this holds true, we argue as follows.

We may assume without loss of generality that u0 and u1 are not attained. If
this were not true, we replace below Z with the non-empty set Z\U−1

0 ({u0, u1}).
If both u0, u1 are attained, u0 = U0(z0) and u1 = U0(z1) say, this set is dense in
((z0, z1)) (Exercise 2.4). If only one of the two is attained, a similar argument
applies. Alternatively, one can treat the boundary cases separately by similar
arguments as below.

We continue under the assumption made, u0 and u1 are not attained. We
have U0(z1) = 1

2 . The sets ((←, z1)) and ((z1,→)) are both open and non-
empty, otherwise we would have u0 = U0(z1) or u1 = U0(z1), contradicting our
assumption that u0 and u1 are not attained. Hence there must be z and z′ in
Z such that U0(z) = 1

4 and U0(z′) = 3
4 Hence all values in V2 ∩ (u0, u1) are

attained. We continue by induction. Suppose that all values in Vn∩ (u0, u1) are
attained. Then for all 1 ≤ k < 2n−1, there are z, z′ ∈ Z such that U0(z) = k2−n

and U0(z′) = (k + 1)2−n. The set ((z, z′)) is open and, by the fact that X is
connected, not empty. Since Z is dense, there is z′′ ∈ Z ∩ ((z, z′)). We can even
choose z′′ such that U0(z′′) = (2k + 1)2−n−1 ∈ Vn+1 \ Vn, by the construction
of U0.

If 2−n ∈ Vn ∩ (u0, u1) and z is such that U0(z) = 2−n, then 2−n > u0

(the infimal value) and there must be a z′ such that U0(z′) < 2−n. By the
construction of U0, we can choose z′ even such that U0(z′) = 2−n−1. For z such
that U0(z) = 1− 2−n there is a similar reasoning. This shows that all values in
Vn+1 are attained as well.

Having thus proved the claim, we take closures and it follows that [u0, u1] =
ClU0(Z), so U0(Z) is dense in [u0, u1]. It is obvious that the equivalence (2.1)
holds for all x ∈ Z, by construction of U0 on Z, so U0 is a numerical represen-
tation of � on Z.

We extend U0 to have domain X by setting

U(x) = sup{U0(z) : z ∈ Z, z � x}.

First we check that U(z) = U0(z), for z ∈ Z. It is obvious that U(z) ≥ U0(z).
Suppose that U(z) > U0(z). Then, by the definition of U(z) as a supremum,
there would be z′ ≺ z such that U0(z′) > U0(z) and then also z′ � z, a
contradiction.

Now we show that U is a numerical representation of �. Suppose that
x � y. Then {U0(z) : z ∈ Z, z � y} ⊂ {U0(z) : z ∈ Z, z � x} and U(x) ≥ U(y)
obviously holds. Let now x � y. Then, by Z dense and X connected, there are
z, z′ ∈ Z such that x � z � z′ � y (Exercise 2.3), and hence U(x) ≥ U(z) >
U(z′) ≥ U(y).

We finally show that U is continuous, for which it is sufficient to show that
the sets of the form U−1[(−∞, u)] and U−1[(u,∞)] are open for u ∈ [u0, u1].
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We focus on U−1[(−∞, u)], and we only have to consider u > u0. Take x from
this set. By V dense in [u0, u1], there is v ∈ V such that U(x) < v and v < u.
But v = U(z) for some z ∈ Z. Hence x ∈ ((←, z)) ⊂ U−1[(−∞, u)], and since
((←, z)) is open, also U−1[(−∞, u)] is open. �

2.3 Exercises

2.1 Prove Proposition 2.3.

2.2 Assume that � is a continuous preference relation on a connected set X ,
which is endowed with a topology that is first-countable (this allows you to
work below with sequences). Let Z be a dense subset of X . If U : X → R is
continuous and its restriction to Z is a numerical representation of �, then U
is also a numerical representation of � on all of X . To show this, you verify the
following implications.

(a) x � y ⇒ U(x) > U(y)

(b) U(x) > U(y)⇒ x � y.

Hints: To show (a) you complete the following steps. Show that there are
z, w ∈ Z such that x � z � w � y. Choose then zn, wn ∈ Z such that zn → x
and wn → y and finish the proof.
For (b) you show first that U−1(U(y),∞) ∩ U−1(−∞, U(x)) is non-void and
select z, w ∈ Z such that U(x) > U(z) > U(w) > U(y). Use again convergent
sequences.

2.3 Let X be a connected topological space and � a continuous strict preference
relation on it.

(a) Let x � y. Show that X = ((y,→))c ∪ ((y, x)) ∪ ((←, x))c.

(b) Show that ((y, x)) is not empty.

(c) Let Z be dense in X . Show that there are z, z′ ∈ Z such that x � z �
z′ � y.

2.4 Show that the set {z ∈ Z : U0(z) ∈ (u0, u1)} in the proof of Theorem 2.12
is dense in ((z0, z1)).

2.5 Let X be a topological space with a continuous preference order � and
topology T . Let S be the set of all preference intervals ((←, x)) or ((x,→)).
Let T0 be the smallest topology that contains S. Show that T0 is the coarsest
topology for which Proposition 2.11 and Theorem 2.12 are valid.

2.6 Let � be a strict preference order on a set X and � its associated weak
preference order. Prove, using the definitions of these preference orders, the
following statements.

(a) ∼ is an equivalence relation on X .

(b) x � y iff x � y and x � y.

(c) x � y iff x � y or x ∼ y.
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2.7 A subset K of R is compact in the ordinary topology iff it is closed and
bounded, in which case there is a maximal number in K. Here is the counterpart
for preference relations. Let � be a continuous weak preference relation on a
set X , which is endowed with a topology under which it becomes a Hausdorff
space (a compact subset of X is then closed). Let K be a non-empty compact
subset of X . Show that there is a most preferred element x̄ in K (i.e. x̄ � x
for all x ∈ K) and that the set of all such x̄ is compact. Hint: Consider for
each x ∈ K the preference intervals in K, [[x,→))∩K, and show that any finite
intersection of them is non-empty.

2.8 Let � be a continuous weak preference relation on X = (0,∞)m that has
the additional property that it is monotonic: if x = (x1, . . . , xm) and y =
(y1, . . . , ym) are such that xi ≥ yi for all i and xi 6= yi for some i, then x
is strictly preferred over y, x � y. Let 1 be the vector (1, . . . , 1). Define
U(x) = sup{α > 0 : x � α1}, x ∈ X .

(a) Show that U is a numerical representation of �.

(b) Consider for given x ∈ X the sets U = {α ≥ 0 : α1 � x} and L = {α ≥ 0 :
α1 � x}. Show that (i) L ∩ U 6= ∅ and that (ii) actually this intersection
consists of one point only.

(c) Define U ′(x) = inf{α > 0 : x � α1}, x ∈ X . Show that U = U ′.

2.9 Let X = [0, 1]× [0, 1] endowed with the lexicographical order �. Show by a
direct argument, not referring to Theorem 2.6, that X has no countable order
dense subset.

2.10 Consider the function U as in the proof of Theorem 2.12, whose assump-
tions are in force. Define V (x) = inf{U0(z) : z ∈ Z, z � x}. Show that
U(x) ≤ V (x), for all x ∈ X . Is U = V ?

2.11 Let X = R2
+, endowed with the ordinary topology and with elements

x = (x1, x2) etc. Define x � y if x1x2 ≥ y1y2.

(a) Show that � defines a weak preference relation. How does the correspond-
ing strict preference relation look? Is it continuous?

(b) There exists an obvious numerical representation of �. Which one? Is this
representation continuous?

(c) Give a countable order dense subset.

(d) What are the points in X that are indifferent of (1, 1)? Sketch a few
indifference curves.
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3 Lotteries

In this section we take the situation of the previous section as a starting point.
We assume that the set X is a convex subset of the set of all probability measures
on some measurable space (S,S). We writeM instead of X . Every probability
measure can be considered as a lottery, in the ‘argot du métier’. Our aim is to
consider preference relations on the space of lotteries that admit a numerical
representation of a special kind.

3.1 Von Neumann-Morgenstern representations

Definition 3.1 Let � be a preference relation on M. A numerical represen-
tation U is called a Von Neumann-Morgenstern representation if there is a
measurable function u : S → R such that

(3.1) U(µ) =

∫
udµ,∀µ ∈M.

It is easy to check that a Von Neumann-Morgenstern representation U is an
affine function, i.e. U(tµ+ (1− t)ν) = tU(µ) + (1− t)U(ν), for all µ, ν ∈M and
t ∈ [0, 1]. But, if a numerical representation U of � is affine, then it implies two
additional properties of � (see Proposition 3.3), that we define now.

Definition 3.2 Let � be a preference relation on M. It satisfies the indepen-
dence axiom if for all µ � ν it holds that

(3.2) tµ+ (1− t)λ � tν + (1− t)λ,

for all λ ∈M and t ∈ (0, 1].
The preference relation satisfies the Archimedean axiom (also called conti-

nuity axiom), if for all µ � λ � ν, there are t, s ∈ (0, 1) such that

(3.3) tµ+ (1− t)ν � λ � sµ+ (1− s)ν.

Proposition 3.3 Assume that � admits an affine numerical representation.
Then � satisfies the axioms of Definition 3.2.

Proof Exercise 3.1. �

The nice thing is that Proposition 3.3 has a converse as well. This is the content
of the next theorem.

Theorem 3.4 Suppose that a preference relation � on M satisfies both the
independence and Archimedean axioms. Then it has an affine numerical rep-
resentation, U say. Moreover, for any other affine numerical representation Ũ ,
there exist a > 0 and b ∈ R such that Ũ = aU + b.

To prepare for the proof of this theorem, we present a lemma. In the proof we
use a couple of times a consequence of the independence axiom. If µ � ν, then
µ � tµ+ (1− t)ν for all t ∈ [0, 1) and tµ+ (1− t)ν � ν for all t ∈ (0, 1].
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Lemma 3.5 Suppose that a preference relation � on M satisfies both the
independence and Archimedean axioms. Then the following hold true.

(i) If µ � ν, then for all 0 ≤ t < s ≤ 1 it holds that sµ+(1−s)ν � tµ+(1−t)ν.

(ii) If µ � ν and λ ∈ [[ν, µ]], then there exists a unique t ∈ [0, 1] such that
λ ∼ tµ+ (1− t)ν.

(iii) If µ ∼ ν, then tµ+ (1− t)λ ∼ tν + (1− t)λ, for all λ ∈M and t ∈ [0, 1].

(iv) For any ρ � λ, the preference interval [[λ, ρ]] is convex.

Proof (i) We use (3.2), with s instead of t and λ = ν, to get ρ := sµ + (1 −
s)ν � ν. Using (3.2) again, with ρ = µ = λ and 1 − u instead of t, we get
(1 − u)ρ + uρ � (1 − u)ν + uρ. Here the left hand side is ρ, whereas the right
hand side equals suµ+ (1− su)ν. Take u = t/s ∈ (0, 1).

(ii) We only have to show existence, uniqueness follows from (i). Existence
for the cases λ ∼ µ and λ ∼ ν is trivial, so we assume µ � λ � ν. In view of
(i), it should hold that t = supA, where A = {u : λ � uµ+ (1− u)ν}.

Suppose that this t is not the right one, then either λ � tµ+ (1− t)ν or λ ≺
tµ+(1− t)ν. Consider the first case, which rules out t = 1, so t < 1. We use the
right hand side of (3.3) applied to the triple µ � λ � tµ+(1−t)ν to get existence
of s ∈ (0, 1) such that λ � s(tµ+ (1− t)ν) + (1− s)µ = (1− s+ ts)µ+ (1− t)sν.
The definition of t implies t ≥ 1 − s + ts, which is, since s < 1, equivalent to
t ≥ 1, a contradiction.

In the second of the two above cases, we apply (3.3) to the triple tµ+ (1−
t)ν � λ � ν, to get s ∈ (0, 1) such that stµ+ (1− st)ν = s(tµ+ (1− t)ν) + (1−
s)ν � λ. This means that st /∈ A, and hence st ≥ supA = t, so s ≥ 1, another
contradiction.

(iii) We rule out the case that all ρ ∈ M are equivalent to µ, because then
we immediately have tµ+ (1− t)λ ∼ µ, tν + (1− t)λ ∼ µ and we are done. So,
take ρ � µ and suppose that ρ � µ (the other case can be treated similarly).
Then also ρ � ν and we apply (3.2) to obtain sρ+ (1− s)ν � sν+ (1− s)ν = ν,
for all s ∈ (0, 1). Then we apply (3.2) again to get

(3.4) t(sρ+ (1− s)ν) + (1− t)λ � tµ+ (1− t)λ.

If the assertion were not true, then we have for instance tµ+(1−t)λ � tν+(1−t)λ
for some t ∈ (0, 1) (the other possibility can be treated similarly). So, assume
that tµ + (1 − t)λ � tν + (1 − t)λ, contrary to what we have to show. With
Equation (3.4) it then follows that tµ + (1 − t)λ ∈ [[tν + (1 − t)λ, t(sρ + (1 −
s)ν) + (1 − t)λ]]. We can now apply (ii), which yields a unique u ∈ (0, 1) such
that tµ + (1 − t)λ ∼ u(t(sρ + (1 − s)ν) + (1 − t)λ) + (1 − u)(tν + (1 − t)λ) =
tsuρ+t(1−su)ν+(1−t)λ. Equation (3.4) is true for all s ∈ (0, 1), and so we can
there replace s with su, which yields tsuρ+ t(1−su)ν+(1− t)λ � tµ+(1− t)λ.
This contradicts the last obtained indifference relation, a contradiction, caused
by the assumption tµ + (1 − t)λ � tν + (1 − t)λ. Likewise, one can eliminate
tµ+ (1− t)λ ≺ tν + (1− t)λ to complete the proof.

(iv) Next we show that [[λ, ρ]] is convex. We assume ρ � λ, since the case
ρ ∼ λ immediately follows from part (ii).
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Consider first the interior case, we take µ, ν ∈ ((λ, ρ)) and t ∈ (0, 1). Since
ρ � ν we use the independence axiom to get ρ = tρ+ (1− t)ρ � tρ+ (1− t)ν.
And since ρ � µ, we use the same axiom to get tρ + (1 − t)ν � tµ + (1 − t)ν.
Combining these relations, we obtain ρ � tµ + (1 − t)ν. One similarly proves
tµ+ (1− t)ν � λ.

Next we consider a boundary case µ ∼ ρ, ν ∈ ((λ, ρ)). Inspection of the
proof of the previous case shows that this case is partly handled, and one can
use part (iii) of this lemma to complete the proof (you check!). Finally we
have the extreme case ν ∼ λ and µ ∼ ρ. Here one can use part (iii) again
(Exercise 3.6). We conclude that [[λ, ρ]] is convex. �

Proof of Theorem 3.4 We exclude the trivial case in which all elements of
M are indifferent. Choose ρ, λ ∈M with ρ � λ. Let µ ∈ [[λ, ρ]]. Lemma 3.5(ii)
yields a unique t = t(µ) such that µ ∼ tρ + (1 − t)λ. We use this to define U
on [[λ, ρ]] by U(µ) := t. So, U(µ) is the coefficient of ρ in the representation
µ ∼ tρ+ (1− t)λ. Notice that U(λ) = 0 and U(ρ) = 1.

The first thing to show is that we have defined a numerical representation
of � on [[λ, ρ]]. Let U(µ) > U(ν). In view of Lemma 3.5(i) we have U(µ)ρ +
(1−U(µ))λ � U(ν)ρ+(1−U(ν))λ. But the probability measures on both sides
are indifferent to µ and ν respectively. Hence µ � ν. To prove the converse
implication it is sufficient to show that U(µ) = U(ν) implies µ ∼ ν. But this is
obvious from the definition of U .

We now show that U is affine. Since [[λ, ρ]] is convex (Lemma 3.5(iv)), U(tµ+
(1− t)ν) is well defined for µ, ν ∈ [[λ, ρ]]. Recall that U(µ)ρ+ (1− U(µ))λ ∼ µ
and U(ν)ρ+ (1− U(ν))λ ∼ ν. A double application of Lemma 3.5(iii) gives

tµ+ (1− t)ν ∼ t(U(µ)ρ+ (1− U(µ))λ) + (1− t)(U(ν)ρ+ (1− U(ν))λ).

Rearranging terms on the right hand side gives (tU(µ) + (1 − t)U(ν))ρ + (1 −
tU(µ)− (1− t)U(ν))λ, a convex combination of ρ and λ. But then, by definition
of U , we have U(tµ+ (1− t)ν) = tU(µ) + (1− t)U(ν), as desired.

The next step is to show that U is unique up to an affine transformation.
Let Ũ be another affine representation of �. Let µ ∈ [[λ, ρ]] and define

Û(µ) =
Ũ(µ)− Ũ(λ)

Ũ(ρ)− Ũ(λ)
,

an affine transformation of Ũ , having, like U , the properties Û(λ) = 0 and
Û(ρ) = 1. Combine this with affinity of Û to obtain Û(µ) = Û(U(µ)ρ + (1 −
U(µ))λ) = U(µ)Û(ρ) + (1 − U(µ))Û(λ) = U(µ). Therefore U is an affine
transformation of Ũ .

The last step is to show that U can be extended to all of M. Consider a
preference interval [[λ1, ρ1]] ⊃ [[λ, ρ]]. We know that � has an affine representa-
tion U1 on [[λ1, ρ1]], which can be taken such that U1(ρ) = 1, U1(λ) = 0 (apply
an affine transformation to accomplish this). So U1 must coincide with U on
[[λ, ρ]]. Hence U can be extended to all of M, since every element of it belongs
to some preference interval by transitivity of �. Indeed, if µ /∈ [[λ, ρ]], then e.g.
µ ≺ λ and we can take [[λ1, ρ1]] = [[µ, ρ]] ⊃ [[λ, ρ]]. �
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Remark 3.6 We note that up to here, we didn’t use that M is a set of prob-
ability measure. The above results are valid, under the stated assumptions, for
any convex set M. On the other hand, for M a set of probability measures,
convex combinations of the type tµ + (1 − t)ν have a nice interpretation as a
compound lottery. The results that follow use essential properties of probability
measures.

We return to the Von Neumann-Morgenstern representation of a preference
order � on M. We first treat a simple case.

Example 3.7 Suppose thatM is the set of all finite mixtures of Dirac measures
δx, and that an affine representation U exists. Define u(x) = U(δx). Let
µ =

∑
tiδxi , where the ti ≥ 0 and

∑
ti = 1. Affinity of U yields U(µ) =∑

tiu(xi) =
∫
udµ, which is the desired representation. So, in this case, if there

exists an affine representation, it is automatically of Von Neumann-Morgenstern
type.

In the remainder of this section we assume that the set S is a separable metric
space and that S is its Borel σ-algebra. Recall the definition of weak converge
of probability measures on S: µn → µ iff

∫
f dµn →

∫
f dµ for all bounded and

continuous functions f on S. As a preparation for the final theorem, we have
the following lemma.

Lemma 3.8 Consider the space M of all probability measures on (S,S) en-
dowed with the weak topology. Fix µ, ν ∈M and consider A : t→ tµ+(1− t)ν.
Then A : [0, 1]→M is continuous. If � is a continuous preference ordering on
M, then it satisfies the Archimedean axiom.

Proof The first assertion follows from the evident identity
∫
f d(tµ+(1−t)ν) =

t
∫
f dµ+ (1− t)

∫
f dν, valid for any bounded and continuous function f on S.

Indeed, if tn → t, one then has for all bounded and continuous functions f on
S that

∫
f dA(tn) →

∫
f dA(t), which shows that A(t) is the weak limit of the

A(tn).
To prove the second assertion, let µ � ν and choose λ ∈ ((ν, µ)). Observe

that t = 1 is an element of A−1((λ,→)) and that this set is open in [0, 1] by the
just shown continuity of A. Hence there is also some t ∈ (0, 1) belonging to it,
and for this t one has A(t) = tµ + (1 − t)ν � λ, as required in Definition 3.2.
The existence of s in that definition follows similarly. �

Theorem 3.9 Consider the space M of all probability measures on (S,S) en-
dowed with the weak topology, where S is assumed to be separable. Let � be a
continuous preference ordering onM, satisfying the independence axiom. Then
� admits a Von Neumann-Morgenstern representation

(3.5) U(µ) =

∫
udµ,

where the function u : S → R is bounded, continuous and unique up to affine
transformations.
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Proof Consider first the subspace MS of simple distributions on S, these are
the distributions as in Example 3.7. We conclude from Lemma 3.8 and Theo-
rem 3.4 that � restricted to MS admits an affine representation, which is, by
Example 3.7, automatically of Von Neumann-Morgenstern type.

The function u involved will turn out to be bounded. Suppose that this is
not the case, then there is a sequence (xn) ⊂ S such that (u(xn)) is increasing
and u(xn) > n (the other possibility u(xn) < −n can be treated similarly).
Put µn = (1 − 1√

n
)δx1 + 1√

n
δxn . Since u(x2) > u(x1), we have δx2 � δx1 ,

so δx1 ∈ ((←, δx2)). One easily checks that µn → δx1 weakly. Hence, for
n big enough, µn belongs to any (nonempty) open neighborhood of δx1

, so
eventually we have µn ∈ ((←, δx2

)). But then U(µn) ≤ u(x2). However, by
direct computation, we have U(µn) > (1 − 1√

n
)u(x1) +

√
n, which yields a

contradiction.
We now show that u is continuous. Suppose the contrary, then there is

a sequence (xn) converging to some x ∈ S, whereas u(xn) doesn’t converge to
u(x). Assume e.g. that one has lim supu(xn) < u(x). Then along a subsequence,
again denoted by (xn), one has limu(xn) =: a < u(x). In particular, there is
m ∈ N such that |u(xn) − a| < 1

3 (u(x) − a), for n ≥ m; equivalently 4
3a −

1
3u(x) < u(xn) < 2

3a + 1
3u(x), for n ≥ m. Put µ = 1

2 (δx + δxm). Then also
U(δx) = u(x) > 2

3u(x)+ 1
3a >

1
2 (u(x)+u(xm)) = U(µ) > 1

3u(x)+ 2
3a > U(δxn),

for n ≥ m. So, δx � µ � δxn . This means that δxn doesn’t belong to the open
neighborhood ((µ,→)) of δx, contradicting the fact that δxn → δx weakly.

We now show that, knowing the function u, Equation (3.5) defines a numer-
ical representation U of �. Since u is bounded and continuous, U , as defined in
(3.5), is continuous w.r.t. the weak topology. It is a fact that the set of simple
distributions is weak-dense in the set of all probability measures on (S,S), see
Proposition A.12. Since we know that U is a numerical representation of � on
the set of simple distributions, we can argue as in the proof of Theorem 2.12,
that U is also a numerical representation on the collection of all probability
measures on (S,S). See also Exercise 2.2 for an alternative argument.

Finally, u is unique up to affine transformations. This follows from Theo-
rem 3.4, affine numerical representations are unique up to affine transformations,
and by the action of the numerical representations on Dirac measures. �

Later on we need representations of preference orders, where u is unbounded.
This cannot happen under the conditions of Theorem 3.9. A way out is obtained,
by replacing the weak topology with a stronger one. Let ψ be a continuous
function on S with ψ ≥ 1. Let Mψ be the set of probability measures µ such
that

∫
ψ dµ < ∞ and let Cψ be the space of continuous functions f such that

|f |/ψ is bounded. If µ is a probability measure in Mψ, then

µψ(B) :=

∫
1Bψ dµ∫
ψ dµ

defines another probability measure on (S,S). We say that a sequence (µn) ⊂
Mψ converges in the ψ-weak topology if the corresponding sequence (µψn) con-
verges in the weak topology. If the ψ-weak limit is µ, then this means nothing
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else then
∫
f dµn →

∫
f dµ, for all f ∈ Cψ. This immediately yields the follow-

ing corollary to Theorem 3.9.

Corollary 3.10 Let � be a preference order on Mψ that is continuous w.r.t.
the ψ-weak topology and that satisfies the independence axiom. Then there
exists a Von Neumann-Morgenstern representation of the form (3.5), with u ∈
Cψ. Also in this case, U and u are unique up to affine transformations.

Proof The proof is based on the fact that the transformation µ → µψ can be
used to apply the results of Theorem 3.9. Details (Exercise 3.2) are left to the
reader. �

3.2 Exercises

3.1 Prove Proposition 3.3.

3.2 Prove Corollary 3.10.

3.3 Let S be the set of positive integers, S = N. Let M be the collection of
probability measures µ on N with the property that U(µ) := limn2µ(n) < ∞.
Then U is affine and induces a preference order � on M.

(a) Show that � satisfies both the independence and Archimedean axioms.

(b) Show that � does not admit a Von-Neumann-Morgenstern representation.

(c) Why can’t we apply Theorem 3.9?

3.4 Finish the proof of Theorem 3.9. [If you want, you may use Exercise 2.2,
and that M is metrizable. See also Corollary A.13.]

3.5 Suppose you are a plumber and you have a client that wants to pay you
1000 euro for installing a drainage system. If you do nothing and stay home,
you don’t get paid. Let µ be the sure ‘lottery’ that pays out 1000 euro with
certainty, λ the sure ‘lottery’ that pays zero. Then for you µ � λ. Let ν be
the ‘lottery’ in which you will be shot. Then, most likely, µ � λ � ν. Is there
for you a t ∈ (0, 1) such that tµ+ (1− t)ν � λ? Same question if ν is the sure
‘lottery’ to get killed in a car crash on your way to the client.

3.6 Prove convexity for the remaining cases in the proof of Lemma 3.5(iv).

25



4 Utility and expected utility

In this section we consider a set M of probability measures on an interval S
of R, and S will be the Borel σ-algebra on S. We assume that M is convex
and contains all Dirac measures on points in S, and consequently all simple
measures.

First some additional remarks about the setting. We depart from the com-
mon assumption that the fair price of a lottery µ ∈ M equals its expectation
m(µ) :=

∫
S
xµ(dx). We assume, unless the contrary is explicitly stated, that

these expectations exist for all µ ∈M and are finite.
Consider concave functions u : S → R. These are such that for any x, y ∈ S

and t ∈ [0, 1] it holds that u(tx + (1 − t)y) ≥ tu(x) + (1 − t)u(y). Fix y =
x0 ∈ IntS. One can then show u is left- and right-differentiable at x0 with
finite left- and right-derivatives u′−(x0); and u′+(x0) and for all x ∈ S one has
u(x) ≤ (x − x0)u′−(x0) + u(x0) and u(x) ≤ (x − x0)u′+(x0) + u(x0); make a
picture to understand this and deduce that in these two inequalities one can
replace the derivatives with any constant that is between the derivatives. Hence
if m(µ) is finite for µ ∈M, then

∫
udµ is well defined (but may take the value

−∞). We will often need the following lemma.
A function u : S → R is called strictly concave if for any x, y ∈ S, x 6= y,

and t ∈ (0, 1) it holds that u(tx+ (1− t)y) > tu(x) + (1− t)u(y). We will often
need Jensen’s inequality for (strictly) concave functions.

Lemma 4.1 (Jensen’s inequality) Assume that u : S → R is concave and
m(µ) and

∫
udµ are finite. Then

∫
udµ ≤ u(m(µ)). If, moreover, u is strictly

concave and µ is not degenerate (not a Dirac measure), then
∫
udµ < u(m(µ)).

Proof Concavity of u implies that for any x0 ∈ S there exist a, b such that
u(x0) = ax0 + b and u(x) ≤ ax + b for all x ∈ S. If u is strictly concave, the
latter inequality is strict for x 6= x0. Take x0 = m(µ) and integrate to get∫
u dµ ≤ am(µ) + b = u(m(µ)) for concave u. If u is strictly concave and µ

is nondegenerate, we have µ({x : u(x) < ax + b}) > 0 next to µ({x : u(x) ≤
ax+ b}) = 1 and hence

∫
u dµ < u(m(µ)). �

4.1 Risk aversion

It frequently happens (but it depends on the circumstances) that somebody who
has the choice between a lottery with an average pay-off of let’s say 1000 euro
and getting the same amount of money straight away, prefers the latter option.
He then exhibits risk averse behavior, as a result of his personal preferences.
This notion will be made precise in the Definition 4.2 below.

Definition 4.2 A preference order � on M is called monotone if the implica-
tion x > y ⇒ δx � δy holds (x, y ∈ S) (‘more is better’). It is called risk averse
if δm(µ) � µ, unless µ is degenerate, µ = δm(µ).
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Proposition 4.3 Suppose that a preference order � onM has Von Neumann-
Morgenstern representation

U(µ) =

∫
udµ,

for some Borel measurable function u (the integrals are assumed to be well
defined for all µ ∈M). Then

(i) the preference order is monotone iff u is strictly increasing and

(ii) the preference order is risk averse iff u is strictly concave.

Proof (i) Notice that U(δx) = u(x). Then u(x) > u(y) iff U(δx) > U(δy) iff
δx � δy.

(ii) Suppose that � is risk averse. Take x, y ∈ S and consider µ = tδx + (1−
t)δy for t ∈ (0, 1). Then m(µ) = tx + (1 − t)y. Then the risk averse � yields
U(δm(µ)) > U(µ), or u(tx+ (1− t)y) > tu(x) + (1− t)u(y). Hence u is strictly
concave. Conversely, for strict concave u Jensen’s inequality (Lemma 4.1) gives
for any nondegenerate µ ∈M that U(δm(µ)) = u(m(µ)) >

∫
udµ = U(µ). �

The function u in the Von Neumann-Morgenstern representation of a monotone
risk averse preference relation deserves a name of its own.

Definition 4.4 A function u : S → R is called a utility function if u is strictly
increasing, strictly concave and continuous on S.

Since any concave function is continuous on the interior of the set on which it is
defined, Exercise 4.9, the continuity requirement above only concerns boundary
points of S. And since u is increasing, in fact it is only a condition of continuity
of u at inf S, if this is an element of S.

Definition 4.5 A preference order � on M admits an expected utility repre-
sentation U if there exists a utility function u such that U(µ) =

∫
udµ, for all

µ ∈M.

In the remainder of this section, we assume that preference orders admit ex-
pected utility representations.

Continuity of a utility function u implies that u(S) is connected and hence for
all µ ∈ M there exists a number c(µ) ∈ S such that u(c(µ)) = U(µ) ∈ u(S).
Moreover, c(µ) is unique, because u is strictly increasing. Whence the indiffer-
ent relation δc(µ) ∼ µ. In words, playing a lottery µ is indifferent to obtaining
the sure amount c(µ) under a given preference ordering.

Definition 4.6 The number c(µ) is called the certainty equivalent of the lottery
µ and the difference ρ(µ) := m(µ)− c(µ) is called the risk premium of µ.
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Notice that always c(µ) ≤ m(µ) for risk averse � and that strict inequality
holds for nondegenerate µ. Hence, a risk averse person with utility function u
will not pay more than c(µ) to play a lottery µ. Conversely, the risk premium is
the amount of money a seller of the lottery µ has to pay to a risk averse agent
to convince him to exchange the sure amount m(µ) for the random pay-off of
the lottery µ.

In the present context, we consider the following optimization problem. Find,
if it exists, a lottery µ∗ that is most preferred among all lotteries in a subset of
M, equivalently, the one with the highest value of U , where U is of expected
utility type.

We specialize to a specific case. Let (Ω,F ,P) be given and a random variable
X defined on it, with values in S, that has a nondegenerate distribution µ. Let
c ∈ R and consider the convex combination Xλ = λc + (1 − λ)X. Note that
the distribution function of Xλ is obtained by a location-scale transformation
of that of X. Write µλ for the distribution of Xλ (µ0 = µ). Put

f(λ) := U(µλ) =

∫
udµλ = Eu(Xλ).

Proposition 4.7 Assume that S is an interval, X ≥ a for some a ∈ IntS,
EX <∞ and c ∈ IntS.

(i) The function f : [0, 1]→ R is strictly concave and hence its maximal value
is assumed for some unique λ∗ ∈ [0, 1].

(ii) We have λ∗ = 1 if m(µ) = EX ≤ c, and λ∗ > 0 if c ≥ c(µ).

(iii) If moreover u is differentiable, then we even have λ∗ = 1 ⇔ EX ≤ c and

λ∗ = 0⇔ c ≤ EXu′(X)
Eu′(X) .

Proof (i) Since f(λ) = Eu(Xλ), strict concavity of f follows from exploiting
first strict concavity of u and then taking expectations .

(ii) Jensen’s inequality yields

f(λ) ≤ u
(
EXλ

)
= u

(
EX + λ(c− EX)

)
,

with equality iff λ = 1. Since u is increasing, the right hand side is non-
decreasing in λ if c ≥ EX. Under this condition, λ∗ = 1.

Concavity of u yields u(Xλ) ≥ (1− λ)u(X) + λu(c), hence

f(λ) ≥ (1− λ)u(c(µ)) + λu(c),

with equality iff λ = 0, 1. The right hand side is non-decreasing in λ under the
condition c ≥ c(µ), in which case λ∗ > 0.

(iii) Assume that u is differentiable. Because f is concave, λ∗ = 0 can only
happen if f is decreasing in a neighborhood of zero, so when the right derivative
f ′+(0) ≤ 0. Let us compute this derivative. We have

(4.1)
u(Xλ)− u(X)

λ
=
u(Xλ)− u(X)

Xλ −X
(c−X).
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The nonnegative difference quotient in the middle of (4.1), the first factor on
the right, is bounded by the derivative of u in the left endpoint of the involved
interval, which is either X0 = X ≥ a or X1 = c. Both are at least c ∧ a. Hence
the absolute value of (4.1) is bounded by u′+(c ∧ a)|c − X|, which has finite
expectation, since u′+(c ∧ a) < ∞ because c, a ∈ IntS and E |X| < ∞. Taking
expectations in (4.1) and letting λ ↓ 0, we get by the Dominated Convergence
Theorem that the limit is f ′+(0) = Eu′(X)(c − X). Hence f ′+(0) ≤ 0 iff c ≤
EXu′(X)
Eu′(X) .

In much the same way, λ∗ = 1 iff f is non-decreasing in a neighborhood of
λ = 1, f ′−(1) ≥ 0, Exercise 4.7. Working with a difference quotient like (4.1) for
λ ↑ 1 and using that X1 = c, we get f ′−(1) = u′(c)(c− EX). The last assertion
now also follows. �

Example 4.8 Consider a risky asset S1 with price π1, and a riskless asset with
interest rate r (S0 = 1 + r). Suppose that an agent has a C1 utility function u
and a capital (initial wealth) w. Suppose that he builds a portfolio by investing
a fraction λ of his capital in the riskless asset and the rest in the risky asset.
The value of the portfolio (”at time t = 1”) is then λw(1 + r) + (1− λ)wS1/π1,
and the discounted net gain is

(1− λ)
w

π1
(
S1

1 + r
− π1).

The previous proposition shows that λ∗ = 1 (all capital invested in the riskless
asset) iff ES1

1+r ≤ π1. Hence such an agent is only willing to invest in the risky
asset, when the price is below the expected discounted value. Note that this
holds for any risk averse investor, regardless the special form of the utility
function u. Compare this with what happens under the risk-neutral measure of
Section 1.1.

4.2 Arrow-Pratt coefficient

Suppose that one considers a probability measure µ that has finite variance and
that is concentrated on a small interval around its mean m = m(µ). Let u
be a C2 utility function on a neighborhood of this interval and let U be the
associated expected utility representation. Look at the following heuristic.

A first order Taylor expansion of u around m gives

u(x) ≈ u(m) + (x−m)u′(m).

With x = c(µ) one obtains u(c(µ)) ≈ u(m) + (c(µ)−m)u′(m).
A second order Taylor expansion of u around m gives

u(x) ≈ u(m) + (x−m)u′(m) +
1

2
(x−m)2u′′(m).

Taking expectations yields u(c(µ)) = U(µ) =
∫
udµ ≈ u(m) + 1

2Var (µ)u′′(m).
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Hence, combining the two approximations, for the risk premium ρ(µ) =
m− c(µ) we have the approximation

(4.2) ρ(µ) ≈ −1

2

u′′(m)

u′(m)
Var (µ).

We shall see that, in spite of the rough heuristics, the right hand side of (4.2)
contains a useful quantity.

Definition 4.9 For u, a twice differentiable utility function on some (open)
interval S, the quantity

α(x) := −u
′′(x)

u′(x)

is called the Arrow-Pratt coefficient of absolute risk aversion of u at the level x.

Note that by u being strictly concave and strictly increasing, α(x) ≥ 0 for every
x. It moreover follows from Equation (4.2), that for probability measures µ that
are concentrated around the mean m, the risk premium ρ(µ) approximately
factors as a product of the Arrow-Pratt coefficient at the level m (a measure of
the location of µ) and half the variance, the latter being an intrinsic quantity
of µ only and location invariant.

Arrow-Pratt coefficients have the attractive feature that they are invariant
under affine transformations. Since in Von Neumann-Morgenstern representa-
tions of preference orders, the function u is unique up to affine transformations,
this means that the Arrow-Pratt coefficient in such a situation is an intrinsic
feature of the preference order, not of its numerical representation (of course
modulo the fact that we have to assume that u is C2, and that u is not constant,
which would lead anyway to an uninteresting preference order).

We now give some examples of widely used utility functions.

Example 4.10 Let u be such that the Arrow-Pratt function α(·) is a (positive)
constant, also denoted by α. Then, by solving a second order linear differential
equation, one finds, for some constants a ∈ R and b > 0,

ua,b(x) = a− be−αx,

which is an affine transformation of u(x) = 1−exp(−αx). Note that u is defined
on all of R. The functions ua,b are called CARA functions (from Constant
Absolute Risk Aversion).

Example 4.11 Here we introduce the HARA (from Hyperbolic Absolute Risk
Aversion) utility functions. For these functions we have that α(x) = c

x , for
c, x > 0. For convenience we write c = 1 − γ, and hence γ < 1. Solving the
corresponding differential equation for u yields

ua,b(x) =
a

γ
xγ + b,
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for γ 6= 0 and ua,b(x) = a log x + b for γ = 0. Note that γ ≥ 1 is excluded
by requiring that u is strictly concave and that for all γ < 1 it holds that
u′a,b(x) = axγ−1. The functions ua,b are affine transformations of u1,0.

Remark 4.12 HARA utility functions with γ > 0 are examples of utility func-
tions u : [0,∞) → R satisfying the Inada conditions, i.e. u ∈ C1(0,∞), with
limx→0 u

′(x) =∞ and limx→∞ u′(x) = 0.

There are close connections between utility functions, risk premia and Arrow-
Pratt coefficients for different preference orders.

Proposition 4.13 Suppose u1, u2 : S → R are two C2 utility functions, with
corresponding risk premia ρ1(·), ρ2(·), certainty equivalents c1(·), c2(·) and
Arrow-Pratt coefficients α1(·) and α2(·). The following are equivalent.

(i) α1(x) ≥ α2(x),∀x ∈ S.

(ii) There exist a strictly increasing concave function F , defined on the range
of u2, such that u1 = F ◦ u2.

(iii) ρ1(µ) ≥ ρ2(µ),∀µ ∈M.

Proof (i) ⇒ (ii): The obvious choice of F is F (x) = u1(u−1
2 (x)). Clearly, F

is well defined, since u2 is strictly increasing, and since u−1
2 and u1 are strictly

increasing, so is F . To show that F is concave, we compute its second derivative
and use that (i) is assumed. Notice that it sufficient to show that F ′′(u2(x)) ≤ 0,
for all x ∈ S. We start with u1(x) = F (u2(x)) and get

u′1(x) = F ′(u2(x))u′2(x)

u′′1(x) = F ′′(u2(x))u′2(x)2 + F ′(u2(x))u′′2(x).

Solving the second of these two equations for F ′′(u2(x)) and using the first one
yields

F ′′(u2(x)) =
u′′1(x)− u′1(x)

u′2(x)u
′′
2(x)

u′2(x)2
(4.3)

=
u′1(x)

u′2(x)2
(
u′′1(x)

u′1(x)
− u′′2(x)

u′2(x)
)

=
u′1(x)

u′2(x)2
(α2(x)− α1(x)),

by definition of the Arrow-Pratt coefficients. By assumption (i) and the fact
that u1 is increasing, we have F ′′(u2(x)) ≤ 0.

(ii) ⇒ (iii): By Jensen’s inequality, applied to the concave function F , it
holds that

u1(c1(µ)) =

∫
u1 dµ =

∫
F ◦ u2 dµ(4.4)

≤ F (

∫
u2 dµ) = F (u2(c2(µ))) = u1(c2(µ)).
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Since u1 is increasing, we must have c1(µ) ≤ c2(µ), from which the result follows,
since ρ1(µ) = m(µ)− c1(µ) and ρ2(µ) = m(µ)− c2(µ).

(iii) ⇒ (i): Suppose that (i) doesn’t hold. Then for some x one has α1(x) <
α2(x), and by continuity of α1 and α2, this equality extends to an open neigh-
borhood O of x. By (4.3), which is also valid without assumptions (i) or (ii), we
then have F ′′(u2(x)) > 0 on O. Take now a nondegenerate probability measure
µ such that µ(O) = 1. Then strict convexity of F ◦u2 leads to a strict equality in
the opposite direction as compared to (4.4), u1(c1(µ)) > u1(c2(µ)), from which
it follows that c1(µ) > c2(µ), contradicting assumption (iii). �

4.3 Exercises

4.1 Show that for a utility function u ∈ C1(R) it holds that m(µ) > c(µ) >
EXu′(X)
Eu′(X) , where X has nondegenerate distribution µ.

4.2 Let u(x) = 1−exp(−x), a CARA function. Consider an investor with utility
function u who wants to invest an initial capital. There is one riskless asset,
having value 1 and interest rate r = 0, and one risky assets with random pay-off
S1 having a normal N(m,σ2) distribution with σ2 > 0. Suppose he invests a
fraction λ in the riskless asset and the remainder in the risky asset. The pay-off
of this portfolio is thus λ + (1 − λ)S1. The aim is to maximize his expected
utility.

(a) Show that E exp(uS1) = exp(um+ 1
2u

2σ2) (u ∈ R).

(b) Compute for each λ the certainty equivalent of the portfolio.

(c) Let λ∗ be the optimal value of λ. Give, by direct computations, conditions
on the parameters such that each of the cases λ∗ = 0, λ∗ = 1 or λ∗ ∈ (0, 1)
occurs.

(d) Compare the results of (c) with the assertions of Proposition 4.7.

4.3 In Exercise 4.2 the optimization problems turns out to be of the form:
maximize EZ − cVarZ. This seems reasonable, if one thinks of Z as a random
revenue. One wants to maximize the expected revenue and to keep the ‘risk’ in
terms of variance low. In general such a maximization problems leads to odd
results. Consider the following example. In two lotteries the random pay-off Z
satisfies P(Z = h) = pi and P(Z = `) = 1 − pi, i = 1, 2 and h > `. Find an
example of values of p1 > p2 and c > 0 such that the second lottery is preferred
to the first one.

4.4 Consider a twice differentiable utility function u : S → R. Define for fixed x
such that tx ∈ S the function t 7→ vx(t) = u(tx). A way to establish the relative
risk around x can obtained by inspection of vx(t) in a neighborhood of t = 1.
A measure of relative risk at x is defined by r(x) = −v′′x(1)/v′x(1).

(a) Show that r(x) = xα(x) (α(x) is the Arrow-Pratt risk coefficient).

(b) Characterize the CRRA (Constant Relative Risk Aversion) utility func-
tions, the functions u for which r(x) is constant, not depending on x.
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4.5 A utility function u : R→ R is said to exhibit decreasing risk aversion if the
function x 7→ α(x) (the Arrow-Pratt coefficient) is decreasing. Show that this
property is equivalent to saying that for every x1 < x2 there exists a concave
function g such that g(u(x2 + z)) = u(x1 + z) for all z (for which the given
expressions make sense).

4.6 Let u be a (continuous) strictly increasing function, u : S → R. Consider
the fair game represented by a random variable X with values x±ε (ε > 0) in S
that are attained with equal probabilities 1

2 . Given x, ε, the probability premium
π = π(x, ε) is by definition such that the lottery with the same outcomes but
with probability P(ξ = x− ε) = 1

2 − π has expected utility u(x). Show that an
individual who uses u for a Von-Neumann-Morgenstern representation is risk
averse (in which case u is a utility function) iff π(x, ε) > 0 for all x, ε. Sketch
the graph of u and that of ũ (the latter graph is the line segment joining the
points (x − ε, u(x − ε)) and (x + ε, u(x + ε))), construct a point x̃ such that
ũ(x̃) = u(x) and indicate that x̃ > x iff π(x, ε) > 0.

4.7 Show the statement concerning λ∗ = 1 in Proposition 4.7(iii).

4.8 The optimal value λ∗ in Proposition 4.7 should be nondecreasing and contin-

uous as a function of c, and strictly increasing on the interval
(EXu′(X)

Eu′(X) ,m(µ)
)
.

Verify whether this is true.

4.9 Let f : S → R be concave, where S is an interval. Show that f is continuous
on the interior of S and give an example where f is not continuous in a boundary
point of S (which is assumed to belong to S).

4.10 Let u be an exponential utility function, u(x) = − exp(−αx), x ∈ R,
α > 0. Find the maximizing λ for the problem in Proposition 4.7 in each of the
cases (a) X assumes two values only, (b) X has an exponential distribution, (c)
X has a log-normal distribution. [I have not checked whether explicit solutions
exist.]

4.11 Let g : I → R be a concave, strictly increasing function on an interval
I. Show that the inverse function g−1 defined on g[I] is strictly increasing and
convex.
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5 Stochastic dominance

Results in the previous sections were depending on the preference orders, or the
utility functions, at hand. In the present section, we will look at preferences
that are independent of a particular choice of a utility function belonging to
a certain class. The standing assumptions are that we deal with the set M
of all probability measures on (R,B) that admit a finite expectation. As a
consequence, for any utility function u : R → R, the integrals

∫
udµ are well

defined, but may take on the value −∞. This holds, since every concave function
has an affine function as a majorant. Indeed, since for some a, b > 0, one has
u(x) ≤ ax+ b for all x, it holds that u(x)+ ≤ a|x|+ b and hence

∫
u+ dµ <∞.

5.1 Uniform order

Definition 5.1 Let µ, ν ∈ M. One says that µ is uniformly preferred over ν,
denoted by µ �uni ν, if∫

udµ ≥
∫
udν, for all utility functions u : R→ R.

Remark 5.2 The uniform preference of the above definition is also called sec-
ond order stochastic dominance. Notice that it is not a weak preference order
(see Definition 2.2), since it is not complete. In Section 5.2 we will discuss first
order stochastic dominance.

The next theorem gives a number of characterizations of uniform preference,
there are many more. The functions f below are defined on all of R.

Theorem 5.3 There is equivalence between the following statements.

(i) µ �uni ν.

(ii) For all increasing concave functions f : R→ R, one has
∫
f dµ ≥

∫
f dν.

(iii) For all c ∈ R, it holds that
∫

(c− x)+µ(dx) ≤
∫

(c− x)+ν(dx).

(iv) If Fµ and Fν are the distribution functions of µ and ν respectively, then∫ c
−∞ Fµ(x) dx ≤

∫ c
−∞ Fν(x) dx, for all c ∈ R.

Proof (i) ⇔ (ii): Obviously (ii) ⇒ (i). For the converse implication we need a
utility function that has finite integral under µ and ν. This can be accomplished
as follows. Take a given utility function u and an arbitrary x0 ∈ R. Modify u
on (−∞, x0] by replacing u with x 7→ u′+(x0)(2(x − x0) − exp(x − x0) + 1) +
u(x0) (see Figure 1 for an illustration, the dashed line is the modified utility
function). Check that the modified function is still a utility function! Moreover,
the modified utility function (denoted u again) has finite integral w.r.t. any
probability measure with finite expectation. If f is increasing and concave,
then uα(x) := αf(x) + (1−α)u(x) defines a strictly increasing, strictly concave
continuous function, so a utility function, for every α ∈ [0, 1). The assertion
follows from ∫

f dµ = lim
α↑1

∫
uα dµ ≥ lim

α↑1

∫
uα dν =

∫
f dν.
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Figure 1: u(x) = 1− e−x and x0 = 1

(ii) ⇔ (iii): Clearly (ii) ⇒ (iii). The converse implication basically follows
from the fact that every nonnegative convex decreasing function, with limit
zero at infinity, is a pointwise limit of positive linear combinations of functions
x 7→ (c − x)+ and that −f is decreasing and convex. More formally, we have
that h = −f admits right derivatives h′+(x) at every point x. The function
h′+ is increasing, right continuous and on any interval (a, b], up to scaling, it is
a distribution function of a probability measure. Stated otherwise, there is a
measure γ on (R,B) such that γ(a, b] = h′+(b)−h′+(a), for all a < b. Since there
exists only countably many discontinuity points of h′+, we have for x < b

h(x) = h(b)−
∫

(x,b]

h′+(y) dy

= h(b)−
∫

(x,b]

(h′+(y)− h′+(b)) dy − h′+(b)(b− x).(5.1)

We first rewrite the integral in (5.1). Let B = {(u, y) : x < y < u ≤ b}. We
have ∫

(x,b]

(h′+(y)− h′+(b)) dy = −
∫

(x,b]

γ(y, b] dy

= −
∫

(x,b]

∫
1(y,b] dγ dy

= −
∫ ∫

1B(u, y)γ(du) dy

= −
∫ ∫

1B(u, y) dy γ(du) (by Fubini)

= −
∫

1(x,b](u)(u− x)γ(du)

= −
∫

1(−∞,b](u− x)+γ(du).
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Hence, going back to (5.1), we can rewrite h(x) as

h(x) = h(b)− h′+(b)(b− x) +

∫
1(−∞,b](u− x)+γ(du).

Let µ be a probability measure on (R,B). Integration of the last expression
w.r.t. µ and using Fubini’s theorem again, yields∫

(−∞,b]
hdµ = h(b)µ(−∞, b]− h′+(b)

∫
(b− x)+µ(dx)

+

∫
(−∞,b]

∫
(−∞,b]

(u− x)+µ(dx)γ(du)

= h(b)µ(−∞, b]− h′+(b)

∫
(b− x)+µ(dx)

+

∫
(−∞,b]

∫
(u− x)+µ( dx)γ(du).

Using condition (iii) and the fact that h′+ ≤ 0, we have an upper bound for the
last displayed expression by replacing µ with ν. It follows that∫

(−∞,b]
hdµ ≤

∫
(−∞,b]

hdν + h(b)(µ(−∞, b]− ν(−∞, b]).

Since h is lower bounded by an affine function, we have that
∫

(b,∞)
hdµ and∫

(b,∞)
hdν are both finite. Hence we obtain∫
hdµ ≤

∫
hdν +

∫
(b,∞)

hdµ−
∫

(b,∞)

hdν + h(b)(µ(−∞, b]− ν(−∞, b])

=

∫
hdν −

∫
(b,∞)

(h(b)− h(x))µ(dx) +

∫
(b,∞)

(h(b)− h(x))ν(dx).

We finally show that the last two integrals vanish for b → ∞. Since they are
similar, we treat only the first of the two. Fix b0 and let b > b0. It holds that
0 ≤ h(b)− h(x) ≤ −h′+(b0)(x− b0) for x > b. Hence∫

(b,∞)

(h(b)− h(x))µ(dx) ≤ −h′+(b0)

∫
(x− b0)1(b,∞)(x) dµ,

which tends to zero by the Dominated convergence theorem, since
∫
|x|µ(dx) is

finite. Hence we obtain
∫
hdµ ≤

∫
hdν, which is equivalent to (ii).

(iii) ⇔ (iv): This is just a matter of rewriting, using Fubini’s theorem. One
has ∫ c

−∞
Fµ(y) dy =

∫ c

−∞

∫
1(−∞,y](x)µ(dx) dy
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=

∫
(−∞,c]

∫ c

x

dy µ(dx)

=

∫
(−∞,c]

(c− x)µ(dx)

=

∫
(c− x)+µ(dx).(5.2)

The integral with Fν can be rewritten in similar terms and the equivalence of
(iii) and (iv) becomes obvious. �

Remark 5.4 It follows from Theorem 5.3(ii), that µ �uni ν implies m(µ) ≥
m(ν). The integrals w.r.t. the measure µ in assertion (iii) of the same theorem
in fact determine µ. Indeed, by the computations leading to (5.2), we see that
knowing integrals of (c− x)+ for all c is equivalent to knowing the integrals of
Fµ up to c. Taking right derivatives w.r.t. c gives Fµ(c) and knowing this for all
c determines µ. This fact can be used to show that �uni defines a partial order,
Exercise 5.1.

If µ is the distribution of a random variable X ∈ L1(Ω,F ,P) and ν that of
Y ∈ L1(Ω,F ,P), such that µ �uni ν �uni µ, then µ = ν, so X and Y have
the same distribution (under P). Yet, X and Y are in general very different as
random variables. It may happen that P(X = Y ) = 0.

When two lotteries with the same mean are compared, we can develop the
assertions of Theorem 5.3 a little further.

Proposition 5.5 For all probability measures µ, ν ∈ M the following are
equivalent.

(i) µ �uni ν and m(µ) = m(ν).

(ii)
∫
f dµ ≥

∫
f dν, for all concave functions f .

(iii) m(µ) ≥ m(ν) and
∫

(x− c)+µ(dx) ≤
∫

(x− c)+ν(dx), for all c ∈ R.

Proof (i) ⇒ (ii): First we show that the assertion holds true for decreasing
concave functions. Such a function is x 7→ −(c−x)−, for arbitrary c ∈ R. Since
−(c − x)− = c − x − (c − x)+, the assertion for such a function follows from
Theorem 5.3 and the assumptions that m(µ) = m(ν) and µ �uni ν, because
x 7→ −(c − x)+ is concave and increasing. The proof for arbitrary decreasing
concave functions is then similar to the proof of (iii) ⇒ (ii) of Theorem 5.3.
The second assertion of Theorem 5.3 also tells us that (ii) is true for increasing
concave functions, and hence (ii) holds for monotone concave functions.

If f is concave, but not monotone, then there exists a x0 ∈ R, such that
f(x) ≤ f(x0), for all x ∈ R. Let

f1(x) =

{
f(x) if x ≤ x0

f(x0) if x > x0

and

f2(x) =

{
f(x0) if x ≤ x0

f(x) if x > x0.
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Then f1 is concave and increasing and f2 is concave and decreasing. Knowing
that the assertions hold true for f1 and f2, we obtain the same result for f ,
because f(x) = f1(x) + f2(x) − f(x0) and integration of the constant is the
same for each probability measure.

(ii) ⇒ (iii): Take first f(x) ≡ x to get the first assertion, and then f(x) ≡
−(x− c)+, which is concave, to get the second one from (ii).

(iii) ⇒ (i): Rewrite the inequality between the integrals in (iii) as∫
(c,∞)

xµ(dx)− c+ c µ(−∞, c] ≤
∫

(c,∞)

x ν(dx)− c+ c ν(−∞, c].

Let c → −∞ and use that both measures have a finite first moment to con-
clude that c µ(−∞, c] and c ν(−∞, c] tend to zero as well as

∫
(c,∞)

xµ(dx) →∫
R xµ(dx) and

∫
(c,∞)

x ν(dx) →
∫
R x ν(dx). One then arrives at

∫
xµ(dx) ≤∫

x ν(dx), or m(µ) ≤ m(ν). Together with the assumption, this gives m(µ) =
m(ν).

To prove µ �uni ν we use the identity y+ = y + (−y)+ (y ∈ R) to get∫
(c− x)+µ(dx) = c−m(µ) +

∫
(x− c)+µ(dx).

A similar equality holds for ν. Using the assumption and the just proved identity
m(µ) = m(ν), we arrive at

∫
(c− x)+µ(dx) ≤

∫
(c− x)+ν(dx), condition (iii) in

Theorem 5.3 to get µ �uni ν. �

Remark 5.6 Assume that µ1 �uni µ2 and m(µ1) = m(µ2). Then it follows
from Proposition 5.5 that Varµ1 ≤ Varµ2. For normal distributions there is a
converse relationship, see Exercise 5.2.

5.2 Monotone order

We turn to another concept of stochastic dominance, also called first order
stochastic dominance. There are more of these concepts conceivable.

Definition 5.7 Let µ, ν be two probability measures on (R,B). One says that
µ stochastically dominates ν, if for all bounded increasing continuous functions
f : R→ R it holds that

(5.3)

∫
f dµ ≥

∫
f dν.

In this case one writes µ �mon ν.

It is almost trivial to check that �mon defines a partial order on the space of
probability distributions on (R,B). Below we give an easy characterization of
µ �mon ν.

Proposition 5.8 Let µ, ν be two probability measures on (R,B) and let Fµ
and Fν be their distribution functions. The following are equivalent.
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(i) It holds that µ �mon ν.

(ii) For all x ∈ R one has Fµ(x) ≤ Fν(x).

Proof (i) ⇒ (ii): We’d like to apply the definition of stochastic dominance to
the function u 7→ 1(x,∞)(u), which is bounded and increasing. The result would
then follow. However this function is not continuous. Therefore one first uses
the functions u 7→ (min{n(u− x), 1})+ and let n→∞.

(ii) ⇒ (i): Let f be continuous, bounded and increasing. We can obtain
f (which is measurable) as the pointwise limit of an increasing sequence of
simple functions fn, that are increasing themselves. To see this, we assume for
simplicity that 0 ≤ f ≤ 1 and we follow the usual approximation scheme, known
from measure theory.

Let n ∈ N and define Eni = {(i− 1)2−n < f ≤ i2−n} for i = 1, . . . , 2n. Put

fn = 2−n
2n∑
i=1

(i− 1)1Eni .

Then we know that fn ≤ f and fn ↑ f . Using that, for each n, the Eni with
i = 0, . . . , 2n are disjoint,

⋃
i≥j+1Eni = {f > j2−n} and {f > 1} = ∅, we

rewrite

fn = 2−n
2n∑
i=1

(

i−1∑
j=1

1)1Eni = 2−n
2n−1∑
j=1

2n∑
i=j+1

1Eni = 2−n
2n∑
j=1

1{f>j2−n}.

Since f is continuous, the sets {f > j2−n} are open and since f is increasing,
there are real numbers anj such that {f > j2−n} = (anj ,∞). Hence,∫

fn dµ = 2−n
2n∑
j=1

µ((anj ,∞)) = 2−n
2n∑
j=1

(1− Fµ(anj)).

It follows from the assumption that
∫
fn dµ ≥

∫
fn dν. The assertion follows by

application of the Monotone Convergence Theorem. �

Remark 5.9 It follows from Theorem 5.3 and Proposition 5.8 that µ �mon ν
implies µ �uni ν.

5.3 Exercises

5.1 Show that �uni defines a partial order on the set of probability measures
with finite mean (see also Remark 5.4).

5.2 Consider two normal distributions, µ1 = N(m1, σ
2
1) and µ2 = N(m2, σ

2
2).

(a) Compute
∫
R exp(−ax)µi(dx) and show that µ1 �uni µ2 implies both m1 ≥

m2 and σ2
1 ≤ σ2

2 .

(b) Assume that m1 = m2. Show (use Theorem 5.3(iv)) that σ2
1 ≤ σ2

2 implies
µ1 �uni µ2.

39



(c) Let u be a utility function and assume m1 ≥ m2. Put ũ(x) = u(x +
m2). Verify that Eu(N(m1, σ

2
1)) ≥ E ũ(N(0, σ2

1)) (the notation should be
obvious).

(d) Let m1 ≥ m2 and σ2
1 ≤ σ2

2 . Show that µ1 �uni µ2.

5.3 Let µ, ν ∈ M and f an increasing function such that
∫
|f |dµ and

∫
|f |dν

are both finite. Show that µ �mon ν implies
∫
f dµ ≥

∫
f dν and thus µ �uni ν.

5.4 Let µ �mon ν and m(µ) = m(ν). Show that µ = ν. Hint: compute

0 ≤
∫ b
a

(Fν(x) − Fµ(x)) dx for any a < b. Use integration by parts and let
a→ −∞, b→∞.

5.5 A random variable X has a log-normal distribution with parameters α and
σ, if X = exp(α+ σZ), where σ ≥ 0 and Z has a standard normal distribution.

(a) Compute EXp for p > 0. In particular, one has EX = exp(α+ 1
2σ

2).

(b) Let µi be log-normal distributions (i = 1, 2) with parameters αi, σi. Show
that µ1 �uni µ2 implies m(µ1) ≥ m(µ2) and σ1 ≤ σ2.

(c) Conversely, if m(µ1) ≥ m(µ2) and σ1 ≤ σ2, then µ1 �uni µ2. To prove
this, proceed as follows. Let X1 = exp(α1 +σZ1) and X2 = exp(α2 +σZ2)
(in obvious notation). Let further X3 = exp(α2−α1 +

√
σ2

2 − σ2
1Z3, where

Z3 is standard normal, independent of Z1. Verify that X1X3 has the same

distribution as X2 and that EX3 = m(µ2)
m(µ1) . Use then Jensen’s inequality

for conditional expectations to show that Eu(X2) ≤ Eu(X1).

5.6 Definition 5.1 requires utility functions u to be defined on all of R, and thus
rules out for instance u(x) =

√
x. To include such a utility function, or rather

a utility function defined on an interval [a,∞), one can extend the definition of
u to all of R by putting u(x) = −∞ for x < a. This extended u is not strictly
increasing anymore, nor strictly concave, nor continuous everywhere. But it
is still concave. If Definition 5.1 is extended to include such extended utility
functions, are the integrals there still well defined (possibly with values −∞),
and is Theorem 5.3 still valid?
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6 Portfolio optimization

In this section we return to the setting of Section 1 and combine it with the
expected utility setting of Section 4. We consider an investor, whose preferences
are determined by a utility function ũ, and who wants to invest a capital w (w
from wealth). On the market there are d risky assets having a price (at t = 0)
given by the vector π and whose future, at time t = 1, random pay-off is
described by the random vector S, defined on a underlying probability space
(Ω,F ,P). Both vectors are assumed to have strictly positive entries. Next to
the risky assets, there is a riskless asset, with price π0 = 1 and future value
S0 = 1 + r > 0. Let S̄ = (S0, S). A portfolio is given by ξ̄ ∈ Rd+1 and we also
write ξ̄ = (ξ0, ξ) ∈ R × Rd. The future value of the portfolio is then ξ̄ · S̄, and
it has expected utility

(6.1) E ũ(ξ̄ · S̄).

In order for the investor to purchase the portfolio ξ̄, the price of it should at
most be equal to the initial capital. Thus we have the budget constraint

(6.2) ξ̄ · π̄ ≤ w.

We will study the problem of maximizing (6.1) over portfolios ξ̄, satisfying the
constraint (6.2).

6.1 Optimization and absence of arbitrage

We start this section by casting the above problem in a different, but equivalent
form. Our first observation is that it can never be optimal to use only a fraction
of the initial capital w. Indeed, suppose one has a portfolio ξ̄ with ξ̄ · π̄ < w.
Change the investment ξ0 into ξ′0 = ξ0 + w − ξ̄ · π̄. Then we have (ξ′0, ξ) · S̄ =
ξ̄ · S̄ + (w − ξ̄ · π̄)(1 + r) > ξ̄ · S̄. But then, since ũ is strictly increasing, also
E ũ((ξ′0, ξ) · S̄) > E ũ(ξ̄ · S̄). Therefore, we assume from now on that equality
holds in (6.2), and so we work with

(6.3) ξ̄ · π̄ = w.

Recall that we denoted by Y the d-dimensional random vector of discounted net
gains,

Y =
S

1 + r
− π.

Hence we have, assuming (6.3), ξ̄ · S̄ = (1 + r)(ξ · Y + w). Define a new utility
function u by u(x) = ũ((1 + r)(w + x)). Then we have ũ(ξ̄ · S̄) = u(ξ · Y ). Of
course, this expression only makes sense if ξ · Y ∈ D, where D is the domain
of u. Given a risky portfolio ξ, by (6.3) one can always choose a non-risky
investment ξ0 such that the total portfolio has initial price w. This makes the
constraint (6.3) redundant, if one considers only ξ as the free variable. All these
arguments motivate to study the following unconstrained optimization problem,
equivalent to the original one.
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Problem 6.1 Let u : D → R be a utility function. Maximize

Eu(ξ · Y )

over all risky portfolios ξ that satisfy ξ · Y ∈ D.

We will study this problem under each of the two cases in the assumption below.

Assumption 6.2 Let u : D → R be a utility function and Y the vector of
discounted net gains. Assume either of the following.

(i) D = R and u is bounded from above, or

(ii) D = [a,∞) for some a < 0, and we optimize over the set of ξ such that
ξ · Y ≥ a a.s. In this case, we also assume that for those ξ the expected
utility Eu(ξ · Y ) is finite.

For both of theses case we write Ξ = {ξ ∈ Rd : ξ · Y ∈ D a.s.}.

Theorem 6.5 below shows that the maximization problem 6.1 only makes sense
in an arbitrage-free market, just as pricing of portfolios and derivatives. In the
proof of it we use the following two lemmas. Recall the definition of a upper
semicontinuous function h (often abbreviated as u.s.c. function), it is such that
lim suph(xn) ≤ h(x), whenever xn → x. A characterization of a function h to
be u.s.c. is that all sets {h ≥ c} (c ∈ R) are closed (This is Exercise 6.1).

Lemma 6.3 Let h : Rd → R ∪ {−∞} be a concave and upper semicontinuous
function with h(0) > −∞. Then h attains its supremum, if for all ξ 6= 0

(6.4) lim
α↑∞

h(αξ) = −∞.

Proof Let c < suph. We will see that the non-empty (!) level set {h ≥ c} is
compact. By the fact that h is u.s.c., this set is closed. So, by the Heine-Borel
theorem we only have to show that it is bounded. Suppose that it is unbounded,
then there exists a sequence (xn) such that |xn| → ∞ and h(xn) ≥ c, for all n.
We may assume that the normalized vectors xn/|xn| converge to some limit ξ.
Let α > 0 and consider h(αξ). One has for all n large enough α/|xn| ∈ (0, 1),
which will be used below, when concavity comes into play.

h(αξ) = h(limα
xn
|xn|

) ≥ lim suph(α
xn
|xn|

)

= lim suph(
α

|xn|
xn + (1− α

|xn|
) · 0)

≥ lim sup(
α

|xn|
h(xn) + (1− α

|xn|
)h(0))

≥ lim sup(
α

|xn|
c+ (1− α

|xn|
)h(0))

= h(0) > −∞,

which contradicts the assumption (6.4) on h.
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Consider the identity {h = suph} =
⋂
c<suph{h ≥ c}. Knowing that {h ≥ c}

is compact for all c < suph, we have here an (infinite) intersection of nested
non-empty compact sets. By a property of compactness, this intersection is
non-empty. �

Lemma 6.4 Let u : D → R be a utility function, where D = [a,∞), a < 0.
Let 0 ≤ b < −a. Let X ≥ 0 be a random variable. Then for all α ∈ (0, 1] the
implication

Eu(αX − b) <∞⇒ Eu(X) <∞

holds.

Proof From concavity of u and X ≥ 0 one obtains for X > 0 the following
relations between slopes (a picture makes this clear)

u(X)− u(0)

X
≤ u(αX)− u(0)

αX
≤ u(αX − b)− u(−b)

αX
.

Hence u(X)− u(0) ≤ (u(αX − b)− u(−b))/α (also valid if X = 0), from which
the result follows. �

Theorem 6.5 Let u : D → R be a utility function and Y the vector of dis-
counted net gains. Let Assumption 6.2 be satisfied. A maximizer in Problem 6.1
exists if and only if the market is free of arbitrage. In this case the maximizer
is unique if the market is non-redundant (see Definition 1.13).

Proof First we consider uniqueness under non-redundancy. Proposition 1.14(ii)
tells us that in a non-redundant market the a.s. equality ξ · Y = ξ′ · Y implies
that ξ = ξ′. Hence the function ξ 7→ u(ξ · Y ) is a.s. strictly concave, and then
also ξ 7→ h(ξ) := Eu(ξ · Y ) is strictly concave. Suppose that two maximizers
ξ∗ and ξ′ exist, then by strict concavity h( 1

2 (ξ∗ + ξ′) = Eu( 1
2 (ξ∗ + ξ′) · Y ) >

1
2 (Eu(ξ∗ · Y ) + Eu(ξ′ · Y )) = Eu(ξ∗ · Y ) = h(ξ∗), unless ξ∗ = ξ′. Hence there
can be at most one maximizer in this case.

We turn to existence. Suppose that the market admits an arbitrage oppor-
tunity. Let ξ be any risky portfolio. By Corollary 1.4, there exists a portfolio
ξ′ such that ξ′ · Y ≥ 0 a.s. and P(ξ′ · Y > 0) > 0. In this case one has
h(ξ + ξ′) = Eu((ξ + ξ′) · Y ) > Eu(ξ · Y ) = h(ξ) and therefore a maximizing
portfolio cannot exist. Hence absence of arbitrage is a necessary condition.

To show sufficiency, we assume that the market is free of arbitrage. Without
loss of generality we can even assume that the market is non-redundant. Indeed,
if the non-redundancy condition doesn’t hold, one proceeds as follows, assuming
that a maximizer in the non-redundant case exists. Let N = {ξ ∈ Rd : ξ · Y =
0 a.s.}. Then N is a closed subspace of Rd and hence every vector ξ in Rd can
be orthogonally decomposed as ξ = ξ0 + ξ⊥ with ξ0 ∈ N and ξ⊥ ∈ N⊥. It
follows that h(ξ) = h(ξ⊥), so effectively, h is a function on Ξ′ := Ξ∩N⊥, which
has, by assumption, a maximizer ξ′ ∈ Ξ′. Then ξ∗ = ξ′ + ξ0, for some ξ0 ∈ N ,
is a maximizer in Ξ. Henceforth in the proof, non-redundancy is assumed.
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Consider first the case where D = R and u has an upper bound. We will
invoke Lemma 6.3 applied to the function h(ξ) = Eu(ξ · Y ). We first show that
h is u.s.c. Since u has an upper bound, we can apply the lim sup version of
Fatou’s lemma and obtain for every sequence (ξn) with limit ξ

lim suph(ξn) = lim supEu(ξn · Y ) ≤ E lim supu(ξn · Y ) = h(ξ),

by continuity of u.
Next we check condition (6.4). In view of Corollary 1.4, absence of arbitrage

is equivalent to saying that for every ξ ∈ Rd \ {0} one has P(ξ · Y < 0) > 0.
Indeed, P(ξ · Y ≥ 0) = 1 implies P(ξ · Y = 0) = 1, which in turn implies ξ = 0
by non-redundancy. Hence if ξ 6= 0, then P(ξ · Y < 0) > 0.

Since u is concave and increasing one has {ξ ·Y < 0} = {limα↑∞ u(α ξ ·Y ) =
−∞}. From the fact that the latter set has positive probability, it follows by
the Monotone convergence theorem (use also that u has an upper bound) that
for all ξ 6= 0

lim
α→∞

h(α ξ) = lim
α→∞

Eu(α ξ · Y ) = −∞.

We have shown that for the present case, absence of arbitrage leads to condi-
tion (6.4), which is sufficient for existence of a maximum of Eu(ξ · Y ).

We turn to the case, where all ξ · Y involved have a lower bound a < 0. We
show that Ξ = {ξ ∈ Rd : ξ · Y ≥ a a.s.} is compact. We follow a familiar way of
reasoning (see also the proof of Theorem 1.16), working towards a contradiction.
Supposing that the set Ξ is unbounded, we can take a sequence (ξn) in this set
such that |ξn| → ∞ and ξn/|ξn| → η, for some vector η with |η| = 1. Then

η · Y = lim
ξn · Y
|ξn|

≥ lim
a

|ξn|
= 0 a.s.

By absence of arbitrage and non-redundancy we conclude that η = 0, a contra-
diction. We conclude to optimize over a compact set.

To show that an optimizer exists, it is now sufficient to show that h is
continuous on Ξ. This follows by an application of the Dominated convergence
theorem, limh(ξn) = limEu(ξn · Y ) = E limu(ξn · Y ) = h(ξ) if ξn → ξ. For
a valid application of this theorem one has to find a random variable X such
that supξ∈Ξ u(ξ · Y ) ≤ u(X) a.s. and Eu(X) < ∞, an integrable upper bound
is sufficient since u is lower bounded by u(a).

Define η ∈ Rd+ by its elements ηi = 0 ∨mi, where mi = max{ξi : ξ ∈ Ξ}.
The mi are finite by compactness of Ξ. By positivity of S, we have η · S ≥ ξ · S
for ξ ∈ Ξ and hence

ξ · Y ≤ η · S
1 + r

− ξ · π ≤ η · S
1 + r

+M =: X,

where M = max{−ξ · π : ξ ∈ Ξ} ∨ 0 (also a finite number). We also have
η ·Y = η · ( S

1+r −π) ≥ −η ·π and, because η ·π ≥ 0, there is α ∈ (0, 1] such that
αη·π < −a, which implies that αη·Y > a. Then αη ∈ Ξ and, by Assumption 6.2,
Eu(αη ·Y ) <∞. One has a ≤ ξ ·Y ≤ X and αη ·Y = αX−α(η ·π+M). With
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b = α(η · π + M) we wish to apply Lemma 6.4 to get Eu(X) < ∞, as desired.
One then has to verify that 0 ≤ α(η·π+M) < −a, which can be accomplished by
taking α small enough, meanwhile maintaining Eu(αη · Y ) < ∞. This finishes
the proof. �

Knowing that under Assumption 6.2, the maximization problem has a solution,
we now turn to a characterization of it under additional assumptions.

Theorem 6.6 Let u : D → R be a continuously differentiable utility function.
Let Assumption 6.2 hold and assume, additionally, E |u(ξ · Y )| < ∞ for all
ξ ∈ Ξ. Let the Problem 6.1 maximizing ξ∗ be an interior point of Ξ. Then
Y u′(ξ∗ · Y ) ∈ L1(Ω,F ,P) and

(6.5) EY u′(ξ∗ · Y ) = 0.

Proof If differentiation and expectation commute, one has (writing a gradient
as a column vector)

∇ξEu(ξ · Y ) = Eu′(ξ · Y )Y,

and the result follows by taking ξ = ξ∗. Since it is not clear that the commuta-
tion is valid, we directly show that the right hand side is zero at ξ = ξ∗. Take
η ∈ Rd and ε ∈ (0, 1]. Put ξε = ξ∗ + εη, then ξε ∈ Ξ for all ε sufficiently small,
ε < ε0 say. For those ε we put f(ε) := u(ξε · Y ) and

∆ε :=
f(ε)− f(0)

ε
=
u(ξε · Y )− u(ξ∗ · Y )

ε
= η · Y u(ξε · Y )− u(ξ∗ · Y )

εη · Y
.

Note that E∆ε ≤ 0, because Eu(ξ∗ · Y ) is maximal. Concavity of u gives that
f is concave too. Hence ∆ε is increasing for ε ↓ 0, with limit η · Y u′(ξ∗ · Y ).
The assumption that u(ξ · Y ) ∈ L1(Ω,F ,P) for all ξ ∈ Ξ implies that ∆ε0 ∈
L1(Ω,F ,P). Hence ∆ε − ∆ε0 is nonnegative and increasing for ε ↓ 0, which
enables us to apply the Monotone convergence theorem to get

0 ≥ E∆ε ↑ E [η · Y u′(ξ∗ · Y )],

where the expectation on the right hand side is a finite number. We conclude
that η · EY u′(ξ∗ · Y ) ≤ 0 for all η ∈ Rd. So we can replace η with −η in the
last inequality and we conclude that the linear map η 7→ η · EY u′(ξ∗ · Y ) is
identically zero. But then we must have EY u′(ξ∗ · Y ) = 0. �

Proposition 6.7 Let the assumptions of Theorem 6.6 hold and let the market
be arbitrage-free. Let ξ∗ be the maximizer of Problem 6.1. Then Eu′(ξ∗·Y ) <∞
and

(6.6)
dP∗

dP
=

u′(ξ∗ · Y )

Eu′(ξ∗ · Y )

defines a risk-neutral measure on (Ω,F).
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Proof First we show that Eu′(ξ∗ · Y ) <∞, so that P∗ is well defined. Define

c := sup{u′(x) : x ∈ D and x ∈ [−|ξ∗|, |ξ∗|]}.

Consider first the case in which D = R. Then, because u′ is decreasing, we
have c = u′(−|ξ∗|). If D = [a,∞), then c ≤ sup{u′(x) : x ∈ D} = u′(a).
In both cases we have c < ∞. By the Cauchy-Schwarz inequality, we have
|ξ∗ · Y | ≤ |ξ∗| · |Y |. Hence, if |ξ∗ · Y | > |ξ∗|, then |Y | > 1. From this it follows
that (we split into the cases |ξ∗ · Y | ≤ |ξ∗| and |ξ∗ · Y | > |ξ∗| and use that u′ is
nonnegative)

0 ≤ u′(ξ∗ · Y ) = u′(ξ∗ · Y )1{|ξ∗·Y |≤|ξ∗|} + u′(ξ∗ · Y )1{|ξ∗·Y |>|ξ∗|}

≤ c1{|ξ∗·Y |≤|ξ∗|} + u′(ξ∗ · Y )1{|Y |>1}

≤ c+ u′(ξ∗ · Y )1{|Y |>1}

≤ c+ u′(ξ∗ · Y )|Y |1{|Y |>1}

≤ c+ u′(ξ∗ · Y )|Y |

where the expression on the right hand side has finite expectation, by Theo-
rem 6.6.

By definition, a risk-neutral measure satisfies E∗Y = 0. This is indeed the
case, since

E∗Y = EY
dP∗

dP
= 0,

because of Equation (6.5). �

Remark 6.8 If Y is P-a.s. bounded, then the Radon-Nikodym derivative in
(6.6) is bounded and we have constructed a risk neutral measure with bounded
density as mentioned in Theorem 1.6. If Y is not bounded under P, one may
change the optimization problem by considering Ỹ = Y/(1 + |Y |), which is
bounded, instead of Y . Indeed, along with Y , also Ỹ satisfies the no arbitrage
condition P(ξ · Ỹ ≥ 0) = 1 ⇒ P(ξ · Ỹ = 0) = 1 and vice versa. If ξ̃ is the

corresponding maximizer of ξ 7→ Eu(ξ̃ · Y ), then dP̃
dP = 1

c
u′(ξ̃·Ỹ )
1+|Y | defines a risk-

neutral measure P̃ equivalent to P for c = E u′(ξ̃·Ỹ )
1+|Y | .

6.2 Exponential utility and relative entropy

In the present section we fix the utility function to be given by u(x) = 1 −
exp(−αx), x ∈ R and α > 0. The optimization problem 6.1 is in this case
equivalent to (take λ = −αξ) the minimization of the function Z : Rd → (0,∞)
defined by

Z(λ) = E eλ·Y .

This optimization problem will be studied under the assumption that Z(λ) <∞
for all λ ∈ Rd, for which we have the following equivalent formulation, all
exponential moments of |Y | are finite.
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Lemma 6.9 It holds that Z(λ) < ∞, for all λ ∈ Rd iff E exp(α|Y |) < ∞ for
all α ∈ R.

Proof The condition in terms of α is certainly sufficient. To prove necessity
we proceed as follows. We use that |Y | ≤

√
d
∑
i |Yi| to get for α > 0 (which is

sufficient to consider) by Hölder’s inequality for d random variables

E eα|Y | ≤ E eα
√
d
∑
i |Yi| ≤

∏
i

(
E eαd

√
d|Yi|

)1/d
.

Since exp(αd
√
d|Yi|) ≤ exp(αd

√
dYi) + exp(−αd

√
dYi), each of the factors in

the product is finite. �

In the remainder of this section we assume that the condition of Lemma 6.9
holds. Before we proceed with the optimization problem, we introduce some
terminology.

Definition 6.10 The exponential family of P with respect to Y is the family of
probability measures Pλ on (Ω,F) with λ ∈ Rd given by

dPλ
dP

=
eλ·Y

Z(λ)
.

Expectation w.r.t. Pλ is denoted by Eλ and m(Pλ) := EλY . Note that all Pλ
are mutually equivalent probability measures, and equivalent to P.

We restate Theorem 6.5 and Theorem 6.6 in the present context.

Proposition 6.11 The function λ 7→ Z(λ) takes on its minimum iff the market
is arbitrage free. If this happens, any minimizer λ∗ also solves the equation

m(Pλ∗) = 0.

If the market is non-redundant, then the minimizer is unique.

Proof We apply Theorem 6.5, and so a minimizer exists iff the market is free
of arbitrage. From Theorem 6.6 we obtain for this case that m(Pλ∗) = 0. �

Below we will see a converse to this proposition, if m(Pλ∗) = 0, then λ∗ mini-
mizes λ 7→ Z(λ).

Definition 6.12 Let P and Q be two probability measures on a measurable
space (Ω,F). Denote by EQ expectation under Q. If Q � P, then the relative
entropy, or Kullback-Leibler information of Q w.r.t. P is defined as

H(Q|P) = EQ log
dQ
dP
≤ ∞.

If Q is not absolutely continuous w.r.t. P, then H(Q|P) :=∞.
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Since x 7→ x log x is strictly convex and H(Q|P) = E dQ
dP log dQ

dP , it follows from
Jensen’s inequality that always H(Q|P) ≥ 0 and that H(Q|P) = 0 iff Q = P.

Proposition 6.13 Assume there is λ0 ∈ Rd such that m(Pλ0
) = 0.

(i) For all λ ∈ Rd it holds thatH(Pλ|P) = λ·m(Pλ)−logZ(λ) andH(Pλ0
|P) =

− logZ(λ0).

(ii) If Q is a probability measure on (Ω,F) with EQ Y = 0, then H(Q|P) =
H(Q|Pλ0

) +H(Pλ0
|P).

(iii) Let Q0 be the set of probability measures Q with EQ Y = 0. Then the
mapping Q 7→ H(Q|P) assumes on the set Q0 a unique minimum for
Q = Pλ0 .

(iv) λ0 is the minimizer of λ 7→ Z(λ).

Proof (i) By definition of Pλ one has log dPλ
dP = λ ·Y − logZ(λ). The first result

then follows, because EλY = m(Pλ), and the second one is a then a consequence
of m(Pλ0

) = 0.
(ii) Clearly, there is only something to prove if all entropies involved are

finite. So we assume Q� P, and then we also have Q� Pλ. From the product
rule

dQ
dP

=
dQ
dPλ

dPλ
dP

=
dQ
dPλ

eλ·Y

Z(λ)

one obtains

log
dQ
dP

= log
dQ
dPλ

+ λ · Y − logZ(λ).

Take expectation under Q to get

H(Q|P) = H(Q|Pλ) + λ · EQ Y − logZ(λ)(6.7)

= H(Q|Pλ)− logZ(λ),

since EQ Y = 0. The result now follows from (i) if we take λ = λ0.
(iii) Note that Pλ0 ∈ Q0. It follows from (ii) that H(Q|P) ≥ H(Pλ0 |P) for

all Q ∈ Q0. Equality holds iff H(Q|Pλ0
) = 0, which happens iff Q = Pλ0

.
(iv) Take in (6.7) Q = Pλ0

to obtain

H(Pλ0
|Pλ) = H(Pλ0

|P) + logZ(λ).

Then minimizing Z(λ) over λ is equivalent to minimizing H(Pλ0 |Pλ). But a
minimizer of the latter is λ0. �

We close this section by connecting the preceding results for portfolio optimiza-
tion to the construction of a special risk neutral measure.

Corollary 6.14 Suppose that the market is arbitrage-free under the probabil-
ity measure P. Then there exists a unique risk-neutral measure P∗ that min-
imizes the relative entropy H(P′|P) over all equivalent risk-neutral measures
P′ ∈ P. Specifically, if λ∗ is the minimizer of Z(λ), then

(6.8)
dP∗

dP
=

eλ
∗·Y

E eλ∗·Y
.
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Proof We apply Proposition 6.13 together with Proposition 6.11 to obtain the
result, upon noticing that for a risk neutral measure Q one has EQ Y = 0. �

The assertion of Corollary 6.14 can be restated by saying that the optimal
portfolio ξ∗ of an optimization problem in terms of a CARA utility function
can be characterized by a relative entropy minimizing probability measure P∗.
This measure, as presented in this corollary, is sometimes called an exponentially
tilted transformation of P, or an Esscher transform of P.

6.3 Exercises

6.1 Show that a function h : Rd → R, defined on some domain is upper semi-
continuous iff the sets h−1(−∞, a) are open for all a ∈ R.

6.2 The assertion of Theorem 6.5 should also be true for a utility function
u : (a,∞) → R with a < 0, limx↓a u(x) = −∞ and u bounded from above.
Investigate whether this conjecture is correct. In particular one should check
whether h is upper semicontinuous and adapt the proof where needed. It could
be useful to extend the definition of u by defining u(x) = −∞ for x ≤ a, since
otherwise certain desirable properties of h(ξ) = Eu(ξ · Y ) are hard to establish.

6.3 Consider the CARA utility function u(x) = 1 − exp(−αx), x ∈ R, with
α > 0, the constant Arrow-Pratt coefficient.

(a) Show that the condition E |u(ξ · Y )| < ∞ for ξ ∈ Ξ of Theorem 6.6 is
equivalent to E exp(ξ · Y ) <∞, for all ξ ∈ Rd.

(b) Show that the risk-neutral measure P∗ of Proposition 6.7 is the same for
all α > 0.

(c) Suppose that Y has a d-dimensional multivariate normal distribution with
mean vector m and invertible covariance matrix Σ. Compute the optimal
ξ∗ ∈ Rd.

6.4 Let P be a probability measure on some measurable space (Ω,F). Show
that the mapping Q 7→ H(Q|P) is strictly convex on the set of all probability
measures on this space such that H(Q|P) <∞.

6.5 Consider a market with one risky asset only (d = 1). Let the assumptions
of Theorem 6.6 hold. Let ξ∗ be the optimal investment in the risky asset.
Show, by inspecting the objective function ξ 7→ Eu(ξ · Y ) (u defined on R and
differentiable) near ξ = 0, that ξ∗ > 0 iff EY > 0. (This yields an alternative
to Example 4.8).

6.6 Consider a market with r = 0 and one risky good S1, that can take on
arbitrarily large and arbitrarily small numbers, P(S1 ≤ ε) > 0 and P(S1 ≥
1/ε) > 0 for any ε > 0 and assume ES1 < π1. Let D = [−π1,∞) and u a
sufficiently smooth utility function with domain D. Note that Y ≥ −π1, hence
u(Y ) is well defined.

(a) Show that Ξ = [0, 1].
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(b) From Example 4.8 one deduces ξ∗ = 0, a boundary point of Ξ. Show that
Eu′(ξ∗ · Y )Y < 0, violating Condition 6.5.

6.7 Given an arbitrage free market and a utility function ũ as at the beginning of
this section, the transformed utility function u depends on the initial capital w.
In general, an optimal portfolio will also depend on w. We study this for the case
d = 1 and r = 0. We avoid redundancy of the market, Y is non-degenerate.
Assume that ũ is a C2 function and that everywhere below interchanging of
expectation and differentiation is allowed. Put f(w, ξ) = E ũ′(ξY + w)Y .

(a) Show that ∂f
∂ξ (w, x) < 0.

(b) Conclude that (locally) for every w > 0, there is a C1 function w 7→ ξ∗(w)
such that f(w, ξ∗(w)) = 0.

(c) Show that
dξ∗(w)

dw
= − E ũ

′′(ξ∗(w)Y + w)Y

E ũ′′(ξ∗(w)Y + w)Y 2
.

(d) Assume that EY > 0 and that Arrow-Pratt coefficient α̃(·) of ũ is a de-
creasing function. Show that Y α̃(ξ∗(w)Y + w) ≤ Y α̃(w).

(e) Conclude, under the assumptions in (d), that ξ∗(·) is an increasing function
of w. (In Micro-economics, assets with the latter property are called normal
goods. Assets with decreasing demand ξ∗ are called inferior goods.)

6.8 Lemma 6.3 also has a converse. If h is strictly concave and upper semi-
continuous, then existence of a minimizer implies (6.4). Show this and give an
example that shows that the strict concavity of h cannot be missed here.

6.9 Consider a market with one risky good, its value at t = 1 is S and price π
(at t = 0). Assume that S has under P a Poisson distribution with parameter
α > 0. Consider the exponential family of Definition 6.10.

(a) Show that Z(λ) <∞ for all λ ∈ R
(b) Show that S has a Poisson distribution with parameter αeλ under Pλ.

(c) Compute the minimizer of λ 7→ Z(λ) directly.

(d) Verify that the minimizer is in agreement with Proposition 6.13.
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7 Optimal contingent claims

In the previous sections we studied the problem of portfolio optimization. In a
complete market, every contingent claim (recall Definition 1.10) has the same
pay-off as some portfolio, but in an incomplete market this is no longer true.
Therefore, in the latter case, it makes sense to study, as a new, more general
problem, the maximization of the expected utility Eu(X), where u is a utility
function and X some contingent claim, belonging to some suitable convex set
X . The specification of X will depend on the context.

7.1 An expected utility optimization problem

Let w be the initial capital of some investor. Let P∗ be a probability measure,
equivalent to P with Radon-Nikodym derivative dP∗

dP = φ. Given a contingent
claim with discounted pay-off X, define a pricing rule by E∗X = EφX.

In this context, φ is also called a pricing kernel. The budget constraint on
claims X in the present context is given by E∗X ≤ w. We introduce the budget
set, also called the set of admissible pay-offs,

B = {X ∈ X ∩ L1(Ω,F ,P∗) : E∗X ≤ w}.

Note that B is a convex set. We will study the following

Problem 7.1 Maximize Eu(X) over the set B.

To have this problem well-defined, we need that P∗ ∼ P, not just P∗ � P or
P � P∗, see Exercise 7.1, the standing assumption for this section. Note that
this relates to Theorem 6.5, where a similar situation has been encountered and
where we required the market to be arbitrage-free, which is equivalent to the
existence of a Risk neutral measure. We will also assume that P(X ∈ D) = 1,
for all X ∈ B, where D is the domain of u.

If Problem 7.1 has a solution, it is necessarily unique. This is due to the
fact that u is strictly concave, see the proof of Theorem 6.5. Another fact that
we encountered before is, that it can never be optimal to invest less than the
initial capital w. Indeed, if a given claim X ∈ B is such that E∗X < w, then
X ′ = X + w − E∗X > X and so Eu(X ′) > Eu(X), whereas X ′ ∈ B, since
E∗X ′ = w.

For the time being, we drop the budget constraint and let X be the set of all
random variables. Suppose that X∗ is the optimal claim. Let X be any bounded
random variable and consider the ‘perturbed’ claims, belonging to B as well,

Xλ = X∗ + λ(X − E∗X), λ ∈ R.

Among the pay-offs Xλ, the optimal one is found for λ = 0. Hence, assuming
differentiability where needed,

d

dλ
Eu(Xλ) = 0, for λ = 0.
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Scrupulously interchanging differentiation and expectation in the above equa-
tion yields

0 = E (u′(X∗)(X − E∗X))

= EX(u′(X∗)− φEu′(X∗)).

Let c = Eu′(X∗), then the above identity yields

EXu′(X∗) = cE (Xφ),

valid for all bounded X, in particular for X = 1F , F ∈ F . In that case one has

E1Fu
′(X∗) = E1F c φ.

This means that both sides of the above equality define the same measures on
F , absolutely continuous w.r.t. P, and hence their Radon-Nikodym derivatives
are P-a.s. the same. In other words,

u′(X∗) = c φ a.s.,

yielding X∗ = (u′)−1(c φ) a.s. Hence we have found a candidate solution,
(u′)−1(c φ). The heuristics above are justified by the following theorem.

Theorem 7.2 Suppose that u ∈ C1(R), limx→−∞ u′(x) = ∞ and u bounded
from above. Let I be the inverse of the function u′, which is well defined on
(0,∞). Let c > 0 and X∗ := I(c φ). Then X∗ is well defined a.s. Moreover,
assume that X∗ ∈ L1(Ω,F ,P∗) and let w = E∗X∗. Then X∗ is the unique
maximizer of Problem 7.1 for X = L0(Ω,F ,P).

Proof We have already discussed uniqueness and so we turn to existence. It
follows from the assumptions that u′(x) → 0 for x → ∞. Hence every positive
number is in the range of u′. Since P∗ ∼ P, we have that P(φ > 0) = 1. Hence
I(c φ) is P-a.s. well-defined.

Concavity of u yields for any X ∈ L1(Ω,F ,P∗) that

u(X) ≤ u(X∗) + u′(X∗)(X −X∗) = u(X∗) + c φ(X −X∗).

Taking expectations in this inequality yields

Eu(X) ≤ Eu(X∗) + cEφ(X −X∗)
= Eu(X∗) + cE∗(X −X∗)
= Eu(X∗) + c (E∗X − w)

≤ Eu(X∗),

which shows that X∗ is the maximizer. �

Let W be a nonnegative random variable with values in [0,∞]. Until further
notice we assume that the set X is that of random variables X satisfying 0 ≤
X ≤ W a.s. and B = {X ∈ X : E∗X ≤ w}. In this case we assume that
u : [0,∞)→ R.

52



Remark 7.3 One can show that for any utility function u, there exists a maxi-
mizer X∗ ∈ B of Eu(X) under the conditions stipulated above. For a construc-
tive result the class of utility functions under consideration will be narrowed
down in what follows by assuming differentiability.

Let u ∈ C1(0,∞) be a utility function. We can extend the domain of u to
[0,∞), by setting u(0) = limx→0 u(x) ≥ −∞. Since u′ is decreasing, the limits

a = lim
x→∞

u′(x)

and
b = lim

x→0
u′(x)

exist. Moreover, we have 0 ≤ a < b ≤ ∞ and a = inf{u′(x) : x > 0}, b =
sup{u′(x) : x > 0}. On the open interval (a, b), the function u′ has a well-
defined continuous and decreasing inverse I. We extend I to a function I+ :
[0,∞]→ [0,∞], by setting

I+(y) =

 +∞ if 0 ≤ y ≤ a
I(y) if a < y < b
0 if y ≥ b.

It is obvious that I+ is decreasing and continuous on [0,∞].

Theorem 7.4 Consider the optimization problem under the restriction 0 ≤
X ≤W ≤ ∞. Let X∗ = I+(c φ)∧W and let w = E∗X∗ <∞. If Eu(X∗) <∞,
then X∗ is the unique maximizer of Eu(X) over X ∈ B.

Proof Consider the function v : [0,∞] × Ω → R (the Legendre-Fenchel trans-
form of u, a common tool in convex analysis) defined by

(7.1) v(y, ω) = sup{u(x)− xy : 0 ≤ x ≤W (ω)}.

Suppose, for the time being, that W (ω) < ∞. By continuity of u, for each y
and ω the supremum will be attained at some x∗ = x∗(y, ω) ∈ [0,W (ω)], which
is unique by strict concavity of u. So we then have

u(x) ≤ xy + u(x∗)− x∗y,

where the right hand side as a function of x has as a graph a line with slope y.
We discern three cases.

Suppose x∗(y, ω) = 0 (first case). Then for all x ∈ (0,W (ω)] we have

u(x) − xy < u(0). Consider ∆hu(x) := u(x+h)−u(x)
h for x > 0 and x + h > 0.

By concavity of u, ∆hu is decreasing for every fixed h, in particular ∆hu(x) ≤
∆hu(0) = u(h)−u(0)

h ≤ y. It follows that supx>0 u
′(x) ≤ y and hence y ≥ b.

Conversely, if y ≥ b, then u′(x) < y for all x ∈ (0,W (ω)), then x 7→ u(x)−xy is
decreasing and x∗(y, ω) = 0. One similarly shows that (second case) x∗(y, ω) =
W (ω) iff y ≤ a. If x∗(y, ω) ∈ (0,W (ω)) is an interior maximizer (third case),
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then y = u′(x∗(y, ω)) holds and y ∈ (a, b), so x∗(y, ω) = I(y). Taking all three
cases into account, one arrives at

x∗(y, ω) = I+(y) ∧W (ω),

which is a measurable function, jointly in (y, ω), since I+ is continuous. Hence,
by definition of X∗, one has X∗(ω) = x∗(cφ(ω), ω) on {ω : W (ω) < ∞}, mea-
surable in ω. Suppressing the dependence on ω, we thus found X∗ = x∗(cφ) on
{W <∞}.

Next we switch from W (ω) < ∞ to W (ω) = ∞. The case where a finite
maximizer x∗(y, ω) exists can be treated as before and one gets x∗(y, ω) =
I+(y) = I+(y) ∧ W (ω). The supremum in (7.1) is not attained for a finite
argument iff u′(x) > y for all x > 0, and then y ≤ a. By definition of I+, we
can put x∗(y, ω) = I+(y) = I+(y) ∧W (ω). On the other hand, the assumption
E∗X∗ < ∞ implies w ≥ E∗X∗1{W=∞} = E∗I+(c φ)1{W=∞}. It follows that
X∗ = x∗(c φ) is finite P∗-a.s. on {W =∞}.

Hence, in both situations W < ∞ and W = ∞, one obtains X∗ = x∗(c φ),
which is a P∗-a.s. finite random variable, and then also P-a.s. finite. But then,
using the definition of x∗ as the maximizer of (7.1), we get for arbitrary X ∈ B

u(X∗)− c φX∗ ≥ u(X)− c φX a.s.

Take expectations to get

Eu(X∗)− cEφX∗ ≥ Eu(X)− cEφX,
equivalent to

Eu(X∗)− Eu(X) ≥ c(E∗X∗ − E∗X),

with a nonnegative right hand side by X ∈ B. The uniqueness issue has already
been addressed before. �

The previous theorems dealt with the existence of an optimizer for problems
where the initial capital w was defined in terms of a property of the candidate
optimizer, involving the constant c that was also depending on the candidate
optimizer. In a practical situation, w is given before hand and so we can apply
the previous theorems only if c is such that the assumptions in these theorems
are met. The next corollary gives a simple sufficient condition for this.

Corollary 7.5 Let w > 0 be given and assume 0 < w < E∗W < ∞ and
Eu(W ) < ∞. Then there exists a unique constant c∗ > 0 such that X∗ :=
I+(c∗ φ) ∧W satisfies E∗X∗ = w. Hence X∗ is the maximizer of Eu(X) over
X ∈ B.

Proof Let β > 0 and define fβ by fβ(y) = I+(y) ∧ β. Then fβ is bounded,
continuous and decreasing. Moreover, limy↑b fβ(y) = 0 and fβ(y) = β for
y ≤ u′(β). Put g(c) = E∗fW (c φ) = E∗[I+(c φ) ∧W ] ≤ E ∗W . By dominated
convergence, g is continuous. Furthermore, limc→∞ g(c) = 0, limc↓0 g(c) = E∗W
and g is strictly decreasing (Exercise 7.5) on the interval g−1[(0,E∗W )], which
contains w by assumption. We thus obtain that there exists a unique c∗ such
that w = g(c∗). Theorem 7.4 yields that X∗ is the expected utility maximizer,
as Eu(X∗) <∞ is guaranteed by Eu(W ) <∞. �
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7.2 Optimization under uniform order restrictions

In this section we study an optimization problem, that involves the uniform
order �uni, recall Definition 5.1. We transplant this order to the space of random
variables, all defined on a given probability space (Ω,F ,P), by saying that
X �uni Y iff µX �uni µY , where µX and µY denote the laws (under P) of X
and Y respectively. The problem we are going to address is the following.

Problem 7.6 Let P∗ ∼ P and X0 ∈ X = L1
+(Ω,F ,P) be given. Note that

X0 ≥ 0 a.s. under P and P∗ and assume that E∗X0 < ∞. The objective is to
minimize E∗X over all random variables X ∈ X satisfying X �uni X0.

The interpretation of this problem is that one wants to find the minimal budget
needed among all X that are at least as attractive as X0, in the sense that
X �uni X0. Note that the latter requirement is stated in terms of P, whereas
we want to find a minimal expectation under P∗.

Before we state a theorem with the solution to this problem, we need some
additional properties of the �uni order in terms of quantile functions. Recall
the notation f(x−) = limy↑ f(y) for f : R→ R, assuming that the limit exists.

Definition 7.7 If F is a distribution function, then q : (0, 1) → R is called a
quantile function for F if for all t ∈ (0, 1) it holds that F (q(t)−) ≤ t ≤ F (q(t)).
If X is a random variable with distribution function F , we also say that q is a
quantile function for X if q is a quantile function of F . Such a quantile function
is also denoted qF and qX .

Recall that there are two ‘extremal’ quantile functions, q− and q+, defined by
q−(t) = sup{x ∈ R : F (x) < t} and q+(t) = sup{x ∈ R : F (x) ≤ t}. Recall
also the fundamental equivalences q−(t) ≤ x ⇔ t ≤ F (x) and q+(t) < x ⇔
t < F (x). Moreover, q+ = q− a.e. w.r.t. Lebesgue measure. Since any quantile
function q satisfies q− ≤ q ≤ q+, we also have q = q− = q+ a.e. w.r.t. Lebesgue
measure, and hence integrals of these functions w.r.t. Lebesgue measure have
the same value. In particular, if U has a uniform distribution on (0, 1), q(U)
has distribution function F for any q that is a quantile function for F .

Lemma 7.8 Let F be a distribution function of a distribution with finite mean
and q an associated quantile function. Then for all x ∈ R it holds that

(7.2) xF (x) =

∫ x

−∞
F (u) du+

∫ F (x)

0

q(u) du.

Moreover, for arbitrary x ∈ R and t ∈ (0, 1), one has

(7.3) xt ≤
∫ x

−∞
F (u) du+

∫ t

0

q(u) du.

Proof Both relations follow from maximizing x 7→ xt −
∫ x
−∞ F (u) du (Exer-

cise 7.7). �
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Remark 7.9 Inequality (7.3) is also valid for t = 0, 1 and if the distribution
doesn’t have a finite mean, in which case the right hand may be infinite.

Lemma 7.10 Let µ, ν be probability measures on R and let qµ and qν be
corresponding quantile functions. The following statements are equivalent.

(i) µ �uni ν.

(ii) For all t ∈ (0, 1), it holds that
∫ t

0
qµ(s) ds ≥

∫ t
0
qν(s) ds.

(iii) For all decreasing functions h : (0, 1)→ [0,∞) it holds that

(7.4)

∫ 1

0

h(s)qµ(s) ds ≥
∫ 1

0

h(s)qν(s) ds.

(iv) For all bounded decreasing functions h : (0, 1) → [0,∞) inequality (7.4)
holds true.

Proof (i) ⇔ (ii) follows from Lemma 7.8 and Theorem 5.3 (Exercise 7.8).
(ii) ⇒ (iii): Since h is decreasing, it has at most countably many discon-

tinuities, so the integrals in (7.4) don’t change if we replace h with its right-
continuous modification. Then, up to an additive positive constant, h can be
seen as the ‘complement of a distribution function’ of a measure η on (0, 1),
h(t) = η(t, 1). We apply Fubini’s theorem as in the proof of Theorem 5.3. We
have ∫ 1

0

h(t)qµ(t) dt =

∫ 1

0

∫
(t,1)

η(ds) qµ(t) dt

=

∫
(0,1)

∫ s

0

qµ(t) dt η(ds)

≥
∫

(0,1)

∫ s

0

qν(t) dt η(ds)

=

∫ 1

0

h(s)qν(s) ds.

(iii) ⇒ (iv): trivial.
(iv) ⇒ (ii): Take h = 1(0,t]. �

Lemma 7.11 Let X,Y be nonnegative random variables. Then

EXY ≥
∫ 1

0

qX(1− t)qY (t) dt,

where qX and qY are quantile functions for X and Y respectively.

Proof First we note that by Fubini it holds that

(7.5) EXY = E
∫ ∞

0

∫ ∞
0

1{x<X,y<Y } dxdy =

∫ ∞
0

∫ ∞
0

P(X > x, Y > y) dxdy.

56



Next we have the trivial relations

P(X > x, Y > y) = P(X > x)− P(X > x, Y ≤ y)

≥ P(X > x)− P(Y ≤ y).

Since the extreme term on the left is nonnegative, we also have

(7.6) P(X > x, Y > y) ≥ (P(X > x)− P(Y ≤ y))+.

For FY (y) ≤ 1− FX(x) we have, using the special property of q+,

0 ≤ P(X > x)− P(Y ≤ y) =

∫ 1

0

1{FY (y)≤t≤1−FX(x)} dt

=

∫ 1

0

1{y≤q+Y (t),x≤q+X(1−t)} dt.

In case FY (y) > 1− FX(x), the integrand on the right hand side is zero, hence
we can replace the left hand side with (P(X > x) − P(Y ≤ y))+, whatever x
and y, meanwhile maintaining the integral expression, so

(P(X > x)− P(Y ≤ y))+ =

∫ 1

0

1{y≤q+Y (t),x≤q+X(1−t)} dt.

Integrating the right hand side with respect to x and y yields by Fubini’s theorem∫ 1

0

∫ ∞
0

∫ ∞
0

1{y≤q+Y (t),x≤q+X(1−t)} dxdy dt =

∫ 1

0

q+
X(1− t)q+

Y (t) dt,

which, upon invoking (7.5) and (7.6), proves the assertion, since all quantile
function are Lebesgue-a.e. the same. �

Theorem 7.12 Let φ denote the Radon-Nikodym derivative dP∗
dP . Consider

problem 7.6. If X ∈ X satisfies X �uni X0, then

(7.7) E∗X ≥
∫ 1

0

qφ(1− s)qX0
(s) ds.

Let µφ be the law of φ under P and Fφ its distribution function. If ν is the

measure on (R,B) characterized by ν(−∞, x] =
∫ Fφ(x)

0
qX0(1−t) dt, then ν � µφ

and equality in (7.7) holds for X = X∗ := f(φ) with f = dν
dµφ

. Moreover,

X∗ �uni X0 and hence X∗ is the minimizer sought for. The function f has the
following explicit expression.

(7.8) f(x) =


qX0(1− Fφ(x)) if x is a continuity point of Fφ∫ Fφ(x)

Fφ(x−)
qX0

(1− t) dt

Fφ(x)− Fφ(x−)
else.
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Proof We will use the auxiliary probability space ((0, 1),B(0, 1), λ), where λ
denotes Lebesgue measure. Expectations and conditional expectations w.r.t.
λ will be denoted by expressions like Eλ(X), Eλ[X|Y ]. Furthermore let U be
the identity mapping on (0, 1); it has the uniform distribution on (0, 1). Then
φ̃ = qφ(U) has the same distribution as φ. A property of conditional expectation
yields that there exists a Borel-measurable function f such that

(7.9) Eλ[qX0
(1− U)|φ̃] = f(φ̃), λ-a.s.

Put X∗ = f(φ), then X∗
d
= f(φ̃). Hence we have, using Jensen’s inequality for

conditional expectations,

Eu(X∗) = Eλ(u(f(φ̃)))

= Eλ(u(Eλ[qX0
(1− U)|φ̃]))

≥ Eλ(Eλ[u(qX0
(1− U))|φ̃])

= Eλ(u(qX0
(1− U))

= Eu(X0),

which shows that X∗ �uni X0. Likewise we compute

E∗X∗ = E (X∗φ) = E (f(φ)φ) = Eλ(f(φ̃)φ̃)

= Eλ(Eλ[qX0
(1− U)|φ̃]φ̃)

= Eλ(Eλ[qX0
(1− U)φ̃|φ̃])

= Eλ(qX0(1− U)φ̃)

= Eλ(qX0(1− U)qφ(U))

=

∫ 1

0

qX0
(1− t)qφ(t) dt.

For any X ≥ 0, one has E∗X = E (Xφ) ≥
∫ 1

0
qX(t)qφ(1 − t) dt by virtue of

Lemma 7.11. If moreover X �uni X0, we obtain from Lemma 7.10 (applied

by choosing h(t) = qφ(1 − t)), that E∗X ≥
∫ 1

0
qX0(t)qφ(1 − t) dt = E∗X∗. We

conclude that X∗ is indeed the optimizer.
It remains to identify the function f as the Radon-Nikodym derivative dν

dµφ

and in terms of the quantile function qX0
and the distribution function Fφ. This

is the content of Exercise 7.10. �

7.3 Exercises

7.1 Let X be a bounded random variable. Suppose that P is not absolutely
continuous w.r.t P∗. Then there exists F ∈ F such that P∗(F ) = 0 and P(F ) >
0. Put X1 = X + c1F . Show that X1 ‘performs better than X’, i.e. it gives
higher expected utility under the same price. Find also an example of this
phenomenon for the case where P∗ is not absolutely continuous w.r.t P.
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7.2 Let u(x) = 1− e−αx, α > 0 and assume that H(P∗|P) <∞.

(a) Determine I and show that E∗I(c φ) = − 1
α (log c

α +H(P∗|P)).

(b) Compute X∗ for problem 7.1 for a given initial capital w.

(c) Let P∗ be the probability measure of Corollary 6.14 (and let λ∗ = −αξ∗).
Show that in this case X∗ = ξ̄∗·S̄

1+r , where ξ̄ = (ξ0, ξ) for some ξ0 (which
one?).

7.3 This exercise concerns the case where W =∞ (see Theorem 7.4). Consider
the CARA utility function u(x) = −e−αx.

(a) Show that

I+(y) = (− 1

α
log

y

α
)+

for y ∈ [0,∞].

(b) Show that the function g : (0,∞) → (0,∞] defined by g(y) = E∗I+(y φ)
is decreasing and continuous on the set where it is finite and limy↓0 g(y) =
+∞, limy→∞ g(y) = 0.

(c) Let P∗ be the risk-neutral measure of Proposition 6.7 and consider the
optimization problem addressed in that proposition. Show that the optimal
X∗ is now of the form X∗ = (ξ∗ ·Y −K)+ (a kind of European call option),
where

K =
1

α
log

c

α
+

1

α
H(P∗|P).

7.4 In the setting of Theorem 7.4, let W = ∞ and let u = u1,0 be a HARA
utility function with index γ ∈ [0, 1), see Example 4.11.

(a) Let γ = 0, u(x) = log x. Show that for given w > 0 the optimal X∗

is given by X∗ = w dP
dP∗ and that the maximal expected utility equals

logw +H(P|P∗) (assume that this is finite).

(b) Let γ ∈ (0, 1). Compute the optimal X∗ for this case.

7.5 Show that the function g in the proof of Corollary 7.5 is strictly decreasing
on g−1[(0,E∗W )].

7.6 Investigate whether the assertion of Corollary 7.5 continues to hold for the
case where W = ∞ and 0 < w < ∞. Impose additional assumptions (on u for
instance as in Theorem 7.2), if needed.

7.7 Prove Lemma 7.8. (Depending on the proof, it may be convenient to distin-
guish between x ≥ 0 and x < 0. It is always a good idea to interpret integrals
as areas, and to make a sketch.)

7.8 Show the equivalence (i) ⇔ (ii) of Lemma 7.10.

7.9 Let X∗ be the optimal random variable of Theorem 7.12. Show that EX∗ =
EX0. Are the laws of X∗ and X0 the same under P? What is X∗ if it happens
that P∗ = P? Is there an intuitive explanation for this?
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7.10 Here you prove the remaining assertions of Theorem 7.12. Let ν(B) =
Eλ[1B(qφ(U))qX0(1− U)], B ∈ B(R) and let µφ be the distribution of φ.

(a) Show that ν � µφ and that ν(R) = EX0.

(b) Let f be as in (7.9). Show that (up to sets of Lebesgue measure zero) it
holds that f = dν

dµφ
.

(c) Identify f as given in Equation (7.8).

7.11 Give a concrete example where the X∗ in Theorem 7.12 is different from
X0.

7.12 Let F be a distribution function and q any of its quantile functions. Let
q− and q+ be the extremal quantile functions and note that q− ≤ q+.

(a) Show that {q− = q = q+} has Lebesgue measure one. You may use
Theorem 3.10 of the MTP lecture notes.

(b) If U is a random variable with the uniform distribution on (0, 1), show that
q(U) has distribution function F .

7.13 Consider a random variable X that has a Binomial distribution with pa-
rameters n = 2 and p = 1

2 .

(a) Compute a quantile function q : (0, 1)→ R for this case.

(b) Give an explicit expression for the integral
∫ x

0
F (u) du and find an x∗ =

x∗(t) (is it unique?) which is the maximizer of x 7→ xt −
∫ x

0
F (u) du for

t ∈ (0, 1).

(c) Give an explicit expression for the integral
∫ t

0
q(u) du and find a t∗ = t∗(x)

(is it unique?) which is the maximizer of t 7→ xt−
∫ t

0
q(u) du for x ∈ R.

(d) Verify that the relations (7.2) and (7.3) hold.
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8 Dynamic arbitrage theory

We return to the setting of Section 1 in the sense that we will work with a market
of d+1 assets, of which one is often taken to be non-risky. The crucial difference
though, is that we will work with dynamic models. That is, prices will be
given by stochastic processes with a non-trivial time set. So, instead of working
only with times t = 0, where all random quantities involved are deterministic
(known) and a time t = 1, where prices of risky assets are understood as random
variables, we will consider processes with a time index t ∈ {0, 1, . . . , T}, where
T is some fixed integer greater than (or equal to) one.

We denote by St the d-dimensional random vector representing the nonneg-
ative prices of the risky assets at time t. The quantities S0

t will be the prices of
the non-risky asset at times t. Usually we take the S0

t non-random and S0
0 = 1.

By S̄t we denote the vector (S0
t , St). Similar notation is used for the portfo-

lio and we have ξ̄t = (ξ0
t , ξt) with the obvious interpretation. The value of a

portfolio at time t will be denoted by Wt, so we have Wt = ξ̄t · S̄t.
The reader is supposed to be familiar with the notions of filtration, adapted

and predictable processes, martingales and other concepts that are standard
within this context.

8.1 Self-financing trading strategies

Let (Ω,F ,P) be the probability space on which all random variables below are
defined. We assume that we are given a filtration F = {F0, . . . ,FT }, where
F0 is trivial, F0 = {∅,Ω}. Since we fix the time horizon to be T , we assume
that FT = F . The price process S = (St)

T
t=0 is assumed to be adapted to the

filtration F.

Definition 8.1 A trading strategy ξ̄ = {ξ̄1, . . . , ξ̄T } is a d+ 1-dimensional pre-
dictable process, i.e. for every t > 0, the random vector ξt is Ft−1-measurable.

The interpretation of a trading strategy is that at time t− 1 (t ≥ 1) an investor
composes a portfolio ξ̄t, for which (s)he then has to pay ξ̄t · S̄t−1, where t ≥ 1.
This portfolio is held until time t, when the value of the portfolio changes into
Wt = ξ̄t · S̄t. At that time (s)he can re-balance the portfolio to ξt+1, for which
(s)he has to pay ξ̄t+1 · S̄t. This re-balancing may happen without infusion or
withdrawing of money and will then only be financed by the current value.
The requirement of a trading strategy to be predictable is of course reasonable,
an investor is not supposed to know future price movements of the stocks (s)he
invests in. By definition, a predictable process is formally only defined for t ≥ 1,
but for notational convenience, we will also use ξ̄0 := ξ̄1.

Definition 8.2 A trading strategy is called self-financing, if one has

ξ̄t · S̄t = ξ̄t+1 · S̄t,

for all t ∈ {0, . . . , T − 1}.
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For any stochastic process X we denote by ∆X the process with ∆Xt = Xt −
Xt−1, for t ≥ 1 and ∆X0 = X0.

Proposition 8.3 A trading strategy is self-financing iff for all t ∈ {1, . . . , T}
one has

∆Wt = ξ̄t ·∆S̄t.

Proof Exercise 8.1. �

We will take the process S0 as a numéraire. For this we need and assume that S0

is strictly positive (occasionally strictly positive a.s.). The discounted processes
Xi (i = 0, . . . , d) are defined by

Xi
t =

Sit
S0
t

.

Of course X0
t = 1 for all t. Write Xt = (X1

t , . . . , X
d
t ) and X̄t = (X0

t , Xt). The
(discounted) value process V is defined by

Vt =
Wt

S0
t

, t = 1, . . . , T

or, equivalently,
Vt = ξ̄t · X̄t.

Note that V0 = W0. We also need the (discounted) gains process G, defined by

Gt =

t∑
k=1

ξk ·∆Xk, t ∈ {0, . . . , T},

where G0 = 0 by the convention that an empty sum equals zero. Note that
∆X1 coincides with the vector of discounted net gains Y of Section 1.

We now characterize a self-financing strategy in terms of the discounted gains
process.

Proposition 8.4 Let ξ̄ be a trading strategy. The following are equivalent.

(i) ξ̄ is self-financing.

(ii) Vt = V0 +Gt, t = 0, . . . , T .

Proof By Definition 8.2, the strategy ξ̄ is self-financing iff ξ̄t · X̄t = ξ̄t+1 · X̄t

for t = 0, . . . , T − 1, which is in turn equivalent to ∆Vt = ∆Gt, t = 1, . . . , T . �

We see that a strategy is self-financing iff changes in the discounted net gains
process are completely due to changes in the (discounted) value process, ∆Vt =
ξt∆Xt.
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Remark 8.5 As before, we will concentrate on the risky part ξ of the strategy
ξ̄, if ξ̄ is self-financing. This, together with the initial investment V0 completely
determines the trading strategy. Indeed, for a self-financing strategy one has

ξ0
t+1 = ξ0

t − (ξt+1 − ξt) ·Xt for t = 0, . . . , T − 1,

and also (for t = 0)
ξ0
1 = V0 − ξ1 ·X0.

Conversely, knowing the risky part of a strategy, the above two equations yield
a self-financing strategy ξ̄ = (ξ0, ξ).

8.2 Arbitrage

As before, the intuitive meaning of arbitrage is that it is possible to make a
(positive) profit, whereas losses are impossible, also called absence of downside
risk. The formal definition is as follows and given in terms of the discounted
value process V , an equivalent definition in terms of the non-discounted process
W is obvious.

Definition 8.6 A self-financing trading strategy is called an arbitrage oppor-
tunity if its discounted value process V satisfies V0 ≤ 0, P(VT ≥ 0) = 1 and
P(VT > 0) > 0. A market is called arbitrage free, if no arbitrage opportunities
exist.

As in Section 1, absence of arbitrage in the market is necessary to obtain a
fair and sensible pricing system. We first give a characterization of existence of
arbitrage. Later on we alternatively characterize absence of arbitrage.

Proposition 8.7 An arbitrage opportunity exists iff there is a t ∈ {1, . . . , T}
and a Ft−1-measurable random vector ηt such that P(ηt · ∆Xt ≥ 0) = 1 and
P(ηt · ∆Xt > 0) > 0. As a consequence, in an arbitrage free market, for all
t ∈ {1, . . . , T} one has P(ηt ·∆Xt = 0) = 1 as soon as P(ηt ·∆Xt ≥ 0) = 1 for
an Ft−1-measurable random vector ηt.

Proof Let ξ̄ be an arbitrage opportunity and V the corresponding discounted
value process. Put

t = min{k ≥ 1 : P(Vk ≥ 0) = 1 and P(Vk > 0) > 0}.

Then 1 ≤ t ≤ T and P(Vt−1 ≥ 0) < 1 or P(Vt−1 > 0) = 0. In the first case, let
ηt = ξt1{Vt−1<0}. Then ηt is Ft−1-measurable and

ηt ·∆Xt = ∆Vt1{Vt−1<0} = (Vt − Vt−1)1{Vt−1<0} ≥ −Vt−11{Vt−1<0},

and the requirements are met. In the other case, we take ηt = ξt and then
ξt ·∆Xt = ∆Vt ≥ Vt a.s. and again the requirements are met, by definition of t.

Conversely, assume that ηt with the stipulated properties exists. Define the
trading strategy ξ by ξs = ηt1{t}(s) and complete it by choosing V0 = 0 and ξ0

as in Remark 8.5 such that ξ̄ is self-financing. Then VT = ηt ·∆Xt and we have
an arbitrage property. �
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We have seen in Section 1 that absence of arbitrage was equivalent with the
existence of a risk-neutral measure P∗, that by definition had the property,
using the current notation, that E∗X1 = X0, which is in fact the martingale
property of the pair (X0, X1), since F0 is trivial. This makes the next definition
understandable.

Definition 8.8 A probability measure Q on (Ω,FT ) is called a martingale mea-
sure or a risk-neutral measure if the process X is a martingale under Q. If a
martingale measure P∗ is equivalent to P on FT , then it is called an equivalent
martingale measure. The set of all equivalent martingale measures is denoted
by P.

There are various ways to characterize martingale measures. We use the follow-
ing

Theorem 8.9 For a self-financing strategy ξ̄ the discounted value process is
denoted V . Let Q be a probability measure on (Ω,FT ). Equivalent are

(i) Q is a martingale measure.

(ii) If ξ̄ is self-financing, bounded, then V is a Q-martingale.

(iii) If ξ̄ is self-financing and EQ V
−
T <∞, then V is a Q-martingale.

(iv) If ξ̄ is self-financing and Q(VT ≥ 0) = 1, then EQ VT = V0.

Proof (i)⇒ (ii): It follows that Vt is Q-integrable for each t, since ξ is bounded.
From Proposition 8.4 and ξ being predictable, we have for t ≥ 1

EQ [∆Vt|Ft−1] = ξt · EQ [∆Xt|Ft−1]

= 0,

since X is a Q-martingale.
(ii) ⇒ (iii): As a first step in the proof, we show, for t ∈ {1, . . . , T},

(8.1) EQ V
−
t <∞⇒ EQ [Vt|Ft−1] = Vt−1Q-a.s..

Since EQ V
−
t <∞, the (generalized) conditional expectation EQ [Vt|Ft−1] is well

defined. Fix a > 0 and put ξat = ξt1{|ξt|≤a}. Then ξat ·∆Xt is the increment of
a martingale, since ξat is bounded, so EQ [ξat ·∆Xt|Ft−1] = 0. Hence

EQ [Vt|Ft−1]1{|ξt|≤a} = EQ [Vt1{|ξt|≤a}|Ft−1]

= EQ [Vt1{|ξt|≤a}|Ft−1]− EQ [ξat ·∆Xt|Ft−1]

= EQ [(Vt−1 + ξt ·∆Xt)1{|ξt|≤a} − ξ
a
t ·∆Xt|Ft−1]

= Vt−11{|ξt|≤a}.

By letting a→∞, one obtains (8.1). Use this equation for t = T to get

EQ V
−
T−1 = EQ (EQ [VT |FT−1])− ≤ EQ (EQ [V −T |FT−1]) = EQ V

−
T ,
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by Jensen’s inequality for conditional expectations applied to the convex func-
tion x 7→ x−. From the assumption, we get that EQ V

−
T−1 < ∞. Iterating this

procedure, one obtains EQ V
−
t <∞ for all t and by (8.1) also EQ Vt = EQ V0 =

V0, which is a finite quantity. It follows that all Vt are integrable and combined
with (8.1) this makes that V is a martingale.

(iii) ⇒ (iv): We clearly have EQ V
−
T = 0 and by the fact that V is then a

martingale, EQ VT = EQ V0 = V0.
(iv) ⇒ (i): We have to show that X is a Q-martingale, for which we shall

select convenient trading strategies. First we show that every element Xi
t of

Xt is Q-integrable. Let ξis = 1{s≤t} and ξj = 0 if 1 ≤ j 6= i. Let V0 = Xi
0

and choose ξ0 such that ξ̄ is self-financing, see Remark 8.5. It follows that now
VT = Xi

t ≥ 0. Using the assumption, we get that Xi
t has finite expectation, in

fact

(8.2) EQX
i
t = Xi

0.

Next we show that EQ [∆Xi
t |Ft−1] = 0, Q-a.s., equivalently, EQ [1A∆Xi

t ] = 0 for
every A ∈ Ft−1, by selecting another appropriate trading strategy. Given such
A, we define ξis = 1s≤t−1A1{s=t} and ξjs = 0 if 1 ≤ j 6= i. Let V0 = Xi

0 ≥ 0 and
complement ξ by ξ0 to obtain a self-financing strategy (note that it is indeed
predictable). A simple computation gives

VT = Xi
t − 1A∆Xi

t = 1AcX
i
t + 1AX

i
t−1 ≥ 0.

The assumption EQ VT = V0 now reads EQ (Xi
t − 1A∆Xi

t) = EQX
i
t , in view

of (8.2). It follows that EQ [1A∆Xi
t ] = 0. �

Remark 8.10 Suppose that P itself is a martingale measure and that a risk
averse investor uses the same probability measure to decide whether or not to
invest in products with a certain expected pay-off. According to Example 4.8, he
will invest all his capital in a riskless product. Moreover, the market is arbitrage
free. Indeed, if ξ̄ is a self-financing strategy and V0 ≤ 0, then we obtain that
VT ≥ 0 P-a.s. implies that EVT = 0 and hence VT = 0 P-a.s.

The main theorem of this section is Theorem 8.12 below, the dynamic version
of Theorem 1.6. To prove it, we need a lemma that concerns a static one period
model as in Section 1, but now with random initial prices. We single out one time
step of the dynamic model, the one from t− 1 to t. Below we write L0(Ω,G,P)
for the set of G-measurable random variables, with the identification of P-a.s.
equal random variables to be the same.

The space generated by the discounted net gains from t − 1 to t with t ∈
{1, . . . , T} is

(8.3) Kt(P) = {ξ ·∆Xt : ξi ∈ L0(Ω,Ft−1,P), i = 1, . . . , d}.

Hence, by Proposition 8.7 an arbitrage-free market can be characterized by the
relation

(8.4) Kt(P) ∩ L0
+(Ω,Ft,P) = {0}, ∀t ∈ {1, . . . , T}.
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If P′ is a probability measure on FT that is equivalent to P, then the no arbitrage
condition (8.4) can be replaced with the equivalent condition

Kt(P′) ∩ L0
+(Ω,Ft,P′) = {0}, ∀t ∈ {1, . . . , T}.

Below we sometimes need this equivalent formulation. We will mostly write Kt
for Kt(P) and keep in mind that Kt = Kt(P′) for P′ ∼ P. The following is of
fundamental importance, a cornerstone in the proof of Theorem 8.12.

Lemma 8.11 Let t ∈ {1, . . . , T}. The following statements are equivalent.

(i) The intersection Kt ∩ L0
+(Ω,Ft,P) = {0}.

(ii) There exists a probability measure P∗t on Ft, equivalent to P, with a

bounded Ft-measurable density Zt =
dP∗t
dP , such that E P∗t [∆Xt|Ft−1] = 0.

The measure P∗t can be trivially extended to a probability measure on F
by putting P∗t (F ) = EP 1FZt for all F ∈ F .

Proof See Section 8.3, where this lemma is alternatively formulated as Corol-
lary 8.24. �

We return to the dynamic setting. The next theorem is the first Fundamental
Theorem of Asset Pricing for a dynamic market in discrete time.

Theorem 8.12 The market is free of arbitrage iff there exists an equivalent
martingale measure P∗ on FT with bounded Radon-Nikodym derivative dP∗

dP .

Proof Assume that a risk-neutral measure P∗ exists. Let ξ̄ be any self-financing
trading strategy with V0 ≤ 0 and P∗(VT ≥ 0) = 1. Theorem 8.9 yields 0 ≤
E∗VT = V0 ≤ 0, hence P∗(VT = 0) = 1 and an arbitrage opportunity doesn’t
exist under P∗, and then also not under P by equivalence of the two measures.

Conversely, assume that the market is free of arbitrage. Let t ∈ {1, . . . , T}
and let Kt be as in (8.3). Recall that by Proposition 8.7 it holds that Kt ∩
L0

+(Ω,Ft,P) = {0} for all t. Consider t = T , then Lemma 8.11 applies with
t = T and we conclude to the existence of a probability measure P∗T on FT = F ,

with P∗T ∼ P and EP∗T [∆XT |FT−1] = 0. Moreover ZT =
dP∗T
dP is bounded.

We proceed by backward induction. Suppose that for t < T a probability
measure P∗t+1 on F is found such that P∗t+1 ∼ P, with bounded density, and

(8.5) EP∗t+1
[∆Xk|Fk−1] = 0, for t+ 1 ≤ k ≤ T,

in other words, the process (Xk)k∈{t,...,T} is a martingale under P∗t+1. By equiv-
alence we also have Kt ∩ L0

+(Ω,Ft,P∗t+1) = {0}. Then, we apply Lemma 8.11
again to obtain existence of a probability measure P∗t on F , equivalent to P∗t+1,

with bounded density Zt =
dP∗t

dP∗t+1
which is Ft-measurable, and such that

EP∗t [∆Xt|Ft−1] = 0.
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Our next aim is to show for t + 1 ≤ k ≤ T the equality EP∗t [∆Xk|Fk−1] = 0,
equivalently EP∗t [1A∆Xk] = 0, for A ∈ Fk−1. Take such an A and compute,
using Ft-measurability of Zt and (8.5),

EP∗t [1A∆Xk] = EP∗t+1
[1A∆XkZt]

= EP∗t+1
EP∗t+1

[1A∆XkZt|Fk−1]

= EP∗t+1
(Zt1AEP∗t+1

[∆Xk|Fk−1])

= 0.

Hence Equation (8.5) remains true with the substitution t+ 1→ t. Moreover,

dP∗t
dP

= Zt
dP∗t+1

dP

is bounded as well. By iteration, we conclude that the procedure yields a prob-
ability measure P∗ = P∗1 with the desired properties. �

We close this section by studying what happens under a change of numéraire.
Absence of arbitrage is defined as the impossibility to have a P-almost sure
profit. Clearly, we can replace in this statement P with any risk-neutral mea-
sure P∗, since these measures define the same null sets and the role of the process
S0 is not relevant to describe arbitrage. But any particular P∗ is such that the
price processes discounted by the numéraire process S0 are, by definition, P∗-
martingales. Hence, if one prefers to take the price process of another asset
as a discount factor, there will be another risk-neutral measure. So, the set
of risk-neutral measures depends on the choice of numéraire and it is interest-
ing to investigate how different risk-neutral measures resulting from different
numéraires are related.

Suppose one takes the process S1 as a numéraire. It is assumed that S1 is
P-a.s. strictly positive. Put

Ȳt =
S̄t
S1
t

,

then ȲtX
1
t = X̄t, t ∈ {0, . . . , T}. Let P̃ denote the set of all probability measures

P̃ equivalent to P that are such that Ȳ is a P̃-martingale. Absence of arbitrage
is then equivalent to P̃ 6= ∅, by virtue of Theorem 8.12.

Proposition 8.13 A probability measure P̃ belongs to P̃ iff there exists a prob-
ability measure P∗ ∈ P such that P̃ ∼ P∗ and

(8.6)
dP̃
dP∗

=
X1
T

X1
0

.

In this case one also has
dP∗

dP̃
=
Y 0
T

Y 0
0

.
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Proof Let P∗ be given. The random variables
X1
t

X1
0

form a martingale under P∗,

with E∗X
1
T

X1
0

= 1. Hence, if we define P̃ by (8.6), then it is a probability measure,

equivalent to P∗ and for t > s one has

EP̃ [Ȳt|Fs] =
E∗[Ȳt X

1
t

X1
0
|Fs]

E∗[X
1
t

X1
0
|Fs]

=
E∗[ȲtX1

t |Fs]
X1
s

=
E∗[X̄t|Fs]

X1
s

=
X̄s

X1
s

= Ȳs.

Hence P̃ is a martingale measure for Ȳ , or P̃ ∈ P̃. To prove the other implica-
tion, one just swaps the roles of X and Y in the previous part. �

Proposition 8.14 Suppose that X1
T is not degenerate under P. Then the sets

P and P̃ have empty intersection.

Proof Exercise 8.2. �

8.3 Proof of Lemma 8.11

This section extends the proof of existence of an equivalent martingale measure
(FTAP, Theorem 1.6) to the situation of a non-trivial initial history, F0 is not
necessarily the trivial σ-algebra, with the aim to ultimately prove Theorem 8.12
for which Lemma 8.11 is a key result.

The background is a multi-period model as in Section 8.2 in which we single
out one arbitrary time step, from t− 1 to t, for some t ∈ {1, . . . , T}. The prices
Sit are Ft-measurable nonnegative random variables and the portfolio choices
ξit are Ft−1-measurable. Note that Ft−1 is usually not the trivial σ-algebra for
t > 1. By a time shift, we may as well consider a one period model with t = 0, 1
as in Section 1, but with the generalization that F0 is no longer assumed to be
trivial. Having done so we can extend the results below to an arbitrary step in
a multi-period setting, which eventually leads to Theorem 8.12.

Here is some notation for this section, in agreement with what has been
previously introduced. We use Lp as an abbreviation of Lp(Ω,F1,P), for p ≥
0. For p = 0, we make L0 a metric space by using the metric d defined by

d(X,Y ) = E [|X − Y | ∧ 1]. It then holds that d(Xn, X) → 0 iff Xn
P→ X. By

Lp+ we denote the nonnegative elements of Lp.
We adopt the following standing assumption throughout this section. The

(d + 1)-dimensional price process S is assumed to be adapted and such that
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the discounted prices Xi
t = Sit/S

0
t have finite expectation for all 1 ≤ i ≤ d and

t = 0, 1. The integrability assumption can be circumvented more or less as in
Exercise 1.3. Furthermore, we require (non-random) S0

0 > 0 and S0
1 > 0 to have

the Xi
t well defined.

A portfolio is a (d + 1)-dimensional random vector that is F0-measurable
and thus not necessarily constant. As usual we denote by ξ the investments in
the risky assets, now a d-dimensional F0-measurable random vector. The vector
of net gains Y is also defined as usual, but adapted to the current situation we
have

Y = X1 −X0.

The random vector Y is F1-measurable and (component wise) integrable under
the standing assumption. Recall that a market is arbitrage free if for any ξ ∈ F0

one has that the discounted portfolio gain ξ · Y ≥ 0 a.s. implies ξ · Y = 0 a.s.
The characterization of an arbitrage free market now becomes K ∩ L0

+ = {0},
where K = {ξ · Y : ξi ∈ F0, i = 1, . . . , d}. In Lemma 8.15 we use the notation
A−B for two subsets A and B of some vector space to denote the set {a− b :
a ∈ A, b ∈ B}.

Lemma 8.15 There is equivalence between K∩L0
+ = {0} and (K−L0

+)∩L0
+ =

{0}.

Proof Assume K∩L0
+ = {0} and let Z ∈ K−L0

+, Z = ξ ·Y −U say. If Z ∈ L0
+

too, i.e. Z ≥ 0, then also ξ ·Y ≥ 0 and by the hypothesis ξ ·Y = 0, which yields
Z = −U ≤ 0. So Z = 0. The converse implication follows from K ⊂ K−L0

+. �

In all what follows we let

C = (K − L0
+) ∩ L1.

Note that C is a cone, i.e. W ∈ C implies λW ∈ C for all λ ≥ 0. The concept of
martingale measure, adapted to the present situation, is as follows.

Definition 8.16 A probability measure Q on (Ω,F1) is called a martingale
measure, or risk-neutral measure, if EQ [Y |F0] = 0 Q-a.s. It is called equiva-
lent martingale measure, if moreover Q ∼ P. The set of equivalent martingale
measures is denoted P.

In the proof of the next lemma we use the formula for conditional expecta-
tions under an absolutely continuous change of measure, see Proposition B.39.
For convenience we recall the result here. Let Q � P with Radon-Nikodym
derivative Z. If E |XZ| <∞ and G a sub-σ-algebra of F , then

(8.7) EQ [X|G] =
E [XZ|G]

E [Z|G]
Q-a.s.

Lemma 8.17 Suppose there is Z ∈ L∞ such that E (ZW ) ≤ 0 for all W ∈ C.
Then Z ≥ 0 a.s. and if EZ = 1, then dQ = Z dP defines a martingale measure
Q.
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Proof Note that W = −1{Z<0} ∈ C. Hence E (−Z1{Z<0}) ≤ 0 and it follows
that Z1{Z<0} = 0 a.s., hence Z ≥ 0 a.s. Under the condition EZ = 1, Q is a
probability measure, absolutely continuous w.r.t. P.

Let ξ be bounded, F0-measurable and λ ∈ {−1, 1}. Since ξ · Y ∈ K, also
λ ξ · Y ∈ K ⊂ K − L0

+. Because ξ is bounded, we also have (λξ) · Y ∈ L1,
hence (λξ) · Y ∈ C and therefore λE (ξ · Y )Z ≤ 0. But since λ ∈ {−1, 1} is
arbitrary, we must have E (ξ ·Y )Z = 0. One then has 0 = E (ξ ·Y )Z = E [E [(ξ ·
Y )Z|F0]] = E [ξ ·E [Y Z|F0]] for all bounded ξ. But then (why?) E [Y Z|F0] = 0
a.s. Equation (8.7) yields

EQ [Y |F0] =
E [Y Z|F0]

E [Z|F0]
= 0,

whence Q is a martingale measure according to Definition 8.16. �

Remark 8.18 The use of Equation (8.7) above to prove that Q is a martingale
measure can be circumvented by computing for every F ∈ F0

EQ [Y 1F ] = E [Y 1FZ] = E [1FE [Y Z|F0]] = 0.

We proceed with further steps on our way to prove Lemma 8.11. Let

(8.8) Z = {Z ∈ F1 : 0 ≤ Z ≤ 1, EZ > 0 and E (ZW ) ≤ 0, ∀W ∈ C}.

If the set Z is nonempty, we can choose Z ∈ Z and the normalization ζ =
Z/EZ can then serve as a Radon-Nikodym derivative of a martingale measure
w.r.t. P. We shall see that under the additional condition that the market is
arbitrage free, the set Z is indeed non-empty and one can even select a Z∗

from it satisfying P(Z∗ > 0) = 1, which yields the existence of an equivalent
martingale measure. The technical property that we need is that the set C is
closed in L1, Proposition 8.21, our next aim. The proof of this requires quite
some work.

To accomplish this we need two technical results, a decomposition of L0 into
suitable ‘orthogonal’ subspaces and a version of the Bolzano-Weierstraß theorem
for sequences of random variables, presented next. Note that a random variable
X can be viewed as a collection of real numbers X(ω) for ω ∈ Ω and is thus
in general an infinite dimensional object. So a straightforward application of
the classical Bolzano-Weierstraß theorem for sequences in a finite-dimensional
Euclidean space is not possible. Here we go.

Lemma 8.19 Let (ξn) be a sequence of d-dimensional random vectors defined
on some (Ω,F ,P) such that lim inf |ξn| < ∞ a.s. Then exists a sequence of
strictly increasing random variables σm and an a.s. finite random vector ξ such
that ξσm

a.s.→ ξ.

Proof Let L = lim inf |ξn|. Then P(L =∞) = 0 and for definiteness we define
σm = m on {L = ∞}. From now on we work on the set F = {L < ∞} ∈ F .
Put σ0

1 = 1 and define recursively for m ≥ 1

σ0
m+1(ω) = inf Am(ω),
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where

Am(ω) = {n > σ0
m(ω) : ||ξn(ω)| − L(ω)| < 1

m
}.

Note that Am(ω) contains infinite many elements for every m and ω ∈ F by
the hypothesis and that all σ0

m are F-measurable (verify this!). It follows that
also the ξσ0

m
are F-measurable. The details are left as Exercise 8.11. Write

ξ1
n for the first component of the vector ξn and define ξ1 = lim inf ξ1

σ0
m

. Since

the ξ1
σ0
m

(ω) converge along a subsequence it makes sense to define σ1
1 = 1 and

recursively

σ1
m+1(ω) = inf{σ0

n(ω) > σ1
m(ω) : |ξ1

σ0
n(ω)(ω)− ξ1(ω)| < 1

m
}.

We conclude that ξ1
σ1
m
→ ξ1 on F , which is the desired behavior for the first

component of the ξn. The further idea is to thin the sequence of σ1
m in order to

obtain a subsequence for which also the second components converge. Thereto
one first defines the candidate limit ξ2 = lim inf ξ2

σ1
m

and finds a sequence (σ2
m)

by mimicking the above procedure. Go on like this with subsequent thinning
until also the last component converges. �

We proceed with the announced ‘orthogonal’ decomposition of L0. Recall the
present one-period setting, in particular ξ and η below are always d-dimensional
F0-measurable random vectors.

Lemma 8.20 Let N = {η ∈ L0(Ω,F0,P)d : η · Y = 0 a.s.} and N⊥ = {ξ ∈
L0(Ω,F0,P)d : ξ · η = 0 a.s.,∀η ∈ N}. Then N and N⊥ are closed subsets of
L0(Ω,F0,P)d, N ∩N⊥ = {0} and L0(Ω,F0,P)d = N +N⊥.

Proof Let (ηn) ⊂ N such that ηn
P→ η. Since almost sure convergence holds

along a subsequence we must also have η ·Y = 0 a.s. Closedness of N⊥ is proved
similarly. If η ∈ N ∩N⊥, then η · η = 0 a.s. and hence η = 0 a.s.

The final assertion, every vector in L0(Ω,F0,P)d can be written as a sum of
vectors in N and N⊥, we first prove for the non-random standard basis vectors ei
of Rd by a projection argument. Note that every ei belongs to the Hilbert space
H = L2(Ω,F0,P)d. Moreover, N ∩H and N⊥ ∩H are both closed subspaces of
H (why?) and have trivial intersection. By using the orthogonal projections on
these subspaces we should have ei = ηi + ξi, with ηi ∈ N ∩H and ξ ∈ N⊥ ∩H.
Note that this is not immediately guaranteed, since we don’t know yet that
(N⊥ ∩H) + (N⊥ ∩H) = H. We proceed as follows. Let ηi be the orthogonal
projection of ei onto N ∩H and define ξi = ei − ηi, the projection error, which
is orthogonal to N by construction and has E |ξi|2 <∞. Suppose that ξi /∈ N⊥.
Then there must be η ∈ N such that ξi · η 6= 0 a.s., say P(ξi · η > 0) > 0. The
truncated random vector η̃ := η1{ξi·η>0,|η|≤c} also belongs to N , as well as to
H for every c > 0. Now η̃ · ξi = η · ξi1{ξi·η>0,|η|≤c} is positive with positive
probability for c large enough and it follows that E (η̃ · ξi) > 0 contradicting
that ξi is orthogonal to N .
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Having established the decomposition for the basis vectors ei, we now turn
to the general case. Every F0-measurable random vector V can be written as
V =

∑d
i=1 Viei, with F0-measurable random variables Vi. Since ei = ξi + ηi

with ηi ∈ N and ξi ∈ N⊥, we have V =
∑d
i=1 Viξi +

∑d
i=1 Viηi. One verifies

that along with the ηi ∈ N also the Viηi ∈ N , since the Vi are F0-measurable.
Likewise the Viξi belong to N⊥. Since both spaces N and N⊥ are closed under
addition, we have established a decomposition of V . Uniqueness follows from
N ∩N⊥ = {0}. �

Having done all these preparations, we can show the closedness property of C.

Proposition 8.21 Under the no arbitrage condition K ∩ L0
+ = {0} it holds

that K − L0
+ is closed in L0 and hence C is closed in L1.

Proof It is sufficient to show the first assertion, the latter being its direct
consequence (verify this!). Let (Wn) be a sequence in K − L0

+ with W as its
limit in probability. Along a subsequence, again denoted (Wn), we have a.s.
convergence to W . Since Wn ∈ K − L0

+, we can write Wn = ξn · Y − Un, with
Un ≥ 0 a.s. Moreover, we may even assume ξn ∈ N⊥. Indeed, by virtue of
Lemma 8.20, every F0-measurable ξn can be decomposed as ξn = ξ′n + ηn with
ξ′n ∈ N⊥ and ηn ∈ N . But then ξn · Y = ξ′n · Y .

In order to apply Lemma 8.19, we first show that lim inf |ξn| < ∞ a.s.
Consider the ζn := ξn/|ξn| (well defined if |ξn| > 0, which is w.l.o.g. true on the
set I below), these form a bounded sequence. Invoking Lemma 8.19, we can
choose an increasing sequence of F0-measurable random integers τn such that
ζτn

a.s.→ ζ for some F0-measurable random vector ζ with norm one. Since the
Wn converge a.s. to a finite limit, we have on the set I = {lim inf |ξn| =∞}

0 ≤ Uτn
|ξτn |

= ζτn · Y −
Wn

|ξτn |
a.s.→ ζ · Y.

Since K ∩ L0
+ = {0}, we conclude that ζ · Y = 0 a.s. on {lim inf |ξn| = ∞}, so

1Iζ · Y = 0 a.s. Furthermore, since the ξn ∈ N⊥, we have for every η ∈ N that
also ζτn · η = 0 a.s. Because N⊥ is closed under a.s. convergence, it follows that
ζ ∈ N⊥, but then also 1Iζ ∈ N⊥, because 1I is F0-measurable. Together with
the previously established fact 1Iζ · Y = 0 (so 1Iζ ∈ N), we conclude 1Iζ = 0
a.s. Since |ζ| = 1 a.s., this can only happen if P(I) = 0.

Having established lim inf |ξn| < ∞ a.s., we invoke Lemma 8.19 again to
obtain an a.s. finite random vector ξ and a sequence of strictly increasing F0-
measurable integer valued random variables σn such that ξσn → ξ a.s. Note
(verify!) that also Wσn →W a.s. Hence

0 ≤ Uσn = ξσn · Y −Wσn → ξ · Y −W =: U a.s.

Hence we have W = ξ · Y − U with U ∈ L0
+, i.e. W belongs to K − L0

+. �

Having proved that C is closed in L1, we shall show the existence of a Z∗ ∈ Z
(recall that Z is defined in (8.8)) that is strictly positive P-a.s, Theorem 8.23
below. We need another auxiliary result.
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Lemma 8.22 Assume that (K−L0
+)∩L1

+ = {0}. If U is a non-negative element
of L1 and P(U > 0) > 0, then there exists Z ∈ Z such that E (UZ) > 0.

Proof We use the Hahn-Banach theorem in the version of Corollary A.9. By
the hypothesis we have that U is not an element of the nonempty convex set
C, which is closed in L1 by Proposition 8.21. Hence there exists a Z ′ ∈ L∞

with sup{E (WZ ′) : W ∈ C} < E (UZ ′) < ∞. Since 0 ∈ C, it follows that
E (UZ ′) > 0. Moreover we also have β := sup{E (WZ ′) : W ∈ C} < ∞ and
even β ≤ 0, as we shall see now. Indeed, for W ∈ C we have E (WZ ′) ≤ β
and since λW ∈ C for every λ > 0, also λE (WZ ′) ≤ β, hence E (WZ ′) ≤ β/λ,
for every λ > 0. Hence E (WZ ′) ≤ 0 and β ≤ 0 follows since W ∈ C was
arbitrary. It now follows from Lemma 8.17 that Z ′ ≥ 0 a.s. We conclude that
Z := Z ′/||Z ′||∞ belongs to Z and has the property E (UZ) > 0. �

Theorem 8.23 Assume that (K−L0
+)∩L1

+ = {0}. Then there exists a Z∗ ∈ Z
with P(Z∗ > 0) = 1.

Proof Let α := sup{P(Z > 0) : Z ∈ Z} ≤ 1. By definition of α, there exists a
sequence (Zn) ⊂ Z such that P(Zn > 0) ↑ α. Let Z∗ :=

∑
n≥1 2−nZn. Check,

use the dominated convergence theorem, that this infinite sum belongs to Z as
well. Since for every n it holds that P(Zn > 0) ≤ P(Z∗ > 0), it follows that
P(Z∗ > 0) = α.

To show that α = 1, we assume the contrary, P(Z∗ = 0) > 0 and construct
a Z ′ ∈ Z with P(Z ′ > 0) > α. So let P(Z∗ = 0) > 0, then U = 1{Z∗=0} is
nonnegative and P(U > 0) > 0. Lemma 8.22 yields the existence of Z ∈ Z such
that E (1{Z∗=0}Z) > 0 and we must have P(1{Z∗=0}Z > 0) > 0, so P(Z∗ =

0, Z > 0) > 0. Let now Z ′ = 1
2 (Z + Z∗). One verifies that Z ′ ∈ Z and

P(Z ′ > 0) = P(Z + Z∗ > 0, Z∗ > 0) + P(Z + Z∗ > 0, Z∗ = 0)

= P(Z∗ > 0) + P(Z > 0, Z∗ = 0) > α,

a contradiction. �

Here is Lemma 8.11, formulated in agreement with the terminology and notation
of the present section.

Corollary 8.24 If the one-period market is arbitrage free, K ∩ L0
+ = {0},

there exists an equivalent martingale measure P∗ such that dP∗
dP is bounded.

Conversely, if there exists an equivalent martingale measure P∗, the market is
arbitrage free.

Proof Assume that the market is arbitrage free. In view of Lemma 8.15, we
have (K − L0

+) ∩ L0
+ = {0}. But then also C ∩ L1

+ = (K − L0
+) ∩ L1

+ = {0}.
Theorem 8.23 yields the existence of Z∗ ∈ Z such that P(Z∗ > 0) = 1. Then
P∗ defined by

dP∗

dP
=

Z∗

EZ∗
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is a probability measure equivalent to P and a martingale measure in view of
Lemma 8.17. Since Z∗ ∈ Z, it is bounded.

Conversely, take a risk-neutral measure P∗ and an arbitrary F0-measurable
ξ such that ξ · Y ∈ K ∩ L0

+(Ω,F ,P). Then for all m > 0 the random variable
1{|ξ|≤m}ξ ·Y belongs to K∩L1

+(Ω,F ,P∗), because its expectation E∗1{|ξ|≤m}ξ ·Y
is well defined. Hence we have we have

E∗1{|ξ|≤m}ξ · Y = E∗(1{|ξ|≤m}ξ · E∗[Y |F0]) = 0.

It follows that 1{|ξ|≤m}ξ · Y = 0, P∗-a.s. for all m and therefore ξ · Y = 0, P∗-
a.s. By equivalence, ξ · Y = 0, P-a.s. too. Hence ξ does not yield an arbitrage
opportunity. �

8.4 European contingent claims

In this section we study the valuation problem for European contingent claims.
The standing assumption is that the market is arbitrage-free.

Definition 8.25 A contingent claim C is a nonnegative FT -measurable random
variable. It is called a derivative of the underlying assets, if C is measurable
w.r.t. the σ-algebra σ(S0, . . . , ST ).

Occasionally we will extend the definition of a contingent claim to include ran-
dom variables that allow negative values as well, although we will always impose
that they are lower bounded. If a claim C is a derivative, then there exists a
Borel function f : (Rd+1)T+1 → R such that C = f(S0, . . . , ST ).

We give some examples of contingent claims. The first one is C = (SiT −K)+,
the European call option on Si with maturity T and strike price K. An Asian
option is for instance the claim C = ( 1

T+1

∑T
t=0 S

i
t −K)+. A knock-in option is

for instance C = 1{max0≤t≤T S
i
t≥B}, where B is a (nonnegative) constant.

Definition 8.26 A contingent claim C is called attainable if there exists a self-
financing trading strategy ξ̄ such that C = ξ̄T · S̄T . Such a strategy is called a
replicating or hedge strategy for C.

The discounted value of a claim C is given by

H =
C

S0
T

.

Let the claim C be attainable with replicating strategy ξ̄. The discounted value
process of this self-financing strategy is given in terms of the discounted gains
process G, see Proposition 8.4, by

(8.9) Vt = V0 +Gt = V0 +

t∑
s=1

ξs ·∆Xs,
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and since C is attainable, we have for its discounted value H the relation

H = ξ̄T · X̄T = VT = V0 +

T∑
t=1

ξt ·∆Xt.

We will also say that H is attainable. Notice that H ≥ 0 a.s.

Proposition 8.27 Let P∗ be any equivalent martingale measure and H an
attainable claim. Then E∗H < ∞. If ξ̄ is a replicating strategy, then its
discounted value process V satisfies

(8.10) Vt = E∗[H|Ft] a.s.,

for all t = 0, . . . , T , hence V is a nonnegative martingale under P∗.

Proof This follows from Theorem 8.9 (iv), since H = VT ≥ 0. �

Notice that this proposition concerns the discounted value of the claim. Of
course, if S0

T is deterministic, also C has finite expectation under each equivalent
martingale measure. Moreover, it has two important consequences. The first
one is that Vt, although it can be viewed as a conditional expectation, is the
same for every equivalent martingale measure in view of (8.9). The second one
is that every replicating strategy for H has the same value process. Considering
Equation (8.10) for t = 0, we obtain V0 = E∗[H], which has the interpretation
as the unique arbitrage free price of the discounted attainable claim H. Any
other price would result in an arbitrage opportunity, see the arguments for the
corresponding statement in Section 1, realizing that VT = H.

Equation (8.10) can be rewritten as

ξ̄t · S̄t = S0
t E∗[

C

S0
T

|Ft],

which for t = 0 yields the initial investment to purchase the replicating strategy,

V0 = S0
0 E∗

C

S0
T

= E∗
C

S0
T

.

This number can be interpreted as the fair price (at t = 0) of the undiscounted
claim C. For non-attainable claims we have the following formal definition
(compare also to Definition 1.11).

Definition 8.28 A nonnegative real number πH is called an arbitrage-free price
(at t = 0) of a discounted contingent claim H, if there exists an adapted process
Xd+1 such that a.s.

Xd+1
0 = πH ,

Xd+1
t ≥ 0, for t = 1, . . . , T − 1,

Xd+1
T = H,

and if the extended market with (discounted) price process (X1, . . . , Xd+1) is
arbitrage-free. The set of all arbitrage-free prices is denoted by Π(H).
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It is mathematically more convenient to define a price for the discounted claim
H. But of course, this is equivalent to a similar definition of an arbitrage price
πC for the undiscounted claim C. One has πC = S0

0π
H . Since one usually takes

S0
0 = 1, it follows that πC = πH .

Definition 8.28 is the dynamic counterpart of Definition 1.11. Note that for
an attainable discounted claim H, one can take Xd+1

t = E∗[H|Ft], which is
equal to the value Vt of a replication strategy, to see that the fair price of H is
equal to V0. This is in agreement with Proposition 8.27 and the discussion after
it.

Our first result in the valuation of claims is presented below, it extends
Theorem 1.12 for the static situation to the present dynamic setting.

Theorem 8.29 The set Π(H) is non-empty and one has

(8.11) Π(H) = {E∗H : P∗ ∈ P, E∗H <∞}.

Moreover, the upper and lower bounds of Π(H) are given by sup{E∗H : P∗ ∈ P}
and inf{E∗H : P∗ ∈ P} respectively.

Proof First we show that the set on the right hand side of (8.11) is non-empty.
Define a probability measure P′ on FT by

dP′

dP
=

c

H + 1
,

where c is the normalization constant. Then P′ ∼ P, hence under P′ the market
is arbitrage-free, and EP′H < ∞. According to Theorem 8.12, there exists a
risk-neutral measure P∗ such that dP∗

dP′ is bounded. But then E∗H < ∞, and
thus belongs to {E∗H : P∗ ∈ P, E∗H <∞}.

Next we prove (8.11). Take πH ∈ Π(H), recall Definition 8.28 and apply
Theorem 8.12 to the extended market. This yields the existence of a probability
measure P∗ on FT such that the Xi become martingales for i = 1, . . . , d + 1.
But this implies that P∗ ∈ P and πH = Xd+1

0 = E∗Xd+1
T = E∗H. So πH ∈

{E∗H : P∗ ∈ P,E∗H <∞}.
Conversely, take P∗ ∈ P such that E∗H < ∞. Define Xd+1

t = E∗[H|Ft].
Then P∗ is an equivalent martingale measure for the extended market, which
is thus arbitrage free, and the requirements of Definition 8.28 are met with
πH = E∗H. By the first part of the proof we now also know that Π(H) 6= ∅.

That inf Π(H) = inf{E∗H : P∗ ∈ P} is trivial. To show the companion
statement, we note that we only have to consider the case in which {E∗H : P∗ ∈
P} differs from Π(H), which happens if there exists some P∞ ∈ P such that
EP∞H = ∞. The desired equality follows, as soon as we can show that for all
c > 0, there exists a Pc ∈ P such that ∞ > EPcH > c. Indeed, in this case
we have by the first part of the theorem that EPcH ∈ Π(H) and it follows that
sup Π(H) =∞.

First we note that for given c > 0, by monotone convergence, there exists n
such that πn := EP∞(H ∧ n) > c. Put Xd+1

t = EP∞ [H ∧ n|Ft] and note that
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πn = Xd+1
0 . The measure P∞ becomes an equivalent martingale measure in the

market extended with the additional asset H ∧ n. This extended market is free
of arbitrage, when the price vector is extended with πn. Application of the first
part of the theorem to the extended market then shows that for any contingent
claim in the extended market, in particular for H, there exists a Pc, equivalent
to P∞, such that EPcH <∞. But then this Pc is also an equivalent martingale
measure for the original market and thus EPcH ∈ Π(H). On the other hand, the
price process Xd+1 is a martingale under Pc as well, and so EPcX

d+1
T = Xd+1

0 .
Using this fact, we have

EPcH ≥ EPc(H ∧ n) = EPcX
d+1
T = Xd+1

0 = πn > c,

which finishes the proof for the supremum. �

We extend more results of Section 1 to a dynamic setting. Recall Proposi-
tion 1.19, its dynamic version is the next theorem.

Theorem 8.30 Assume the market to be arbitrage free. Let H be a discounted
claim. If H is attainable, Π(H) consists of one element, the value at t = 0 of
any replicating portfolio. If H is not attainable, then Π(H) is an open interval.

Proof If H is attainable, then the assertion follows from Theorem 8.29 com-
bined with the discussion after Proposition 8.27.

The proof of the other case is much more involved. As in the proof of
Proposition 1.19 we observe that Π(H) is convex and thus an interval. We will
show that it is open. To that end, let π ∈ Π(H). It is sufficient to show that
there are π0, π1 ∈ Π(H) such that π0 < π < π1. We first construct π1.

Take P∗ ∈ P such that E∗H = π and let Mt = E∗[H|Ft]. Then

H = M0 +

T∑
t=1

∆Mt.

Since H is not attainable, there must be some t ∈ {1, . . . , T} such that ∆Mt

can not be written as ξt · ∆Xt, for some Ft−1-measurable ξt with ξt · ∆Xt ∈
L1(Ω,Ft,P∗). It follows from the proof of Proposition 8.21 (take all Un = 0
there) that the collection Ct of all random variables that are a.s. equal to such
a ξt ·∆Xt is a closed linear subspace of L1(Ω,Ft,P∗), and thus convex as well.
We apply the infinite dimensional version of the separating hyperplane theorem
of Corollary A.9 to conclude that there exists a Z ∈ L∞(Ω,Ft,P∗) such that

sup
W∈Ct

E∗WZ < E∗∆MtZ <∞.

If we replace in the above inequality W with αW for arbitrary α ∈ R, then by
linearity the inequality can only be preserved if

(8.12) E∗WZ = 0,∀W ∈ Ct.
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We conclude that

(8.13) E∗∆MtZ > 0.

As Z is bounded P∗-a.s., by multiplying Z by a sufficiently small positive num-
ber, if necessary, we may assume that (8.12) and (8.13) are true for a random
variable Z with P∗(|Z| < 1

2 ) = 1. Let

Zt = 1 + Z − E∗[Z|Ft−1].

Then P∗(0 < Zt < 2) = 1, E∗Zt = 1 and dPt
dP∗ = Zt defines a probability measure

Pt ∼ P∗ on FT with Radon-Nikodym derivative Zt that is Ft-measurable. We
compute

EPtH = E∗HZt
= E∗H + E∗(E∗[H|Ft]Z)− E∗(HE∗[Z|Ft−1])

= E∗H + E∗MtZ − E∗(E∗[H|Ft−1]E∗[Z|Ft−1])

= E∗H + E∗MtZ − E∗(Mt−1E∗[Z|Ft−1])

= E∗H + E∗MtZ − E∗Mt−1Z

= E∗H + E∗(∆MtZ)

> E∗H,

where the inequality follows from (8.13). Since EPtH = E∗HZt ≤ 2E∗H < ∞,
we can take π1 = EPtH and then

(8.14) π1 > E∗H.

Hence we have reached our aim, provided that Pt is a martingale measure (and
thus belongs to P), which we are going to prove now. We discern three cases.

Let k > t, the first case. Since Zt is Ft-measurable and hence Fk−1-
measurable, we have

EPt [∆Xk|Fk−1] =
E∗[∆XkZt|Fk−1]

E∗[Zt|Fk−1]

= E∗[∆Xk|Fk−1] = 0.

For k = t, the second case, we now show E∗[∆XtZ|Ft−1] = 0. Let F ∈ Ft−1

arbitrary. Because of 1F ∈ Ft−1 and (8.12), it holds that E∗(1F ei ·∆XtZ) = 0
for every basis vector ei of Rd. Hence the vector E∗(1F∆XtZ) = 0 and since
F ∈ Ft−1 was arbitrary, this is equivalent to E∗[∆XtZ|Ft−1] = 0. Note also
that E∗[Zt|Ft−1] = 1, straight from the definition of Zt. But then

EPt [∆Xt|Ft−1] = E∗[∆XtZt|Ft−1]

= E∗[∆Xt(1− E∗[Z|Ft−1])|Ft−1] + E∗[∆XtZ|Ft−1]

= (1− E∗[Z|Ft−1])E∗[∆Xt|Ft−1] + 0 = 0.
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The third case, k < t, is easy. Since one now has E∗[Zt|Fk] = 1, one ob-
tains E∗[ dPt

dP∗ |Fk] = 1, so the measures Pt and P∗ coincide on Fk: Pt(A) =
E∗E∗[1AZt|Fk] = E∗(1AE∗[Zt|Fk]) = P∗(A) for A ∈ Fk. Hence

EPt [∆Xk|Fk−1] = E∗[∆Xk|Fk−1] = 0.

Combining the three cases, we conclude that Pt is an equivalent martingale
measure and hence π1 ∈ Π(H).

We turn to the construction of π0. Let

dP0

dP∗
= 2− Zt.

Then P∗(0 < dP0

dP∗ < 2) = 1 and E∗ dP0

dP∗ = 1. Hence also P0 is a probability
measure, equivalent to P∗, and a martingale measure as well. The latter fol-
lows from the just proven fact that Pt is a martingale measure, Exercise 8.15.
Moreover,

EP0
H = E∗(2− Zt)H = 2E∗H − E∗ZtH = 2E∗H − π1 < E∗H = π,

by (8.14). Taking π0 = EP0
H completes the proof. �

8.5 Complete markets

The definition of a complete market looks the same as for the static case, Defi-
nition 1.20, but it involves the more subtle notion of attainability in the multi
period setting as in Definition 8.26.

Definition 8.31 An arbitrage-free market is complete, if every contingent claim
is attainable.

A consequence of a market being complete is that every contingent claim has a
unique price, in view of Theorem 8.30. We now present what is sometimes called
the Second Fundamental Theorem of Asset Pricing, see also Theorem 1.22.

Theorem 8.32 An arbitrage-free market is complete iff there exists a unique
equivalent martingale measure. The number of atoms of (Ω,F ,P) in case of a
complete market is at most (d+ 1)T . Moreover, dimL0(Ω,F ,P) ≤ (d+ 1)T and
Ω can be decomposed in at most (d+ 1)T atoms.

Proof If the market is complete, we argue as in the proof of Theorem 1.22.
Every claim 1F , with F ∈ F = FT has a unique price. Hence there is a unique
P∗. Conversely, if there exists only one equivalent martingale measure, the result
follows from Theorem 8.30.

We turn to the number of atoms. We have seen the statement to be true
for T = 1 in Theorem 1.22 and we proceed by induction. Suppose that the
assertion is true for a time horizon T − 1. By completeness, every claim can
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be replicated. So if H is a bounded nonnegative discounted claim, there is a
replicating strategy ξ̄ with value process V such that

H = VT−1 + ξT ·∆XT .

Since VT−1 and ξT are FT−1-measurable, they are constant on atoms A that be-
long to FT−1. Consider for such A the restricted probability space (A,FAT ,PA),
where FAT = {F ∩ A : F ∈ FT }, and PA the conditional probability P(·|A)
restricted to FAT . As we just said, on this restricted probability space VT−1

and ξT are constant. Hence Theorem 1.22 applies and so the dimension of
L∞(A,FAT ,PA) is at most d+1. Then Proposition 1.21 implies that (A,FAT ,PA)
has at most d+ 1 atoms.

Every atom of (Ω,FT ,P) is an atom of one and only one (A,FAT ,PA). Indeed,
if B is an atom of (Ω,FT ,P) and the different atoms of FT−1 are labelled Ai,
then P(B) =

∑
i P(B ∩ Ai). But B ∩ Ai ⊂ B and an element of FT . Hence

there is only one A := Ai such that P(B) = P(B ∩ A). Hence we can w.l.o.g.
consider B as an atom in (A,FAT ,PA). Applying the induction hypothesis, we
know that there are at most (d + 1)T−1 of such restricted probability spaces.
The conclusion follows by multiplication, and it implies the assertion on the
dimension. �

Consider the set Q of all martingale measures as in Definition 8.8, it is a convex
set. Likewise the set of equivalent martingale measures P is convex. We will see
below that complete markets can be characterized by extreme points of those
convex sets. Recall that an extreme point of a convex set is such that it doesn’t
admit a non-trivial convex combination of points in the convex set.

Theorem 8.33 Let P∗ ∈ P. The following are equivalent.

(i) P = {P∗} (the market is complete).

(ii) P∗ is an extreme point of P.

(iii) P∗ is an extreme point of Q.

(iv) If M is a martingale under P∗, then there exists a d-dimensional pre-
dictable process ξ, such that

Mt = M0 +

t∑
k=1

ξk ·∆Xk, t ∈ {0, . . . , T}.

Proof (i) ⇒ (iii): Write P∗ = αQ1 + (1− α)Q2 for α ∈ (0, 1) and Q1,Q2 ∈ Q.
Then Q1 and Q2 are necessarily absolutely continuous w.r.t. P∗. But also Pi =
1
2 (Qi + P∗) (i = 1, 2), being convex combinations of martingale measures, are
martingales measures too, and equivalent to P∗. From the assumption it follows
that P1 = P2 = P∗ and then also Q1 = Q2 = P∗.

(iii) ⇒ (ii): Trivial, since P ⊂ Q.
(ii) ⇒ (i): Let P∗0 ∈ P, different from P∗. We first show that we can find

a P∗1 ∈ P different from P∗ such that
dP∗1
dP∗ is bounded. Since P∗0 6= P∗, there
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must be a set E ∈ FT such that P∗(E) 6= P∗0(E). Extend the market with
the P∗0-martingale Xd+1 given by Xd+1

t = EP∗0 [1E |Ft]. Choose (Ω,FT ,P∗) to
be the underlying probability space. It follows by construction, that P∗0 is an
equivalent martingale measure for the extended market, and so the extended
market is also arbitrage free under P∗. Theorem 8.12 then provides the existence

of a probability measure P∗1 equivalent to P∗ such that
dP∗1
dP∗ is bounded by some

B > 0, which is a risk-neutral measure for the extended market. Since

Xd+1
0 = P∗0(E) 6= P∗(E) = E∗Xd+1

T ,

P∗ is not a martingale measure for the extended market, and hence P∗1 must be
different from P∗.

Choose ε < 1/B and put

Z = 1 + ε− ε dP∗1
dP∗

.

Notice that ε ≤ Z ≤ 1 + ε and E∗Z = 1. Hence

dP∗2
dP∗

= Z

defines a probability measure P∗2 ∈ P (that P∗2 is a martingale measure is Ex-
ercise 8.9) with bounded density Z. Moreover, P∗ turns out to be a convex
combination,

P∗ =
ε

1 + ε
P∗1 +

1

1 + ε
P∗2,

which contradicts that P∗ is extreme.
(i) ⇒ (iv): Let M be a positive P∗-martingale. Then we can see MT as a

discounted contingent claim, which is attainable by Theorem 8.32. Let ξ̄ be a
replicating strategy. Then, P∗-a.s.,

MT = V0 +

T∑
k=1

ξk ·∆Xk.

By Proposition 8.27, the corresponding value process V is a martingale under
P∗ and satisfies Vt = E∗[MT |Ft]. Hence Mt = Vt for all t. But we also know
from (8.9) that Vt = V0 +

∑t
k=1 ξk ·∆Xk, which proves the assertion for positive

martingales. The general case follows by the decomposition MT = M+
T −M

−
T .

(iv) ⇒ (i): Pick E ∈ FT and put Mt = E∗[1E |Ft], t ∈ {0, . . . , T}. Then the
assumption implies that 1E is an attainable claim. According to Theorem 8.30,
it has a unique arbitrage free price. Hence for all P∗ ∈ P, we have that P∗(E)
is one and the same number. Since E is arbitrary, P must be a singleton. But
then the market is complete in view of Theorem 8.32. �

Remark 8.34 Property (iv) of Theorem 8.33 is also called the discrete time
Martingale Representation Theorem, similar to a theorem for so called Brownian
martingales in continuous time.
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8.6 CRR model

In this section we consider the Cox-Ross-Rubinstein (CRR) model, a popular
model of a financial market in discrete time. Apart from its tractability and
that of related pricing issues, it is also interesting, because pricing formulas tend
to Black-Scholes related formulas under the right kind of asymptotics. We will
not treat this aspect in the present course.

In the CRR model, there is a riskless asset, whose price evolves according to

S0
t = (1 + r)t, t ∈ {0, . . . , T},

for some r ∈ (−1,∞), although usually r ≥ 0. There is only one risky asset
with price process S1 =: S, whose relative returns

(8.15) Rt :=
∆St
St−1

t ∈ {1, . . . , T}

are random variables greater than −1. Equation (8.15) is equivalent to St =
(1 + Rt)St−1 for t ≥ 1 and two useful relations follow, St = S0

∏t
k=1(1 + Rk)

and ST = St
∏T
k=t+1(1 +Rk).

It is assumed that Rt at each time t assumes only two values, which are
even the same for all t ≥ 1, say a and b, with a < b. The simplest probability
space that carries all random variables below, assuming a finite time horizon
T , is Ω = {a, b}T . The obvious filtration is such that Ft = σ(R1, . . . , Rt),
t ∈ {1, . . . , T} and F0 trivial. In this case, any sensible probability measure on
FT must be such that all singletons have positive probability. The totality of
all these conventions will be referred to as the CRR model. We will see that
absence of arbitrage has a simple characterization in terms of the parameters a,
b and r.

We use X to denote the discounted price process of the risky asset, so

Xt =
St
S0
t

,

and note that for t ∈ {1, . . . , T}

Xt =
1 +Rt
1 + r

Xt−1,

∆Xt =
Rt − r
1 + r

Xt−1.

Proposition 8.35 The CRR model is arbitrage-free iff a < r < b. Moreover,
if it is arbitrage-free, it is also complete. The unique equivalent martingale
measure is such that the Rt become i.i.d. random variables, whose common
distribution is determined by

P∗(Rt = b) =
r − a
b− a

=: p∗.
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Proof First we show that if a martingale measure exists, it is necessarily unique.
Let Q be a martingale measure and t ∈ {1, . . . , T}. Then

Xt−1 = EQ [Xt|Ft−1] = Xt−1EQ [
1 +Rt
1 + r

|Ft−1].

Since Xt−1 is positive Q-a.s., we can divide this equation by it and conclude

(8.16) EQ [Rt|Ft−1] = r.

Let q = Q(Rt = b|Ft−1) = 1−Q(Rt = a|Ft−1). Then we can rewrite (8.16) as
qb+ (1− q)a = r, which yields

q = Q(Rt = b|Ft−1) =
r − a
b− a

.

This implies that Rt is, under Q, independent of Ft−1 and that its unconditional
distribution is also given by Q(Rt = b) = q. It follows that, necessarily, the Rt
are i.i.d. under Q, and hence Q must be unique. Note that we have q = p∗.
For Q to be a probability measure, we need p∗ ∈ [0, 1], which is equivalent to
r ∈ [a, b]. To have that Q is equivalent to P, Q ∼ P, p∗ ∈ {0, 1} is to be excluded.
In that case a < r < b.

Let the market be arbitrage free. Then there exists an equivalent martingale
measure P∗. By the above reasoning, we necessarily have that P∗ is as asserted.
The market is then also complete in view of Theorem 8.33.

If the condition a < r < b holds true, then we can define the measure P∗ on
Ω, by putting

P∗({ω}) = (p∗)k(ω)(1− p∗)T−k(ω),

where k(ω) denotes the number of b’s in ω. Clearly we have P∗ ∼ P, indepen-
dence of the Rt follows and we also see that the marginal distribution of each Rt
is the same as for the others. We have seen above that P∗ defines a martingale
measure. �

We turn to the pricing of contingent claims. Recall that they have a unique
price by completeness of the market. Consider a discounted claim H. Since H
is FT -measurable, there exists, see Proposition B.10, a function h : Ω→ R such
that

(8.17) H = h(R1, . . . , RT ).

The value process for H is, whatever replicating strategy (but in Exercise 8.8 it
is shown to be unique), given by

Vt = E∗[H|Ft].

In what follows we need a property of conditional expectations, sometimes called
the independence lemma, part (iv) of Theorem B.34, which we recall here for
convenience.

83



Lemma 8.36 If G is a σ-algebra, X is a G-measurable random variable (or
vector), Y is independent of G and f is a measurable function such that the

expectations below exist, then E [f(X,Y )|G] = f̂(X), where f̂(x) = E f(x, Y ).

Proof See measure theory for the general case and Exercise 8.16 for a simple
special case. �

Note that in Lemma 8.36 the conditional expectation is obtained by taking
expectation w.r.t. Y , i.e. integrating out the variable Y only, and leaving X
untouched.

We continue with the CRR model. Let rj ∈ {a, b}, j ∈ {1, . . . , T}, put
vT (r1, . . . , rT ) = h(r1, . . . , rT ) and for t ∈ {1, . . . , T − 1}

vt(r1, . . . , rt) = E∗h(r1, . . . , rt, Rt+1, . . . , RT ),

and v0 = E∗H. Exploiting the independence of the Rt and using the indepen-
dence lemma, Lemma 8.36, we get for all t ∈ {0, . . . , T} that

Vt = vt(R1, . . . , Rt).

Moreover, using the martingale property of V under P∗, we similarly obtain the
backward recursion

vt−1(r1, . . . , rt−1) = p∗vt(r1, . . . , rt−1, b) + (1− p∗)vt(r1, . . . , rt−1, a).

If the discounted claim H only depends on the terminal price ST , then we have
H = k(ST ), for some function k. The relation between k and the above h is

k
(
S0(1 + r1) · · · (1 + rT )

)
= h(r1, . . . , rT ).

Put wt(s) = E∗k
(
s (1 +Rt+1) · · · (1 +RT )

)
. Then we can alternatively write

(8.18) wt(s) = E∗k
(sST
St

)
,

from which (use the independence lemma again, ST
St

is independent of Ft) it
follows that

wt(St) = E∗[k
(
ST
)
|Ft].

Between vt and wt one has the relation

vt(r1, . . . , rt) = wt(S0(1 + r1) · · · (1 + rt)),

and hence Vt = wt(St). See also Exercises 8.7 and 8.8.
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8.7 Exercises

8.1 Prove Proposition 8.3.

8.2 Prove Proposition 8.14. Hint: Apply Jensen’s inequality to EP̃
X0
T

X1
T
.

8.3 Fix the time horizon at T and assume the initial σ-algebra F0 to be trivial.

Let S0
t be identically equal to 1 and let Zt = log

S1
t

S1
t−1

. Suppose that the market

that is described by the pair of processes S0, S1 is arbitrage-free. Suppose that
P is such that the Zt are i.i.d. with a common normal N(µ, σ2) distribution.
Give a relation between the parameters if P ∈ P. Can exp(Zt) have a Gamma
distribution if P ∈ P?

8.4 Consider an arbitrage-free market with one risky asset. Let S1 be its price
process and S0 the deterministic price process of the riskless asset. Consider a
European call option with discounted payoff

H =
(S1
T −K)+

S0
T

,

for some K > 0. Assume that S1
T has a density w.r.t. Lebesgue measure under

any risk-neutral measure. Let π∗ be an arbitrage-free price of the call option
under some risk-neutral measure P∗. Obviously π∗ depends on K and S1

0 , so
we write π∗ = π∗(K,S1

0). Show that

0 <
∂π∗

∂S1
0

< 1

∂π∗

∂K
= − 1

S0
T

(1− F ∗(K)),

where F ∗ is the distribution function of S1
T under P∗. To show the first assertion

you may make additional assumptions, e.g. that S1
T is increasing in S1

0 , or even
more explicit, S1

T = S1
0RT , with RT a positive random variable.

8.5 Consider a market with underlying Ω = {1, 2, 3, 4}. Assume that T = 2 and
that S0

t = 1 for t = 0, 1, 2, the price of the riskless asset is constant. Let the
evolution for the price St of the single risky asset be as given in the table.

ω S0(ω) S1(ω) S2(ω)
1 5 8 9
2 5 8 6
3 5 4 6
4 5 4 3

(a) Assume that P gives positive probability to each singleton. Show that the
market is complete and that P∗ as represented by the vector ( 1

6 ,
1
12 ,

1
4 ,

1
2 )

is the unique equivalent martingale measure.
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(b) Let H be the European call option H = (S2−5)+. Let ξ̄ be the replicating
strategy. Show that ξ̄2(ω) = (−5, 1) if ω = 1, 2 and ξ̄2(ω) = (−1, 1

3 ) if
ω = 3, 4.

(c) Compute V1 and show that ξ̄1(ω) = (− 7
3 ,

2
3 ) for all ω. What is the value

of the claim at t = 0?

(d) As an alternative you can use the self-financing property in the form Vt =
Vt−1 + ∆Gt, t = 1, 2. Use this to compute the replicating strategy anew.

(e) Suppose that the riskless interest rate is r. For which possible values of r
do we still have an arbitrage free market?

8.6 Consider the market of Exercise 8.5. Compute the value of the claim H =
( 1

3 (S0 + S1 + S2)− 5)+.

8.7 Give an explicit formula for wt(s), see (8.18), as a sum involving the prob-
abilities of the Binomial distribution with parameters T − t and p∗.

8.8 Let H be a claim as in (8.17). Show that the hedge strategy is given by

ξt = (1 + r)t
vt(R1, . . . , Rt−1, b)− vt(R1, . . . , Rt−1, a)

St−1(b− a)
.

Give also an expression for ξt, if H = h(ST ). What is the explicit resulting
strategy if H = (1 + r)−TST ?

8.9 Show that the probability measure P∗2 in the proof of Theorem 8.33 is a
martingale measure.

8.10 Let Y1, . . . , YT be iid random variables on some (Ω,F ,P) with EYt = 0 for
all t and let Ft = σ(Y1, . . . , Yt). Let Xt =

∑t
k=1 Yk for t ≤ T . Obviously, the

Xt form a martingale. Consider an insider trader, a trader whose information
pattern is given by the σ-algebras F̃t := σ(Ft ∪ σ(XT )), i.e. at any time t ≤ T
she ‘knows’ the final value XT .

(a) Show that the Xt don’t result in a martingale w.r.t. the enlarged filtration
of the F̃t.

(b) Let X̃t = Xt −
∑t−1
k=0

XT−Xk
T−k , t ≤ T . Show that the X̃t yield a mar-

tingale w.r.t. enlarged filtration. Hint: use that E [Xt|XT ] = t
TXT and

independence of the Yk.

(c) Construct a self-financing strategy of investments ξ̃t w.r.t. the enlarged

filtration (so the ξ̃t are F̃t−1-measurable) such that E
∑T
t=1 ξt(Xt −Xt−1)

is positive. This should follow from maximization of the expected gain
E
∑T
t=1 ξ̃t(Xt −Xt−1) over all self-financing strategies such that |ξ̃t| ≤ 1.

8.11 Show that the σ0
m in the proof of Lemma 8.19 are F-measurable, as well as

the ξσ0
m

. Same question for the σ1
m and the ξσ1

m
. Finish the proof of Lemma 8.19.

8.12 The proof of Proposition 8.21 is a lot simpler if F0 is the trivial σ-algebra
{∅,Ω}. In this case all ξn is the proof are just vectors in Rd and the spaces N and
N⊥ are closed linear subspaces of Rd. Rewrite (and shorten) the proof under
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this additional assumption and make clear that Lemma 8.19 and Lemma 8.20
can be circumvented by using standard analysis arguments instead.

8.13 Show that it follows from the proof of Proposition 8.21 that under the
same assumption also K is closed in L0.

8.14 If one drops the no arbitrage assumption in Proposition 8.21, the assertion
is no longer true in general. This exercise contains an example. Assume that
market contains only one risky asset (d = 1). Let in (Ω,F ,P), Ω = [0, 1], F the
Borel σ-algebra, and P the Lebesgue measure. Assume that Y : Ω→ R is given
by Y (ω) = ω.

(a) Show that the no arbitrage condition is violated.

(b) Let Z ≥ 1 be a constant. Show that Z cannot belong to C, and conclude
that C is not all of L1.

(c) Let Z ∈ L1 and define Zn = (Z+ ∧ n)1[ 1
n ,1] − Z−. Show that Zn ∈ C

(establish first that (Z+ ∧ n)1[ 1
n ,1] ≤ cnY for some constant cn) and that

Zn → Z in L1 for n→∞.

(d) Conclude that C is not closed.

8.15 Show that the probability measure P0 in the proof of Theorem 8.30 is a
martingale measure.

8.16 Prove Lemma 8.36 for the special case in which X and Y are discrete
random variables.
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9 Optimization in dynamic models

In this section we study portfolio optimization over a nontrivial horizon. We thus
extend the results of Section 6 to a dynamic case. We will present two methods
to find an optimal portfolio, one is based on Dynamic Programming, the other is
based on first finding an optimal random pay-off and then to construct a trading
strategy that replicates this pay-off. That method is known as the martingale
method or as the risk neutral approach.

9.1 Dynamic programming

Dynamic programming is a main tool in optimization for dynamic models, espe-
cially useful if the relevant underlying processes are defined by recursive models,
or else have a model describing their time dependent behavior. This could mean
e.g. that they are Markov processes or martingales. We first explain the two
key ideas behind dynamic programming and then proceed with a more formal
treatment. The proofs of the results in this section are either exercises or given
in Appendix A.5

We give the ideas underlying dynamic programming in its most rudimentary
form. Suppose one wants to maximize a function V of two variables, of the
specific form

V (u1, u2) = V1(u1) + V2(f(u1), u2).

This maximization problem can be carried out as the iterated maximization

max
u1,u2

V (u1, u2) = max
u1

(V1(u1) + max
u2

V2(f(u1), u2)),

with the underlying idea that the functions Vi are to be interpreted as ‘rewards’
at ‘times’ i = 1, 2. The maximization on the right hand side over u2, with any
u1 fixed, yields (assuming a maximizer exists and is unique) an optimal

u∗2(u1) = g(u1),

for some function g. Substitution of this relation for u2 in V (u1, u2) yields a
function of u1 only,

V (u1, g(u1)) = V1(u1) + V2(u1, g(u1)),

and maximizing over u1 yields an optimal solution u∗1, that in turn yields u∗2 =
g(u∗1).

So, the (first) idea is to optimize over the second variable and then over the
first one, and that, given that the first one yields an optimal value, the optimum
of the second step is immediately known. Hence, if one views the pair (u∗1, u

∗
2)

as some kind of optimal path to reach one’s goal, then the second part of the
path, u∗2, is optimal once the ‘starting value’ u∗1 is given. This reflects the second
idea behind dynamic programming, also called Bellman’s optimality principle.

We move on to a random dynamic setting, where all random variables and
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processes are defined on some (Ω,F ,P). Suppose that one has an Rd-valued
stochastic process X = (X0, . . . , XT ), in fact it is going to be a family of pro-
cesses as we shall soon see, that obey the recursion

(9.1) Xt+1 = ft(Xt, Ut, εt), t = 0, . . . , T − 1,

and that start in some value X0.
Here the random quantities X0, ε0, ε1, . . . , εT−1 are given and they are as-

sumed to be independent. The m-dimensional random variables Ut are supposed
to be of the form

(9.2) Ut = ut(X0, . . . , Xt),

for certain measurable functions ut : (Rd)t+1 → Rm, for which we use the
notation ut ∈ B((Rd)t+1,Rm). If the εt are k-dimensional, the ft in (9.1) are
defined on (appropriate subsets of) Rd × Rm × Rk, and are also assumed to
be jointly measurable in their arguments. As a filtration we take the family of
σ-algebras Ft = σ(X0, ε0, . . . , εt−1). Then the processes X and U are adapted.
Moreover, if Ut = ut(Xt) (as we shall see below, this is an important case), the
resulting process X is even Markov.

Lemma 9.1 The process X is Markov w.r.t. the filtration specified above, if
Ut depends on Xt only, Ut = ut(Xt) say, where the ut are measurable functions
ut : Rd → Rm.

Proof Exercise 9.1. �

Remark 9.2 Under the conditions of Lemma 9.1, we have Xt+1 = Ft(Xt, εt)
for Ft(x, y) = ft(x, ut(x), y). But a similar structure is also valid, if e.g. Ut =
ut(Xt, Xt−1) by suitable rewriting. Indeed, let Xt = (Xt, Xt−1), x = (x1, x2).
Then we obtain Xt+1 = Ft(Xt, εt), where Ft(x, y) = (ft(x1, ut(x1, x2), y), x1).
This shows that the setup of (9.1) and (9.2) is more general then it may appear
at first glance, and it includes k-step Markov processes as well.

Our aim is to solve the following problem.

Problem 9.3 Let g0, . . . , gT−1 : Rd × Rm → R be measurable functions, as
well as gT : Rd → R. The problem is to maximize over U = (U0, . . . , UT−1) the
expectation

J(U) := E
( T−1∑
t=0

gt(Xt, Ut) + gT (XT )
)
,

with each Ut as in (9.2). This problem is thus equivalent to the finding of measur-
able functions ut such that the constraint (9.2) holds. With u = (u0, . . . , uT−1)
we also write J(u) instead of J(U) to emphasize that J depends on the func-
tions ut. Usually, the functions have to satisfy certain constraints. These will
be clear in the appropriate context and not always explicitly mentioned. For
instance, it is tacitly assumed that all random quantities involved are such that
the expectations exist.
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Definition 9.4 A sequence of functions u∗ = (u∗0, . . . , u
∗
T−1) is called optimal

if J(u∗) = supJ(u) holds, where the supremum is taken over sequences u =
(u0, . . . , uT−1) with ut in B((Rd)t+1,Rm) for t = 0, . . . , T − 1.

Definition 9.5 Let u be a sequence of functions (u0, . . . , uT−1) and let the
process Xu be defined by (9.1) and (9.2), the notation expresses the dependence
of X on u. Note that Xu

0 = X0. Then, we define JT (u) = gT (Xu
T ), and for

t < T ,

Jt(u) := E [

T−1∑
s=t

gs(X
u
s , Us) + gT (Xu

T )|Ft].

Then, for t < T − 1,

Jt(u) = gt(X
u
t , Ut) + E [

T−1∑
s=t+1

gs(X
u
s , Us) + gT (Xu

T )|Ft]

= gt(X
u
t , Ut) + E [E [

T−1∑
s=t+1

gs(X
u
s , Us) + gT (Xu

T )|Ft+1]|Ft]

= gt(X
u
t , Ut) + E [Jt+1(u)|Ft].

Note that E J0(u) = J(u). The Jt can be interpreted as expected future rewards,
given the past up to time t.

Define also for certain given measurable functions v0, . . . , vT : Rd → R

(9.3) v̂t+1(x, y) = E vt+1(ft(x, y, εt)), t = 0, . . . , T − 1,

so v̂t+1 : Rd × Rm → R. Note that these functions are measurable in x and y.

Important is the situation in which all the Ut are such that Ut = ut(Xt), for
some measurable functions ut : Rd → Rm. Denote the class of sequences u =
(u0, . . . , uT−1) of such functions by M. The main theorem of this section is

Theorem 9.6 Define recursively the functions vt, t = 0, . . . , T , by

vT (x) = gT (x)

vt(x) = sup
y
{gt(x, y) + v̂t+1(x, y)}, t = 0, . . . , T − 1.(9.4)

Assume that the vt are measurable functions. Then the following hold true.

(i) For any sequence u ∈M of functions ut one has

vt(X
u
t ) ≥ Jt(u) a.s.

and E v0(X0) ≥ J(u).

(ii) Let u∗ ∈ M. Then u∗ is optimal iff the supremum in (9.4) is attained
for y = u∗t (x). If this happens, then vt(X

u∗

t ) = Jt(u
∗) and supu J(u) =

J(u∗) = E v0(X0).
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Proof See Section A.5. �

The condition in Theorem 9.6 that the functions vt are measurable, is satisfied
under the additional assumption that both gt(x, ·) and v̂t+1(x, ·) are continuous
for all t and x. Theorem 9.6 also provides an algorithm that yields the optimal
functions u∗t .

Algorithm 9.7 (Dynamic programming) Suppose that the suprema in
Equation (9.4) are attained for all t. Define

vT (x) = gT (x)

u∗T−1(x) = arg sup
y
{gT−1(x, y) + v̂T (x, y)},

and by backwards recursion for t ∈ {0, . . . , T − 1}

vt(x) = sup
y
{gt(x, y) + v̂t+1(x, y)}

= gt(x, u
∗
t (x)) + v̂t+1(x, u∗t (x))

u∗t−1(x) = arg sup
y
{gt−1(x, y) + v̂t(x, y)}.

This yields the sequence of functions vT , u
∗
T−1, vT−1, u

∗
T−2, . . . , v1, u

∗
0, v0 where

the u∗t constitute the optimal sequence u∗ and E v0(X0) = J(u∗). The functions
vt are called the (optimal) value functions.

Proposition 9.8 (Optimality principle) Let u∗ = (u∗0, . . . , u
∗
T−1) be the op-

timal sequence for Problem 9.3 as obtained from Algorithm 9.7. Then the se-
quence (u∗t , . . . , u

∗
T−1) is optimal for the corresponding optimization problem

over the time set {t, . . . , T}, when starting in Xt = Xu∗

t . In this case the
optimal value is equal to E vt(Xu∗

t ).

Proof Exercise 9.2. �

Remark 9.9 The results above strongly depend on the fact that v̂t+1(x, y) is
equal to the conditional expectation E [vt+1(ft(x, y, εt))|Ft], which follows from
the assumed independence of X0 and the εt, see part (iv) of Theorem B.34. In
Section 9.2 however, we will come across situations, where this assumption is
often violated. We proceed with giving some results for a more general setting.

From here on, we drop the assumption that the εt are independent. One can still
define ‘functions’ v̂t+1, but now we alter the definition of (9.3) into

(9.5) v̂t+1(x, y) = E [vt+1(ft(x, y, εt))|Ft].

Then the v̂t+1(x, y) are in general not deterministic anymore, but become Ft-
measurable random variables. However, many of the above results continue to
hold. For instance, the technical result (A.7) is still correct. On the other hand,
we need an alternative to Lemma A.15, used in the proof of Theorem 9.6, and
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to the theorem itself. The following proposition uses the concept of essential
supremum, see Section A.3. We will consider B(Rd)× Ft-measurable functions
vt, meaning that the mapping (x, ω) 7→ vt(x, ω) is B(Rd) × Ft-measurable. As
usual, dependence on ω is often suppressed and then we write vt(x) for the
random variable ω 7→ vt(x, ω).

Proposition 9.10 Suppose that B(Rd) × Ft-measurable functions vt (for t =
0, . . . , T ) a.s. satisfy

vT (x) = gT (x)

vt(x) = ess sup{gt(x, y) + E [vt+1(ft(x, y, εt))|Ft] : y ∈ Ft}, t ≤ T − 1.

Then, for any sequence u = (u0, . . . , uT−1) it holds that vt(X
u
t ) ≥ Jt(u) for

t = 0, . . . , T . Optimality is obtained for the Ft-measurable random variables
u∗t (x) for which the essential supremum is attained.

Proof Essentially as the proofs of Lemma A.15 and Theorem 9.6. �

There is a major difference between the above proposition and previous results.
The optimizing u∗t (x) are now Ft-measurable random variables, and to empha-
size this, we should write u∗t (x) = u∗t (x, ω). Writing u∗t (X

u∗

t ) suggests explicit
dependence of an optimal control through Xu∗

t only, but this is in general not
the case. The dependence on ω, is usually through Xu

0 , . . . , X
u
t for u = u∗.

This is particularly true if Ft = FXut := σ(Xu
0 , . . . , X

u
t ) for u = u∗, or if Ft

can be replaced with FXut in (9.5) and in Proposition 9.10. Note that these
σ-algebras in principle depend on the controls u. The good news is that in
most relevant practical situations this doesn’t pose a problem and that it is still
possible to explicitly compute the optimal strategy, see for instance Exercise 9.4
for a problem in a financial context.

9.2 Optimal portfolios via dynamic programming

We apply the general results of the previous section to an expected utility max-
imization problem. We assume that the assumptions of Section 6 are in force.
An investor has an initial capital w at his disposal, also called initial wealth. He
can invest in shares in a market described by the model of Section 8. Without
further explanation, below we use the notation of that section. The first prob-
lem we consider is the problem of maximizing the expected utility of terminal
wealth (similar to Equation 6.1). So we want to maximize

E ũ(WT ),

subject to the budget constraint W0 ≤ w and to the constraint that WT results
from a self-financing trading strategy ξ̄ with WT = ξ̄T ·S̄T . Writing WT = S0

TVT
and VT = V0 +GT , we see that we have to maximize

E ũ(S0
T (w +GT )),
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where of course we have taken V0 = W0 = w, since again it can never be optimal
to use only a fraction of the initial capital w. As before, we assume that the
process S0 is deterministic, non-risky. Then we can define a new utility function
u by putting u(x) = ũ(S0

Tx). Hence we have to find

maxEu(w +GT ),

where GT =
∑T
t=1 ξt ·∆Xt and the ξt are d-dimensional Ft−1-measurable ran-

dom vectors, also briefly denoted ξt ∈ Ft−1. Notice that the ξt will be our
(random) decision variables. In principle we’d like to apply the dynamic pro-
gramming algorithm 9.7, with the proper substitutions and change of nota-
tion. For instance, we have that the functions gt are zero for t ≤ T − 1 and
Xt+1 = ft(Xt, ut, εt) now reads Vt+1 = Vt + ξt+1 ·∆Xt+1. Note however that
the ∆Xt are in general not independent, which spoils the fact that the optimal
decisions at time t not only depend on Vt, but also on past values. Therefore
the version of the dynamic programming algorithm that we need below is taken
from Proposition 9.10. Define

ṽT (x) = ũ(x)

and then, recursively, for t ∈ {0, . . . , T − 1}

(9.6) ṽt(x) = ess sup{E [ṽt+1(S0
t+1(

x

S0
t

+ ξ ·∆Xt+1))|Ft] : ξ ∈ Ft}.

Assume that for every t the essential supremum is attained at some ξ∗t+1 =
ξ∗t+1(x) ∈ Ft. This eventually gives rise to a self-financing strategy ξ̄ by the
choices for the ξ0

t as in Remark 8.5, the investments in the non-risky asset. At
the final step of the algorithm (t = 0), we find ξ0 and Theorem 9.6, or rather
Proposition 9.10, tells us that E ṽ0(w) is the optimal value for our problem.
Conditions for which the suprema are attained, for instance at an interior point
of the domains of the ṽt, can be derived from Theorem 6.6, although this theorem
in general has to be applied ‘ω-wise’, which involves some subtleties.

In terms of the modified utility functions u, we can recast the optimal value
functions resulting from Dynamic Programming as

(9.7) vt(x
′) = ess sup{E [vt+1(x′ + ξ ·∆Xt+1)|Ft] : ξ ∈ Ft}.

One can show that this leads to the same optimum, if it exists (Exercise 9.5).

We generalize the above problem as to include consumption.

Definition 9.11 A consumption process C = (C0, . . . , CT ) is a nonnegative
adapted process. A consumption-investment plan is a pair (C, ξ̄), where C is
a consumption process and ξ̄ a trading strategy. Such a plan is called self-
financing, if

Wt = Ct + ξ̄t+1 · S̄t, t ∈ {0, . . . , T − 1}.

where Wt is as before, Wt = ξ̄t · S̄t. Such a plan is called admissible if CT ≤WT

a.s.
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Remark 9.12 The self-financing condition above is equivalent to the following
two relations.

∆Wt = ξ̄t ·∆S̄t − Ct−1, t ∈ {1, . . . , T}
∆Vt = ξt ·∆Xt − γt−1, t ∈ {1, . . . , T},

where γt−1 is discounted consumption, γt−1 = Ct−1

S0
t−1

.

The problem we are going to address is the maximization of

E
T∑
t=1

αtu(Ct),

where α ∈ (0, 1] (a discount factor) and u a utility function, subject to the
constraints that C forms together with a trading strategy ξ̄ an admissible
consumption-investment plan. Note that, for simplicity, we use a single util-
ity function at all times t, although it can be made time dependent too.

It is immediately clear that CT = WT , since u is increasing. This makes
the first step in the dynamic programming approach easy, vT = u. In order
to motivate the resulting backward recursion, we now consider the problem at
time T − 1, assuming that we have (optimally) invested and consumed up to
that time. This can be viewed as a one period problem. We have to maximize

(9.8) u(CT−1) + αE [vT (WT )|FT−1]

subject to constraints that we now derive. Let w denote the wealth at time
T − 1. By the self-financing condition we have

w = CT−1 + ξ̄T · S̄T−1,

whereas
WT = ξ̄T · S̄T .

To assure that the (optimal) consumption process is non-negative, we assume
without loss of generality that u(x) = −∞ for x < 0. Using the self-financing
characterization as in Remark 9.12, we can rewrite (9.8) with w′ = w

S0
T−1

as

u(CT−1) + αE [vT (S0
T (w′ − γT−1 + ξT ·∆XT ))|FT−1],

which we have to maximize over ξT ∈ FT−1. Of course we can iterate this
procedure to get the dynamic programming equation for every t ∈ {1, . . . , T}

vt−1(w′) = ess sup{u(Ct−1) + αE [vt(S
0
t (w′ − γt−1 + ξt ·∆Xt))|Ft−1] :(9.9)

ξt, γt−1 ∈ Ft−1}.

At the final step, now denoting as before the initial capital by w, one obtains
v0(w′) = v0(w), which will then yields the optimal value E v0(w). As before,

94



the optimal processes C∗ (and its discounted version γ∗) and ξ∗ –assuming that
they exist– have to be complemented by the process ξ0 to obey the self-financing
restriction. Similar to Remark 8.5, in the present context one has the recursion

ξ0
t+1 = ξ0

t − (ξ∗t+1 − ξ∗t ) ·Xt − γ∗t ,

with initial value, given V0,

ξ0
1 = V0 − ξ∗1 ·X0 − γ∗0 .

9.3 Consumption-investment and the martingale method

In this section we treat the martingale method (also called the risk-neutral
approach) to solve consumption-investment optimization problems. In Sec-
tion 9.3.1 we consider a one-period problem to introduce this method, which
forms than the basis of the approach in the dynamic context of Section 9.3.2.

We mostly assumpe that the market is complete. For some of the problems
that we introduce later on, this assumption is not always needed. This will be
explained, when those are treated.

9.3.1 The static case

To illustrate the underlying principles of the martingale method, we first recall
a static one-period problem, which is the maximization of Eu(W1). Here W1

represents the value of a portfolio ξ̄ at t = 1. Hence the maximization takes
place over all ξ̄ ∈ Rd+1, that of course have to satisfy the budget constraint
ξ̄ · π̄ = w, where w is the initially available capital.

The central idea behind the martingale method is to break down the opti-
mization problem into two subproblems. The first one is to identify the optimal
(random) pay-off W ∗1 , given the budget constraint. The second one is then to
identify the optimal portfolio ξ̄, i.e. the portfolio whose terminal wealth is equal
to W ∗1 . The standing assumption is that the market is arbitrage free, a neces-
sary and sufficient condition for the existence of an optimizer when considering
expected utility maximization, see Theorem 6.5. For simplicity and focussing on
the main ideas, we assume for the time being that the price of the riskless asset
is constant and equal to one. Let P∗ be the unique risk-neutral measure, recall
the assumption of a complete market. Then the budget constraint is given by
E∗W1 = w. Let Bw be the set of random variables that are integrable w.r.t. P∗
with corresponding expectation equal to w. Hence, the first problem becomes
the maximization of Eu(W ), subject to W ∈ Bw, where we write W instead of
W1. Let φ = dP∗

dP . The budget constraint can then alternatively be expressed
as E (φW ) = w.

One way to solve this problem is to employ a Lagrange multiplier (similar,
but alternative to what we did in Section 7.1). So one likes to maximize

L(W,λ) = Eu(W )− λ(E (φW )− w).
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Differentiation of L w.r.t. λ yields the budget constraint. Next, one would like
to differentiate w.r.t. W , which is a priori an infinite dimensional variable. This
would lead to some variational problem as in Section 7.1. To circumvent a full
treatment of this approach, we think for a while that the underlying Ω is finite,
Ω = {ω1, . . . , ωn} with positive probabilities pj of all singletons. Then we can
represent W by a finite dimensional vector with a generic element wj = W (ωj)
and

L(W,λ) =
∑
j

pju(wj)− λ(
∑
j

pjφ(ωj)wj)− w)

=
∑
j

pju(W (ωj))− λ(
∑
j

pjφ(ωj)W (ωj)− w).

Assume that u is differentiable and write W ∗ for the optimal payoff. Differen-
tiation w.r.t. wj of L can now be carried out under the expectation and yields
in the optimum, after dividing ∂L

∂wj
by pj ,

(9.10) u′(W ∗(ωj))− λφ(ωj) = 0.

Since this equation has to hold for every ωj , we can multiply by pj and sum to
obtain, using that Eφ = 1, for the Lagrange multiplier

(9.11) λ = Eu′(W ∗).

Compare this and the rest of this paragraph to the results in Section 7.1. Let I
denote the inverse of u′, which is assumed to exist (otherwise, one should work
with the function I+ as in Section 7.1). Then, from (9.10),

W ∗(ωj) = I(λφ(ωj)),

or, in short,

(9.12) W ∗ = I(λφ).

Dropping the assumption that Ω is finite, we conjecture that Equations (9.11)
and (9.12) are needed to obtain the optimal claim. Compare to Theorem 7.2 and
observe that the constant c there is nothing else but λ. The budget restriction
tells us that also for the optimal W ∗ it must hold that E∗W ∗ = w, so we obtain
the equation

(9.13) E∗I(λφ) = w.

Under conditions as in Corollary 7.5, a unique solution of (9.13) exists, which
is then the optimal λ∗.

Knowing the optimal contingent claim, one then has to find a corresponding
hedge strategy. Under the assumption that the market is complete one can find
ξ̄∗ such that W ∗ = ξ̄∗ · S̄ a.s. The resulting ξ̄∗ should of course coincide with
the solution of Theorem 6.6.
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Let us now consider a consumption investment problem. First we pin down
the admissible consumption-investment plan, see Definition 9.11 and with an
initial capital w. Recall that Wt is the notation for the undiscounted value of
a portfolio at time t, which, under the temporary assumption that S0

t ≡ 1, is
equal to Vt. The plan is such that C0 + W0 = w (spend all the initial capital)
and C1 = W1, there is no life after T = 1 so all available wealth has to be
consumed. Notice that it follows that C1 is an attainable claim! Therefore, for
any risk-neutral measure P∗ it holds that E∗C1 = W0 and we get

(9.14) E∗C1 + C0 = w.

There is also a converse reasoning. Suppose a consumption plan C = (C0, C1) is
fixed, as well as an initial capital w, such that (9.14) holds for any risk-neutral
measure. It then follows from Proposition 1.19 that C1 is attainable, hence
C1 = ξ̄ · S̄1, for some ξ̄ and hence also C1 = W1.

A consumption-investment optimization problem is often formulated as the max-
imization of

u(C0) + αEu(C1),

subject to the constraints that C0, C1 ≥ 0 a.s. and C0 +E∗C1 = w. Notice that
the utility of C0 and C1 is represented by the same utility function u, but of
course different choices for each of them are equally conceivable.

We adopt again the Lagrange multiplier approach to solve this problem. So
we want to maximize

L(C0, C1, λ) = u(C0) + αEu(C1)− λ(C0 + E (φC1)− w).

For the optimal consumption pair C∗0 , C
∗
1 we then get, by the same token as we

used before and assuming that I = (u′)−1 is well defined on (0,∞),

C∗0 = I(λ)(9.15)

C∗1 = I(λφ/α),(9.16)

whereas the optimal λ∗ has to solve the equation I(λ)+E∗I(λφ/α) = w in view
of (9.14).

9.3.2 The dynamic case

The approach in Section 9.3.1 extends to a consumption-investment problem
with a time horizon T > 1 and also takes discounting into account. As we shall
see, here we don’t always need market completeness (due to the possibility of
consumption), but of course we can’t dispense with the requirement that the
market is free of arbitrage.

First we consider the problem of determining the optimal final wealth, re-
sulting from investments only. As in the static case, we first determine an
FT -measurable random variable W ∗ that is such that Eu(W ) is maximal, sub-
ject to the constraint that E∗V = w, where V = W/S0

T and w is an initially
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available capital. Mimicking the static case, (9.12) and (9.13), but taking care
of discounting, we get the following results

W ∗ = I(λφ/S0
T )

w = E∗I(λφ/S0
T )/S0

T ,

with φ equal to the Radon-Nikodym derivative dP∗
dP , where the probability mea-

sures are now defined on FT .
If the market is assumed to be complete, we can in principle find a replicating

strategy that yields W ∗ as its terminal value. Of course, this is a non-trivial
exercise. But, as we shall see below, when we move to consumption-investment
problems this problem is tractable. What one in principle has to do is to find ξ̄T
such that ξ̄T ∈ FT−1 and ξ̄T · S̄T = W ∗. As soon as this has happened, we know
by the fact that ξ̄ is a self-financing strategy, that ξ̄T · S̄T−1 = ξ̄T−1 · S̄T−1, from
which one has to determine ξ̄T−1 ∈ FT−2. Notice that E∗ξ̄T−1 · S̄T−1/S

0
T−1 =

E∗W ∗/S0
T , for any underlying P∗. See Exercise 9.7 for an example that shows

how to carry out this programme in a concrete situation.

We turn to consumption-investment problems. The market is assumed to be
arbitrage-free, so a risk-neutral measures P∗ exist.

Definition 9.13 A consumption process is called attainable with initial wealth
w, if there exists a trading strategy ξ̄ such that (C, ξ̄) is admissible and satisfies
CT = WT . It is then said that ξ̄ replicates C (at time T ).

Let us first characterize attainable consumption processes. Recall Remark 9.12.
Since the gains process G, Gt =

∑t
s=1 ξs ·∆Xs, is a martingale with expectation

zero under any risk-neutral measure (see Theorem 8.9 for a precise statement),
it follows that for each t ≤ T one has

E∗Vt +

t−1∑
s=0

E∗γs = w.

If the consumption process is attainable, γT = VT , we get

(9.17)

T∑
t=0

E∗γt = w, for any P∗ ∈ P,

which is the dynamic counterpart of (9.14) under discounting.

Proposition 9.14 Assume a complete market. Given any initial wealth w ≥ 0,
a consumption process is attainable iff (9.17) holds. In this case the correspond-
ing value process of the replicating portfolio, and in particular its initial value,
is nonnegative.

Proof Necessity has already been proved. We turn to sufficiency. Any of the
Ct and its discounted value γt in (9.17) is nonnegative and attainable at time
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t since the market is complete. So, for each of them, there exists a replicating

self-financing strategy ξ̄(t) = (ξ̄
(t)
0 , . . . , ξ̄

(t)
T ). Moreover, the value of Ct is imme-

diately added to the bank account at time t and held there until the terminal

time T . Note that ξ̄
(t)
s = 0 for s > t, since the claim Ct expires at time t and

becomes worthless afterwards.
Take ξ̄ =

∑T
t=0 ξ̄

(t) and note that ξ̄s =
∑T
t=s ξ̄

(t)
s , in particular ξ̄T = ξ̄

(T )
T .

It follows that CT = ξ̄
(T )
T · S̄T and γT = ξ̄

(T )
T · X̄T = ξ̄T · X̄T = VT . Moreover

by the construction that the values of Ct are added to the bank account, these
quantities can be used to rebalance the portfolio, i.e. Ct + ξ̄t+1 · S̄t = Wt,
or, in discounted terms, γt + ξ̄t+1 · X̄t = Vt, t ≤ T − 1. The plan is thus
self-financing in the sense of Definition 9.11, admissible, and the consumption
process is attainable.

The martingale property of the gains process combined with Remark 9.12
yields

E∗[∆Vs|Fs−1] + γs−1 = 0.

Summing this equation for s = t+ 1, . . . , T and taking conditional expectation
given Ft yields

E∗[VT − Vt +

T−1∑
s=t

γs|Ft] = 0.

Together with VT = γT this gives

Vt = E∗[
T∑
s=t

γs|Ft] ≥ 0, a.s.

In particular, V0 ≥ 0. Moreover, V0 is equal to w, the initial capital, by (9.17).
The consumption process is thus attainable with initial wealth w. �

After this intermediate result we are in the position to state the optimization
problem properly. It is the maximization of

E [

T∑
t=0

αtu(Ct)],

subject to the constraint that C is a nonnegative adapted process and the budget
constraint (9.17). We will also assume that u is continuous on [0,∞), differen-
tiable on (0,∞), limx↓0 u

′(x) = ∞, and moreover u(x) = −∞ for x < 0 when
needed. These conditions are sufficient to obtain an a.s. strictly positive op-
timal consumption process. In view of Proposition 9.14, the resulting optimal
consumption process C∗ will be attainable. Once we have found this, we have
to find the replicating strategy. Let us first focus on the finding of C∗. We will
use the following lemma.

Lemma 9.15 Let P∗ ∈ P and φ = dP∗
dP , the Radon-Nikodym derivative on FT ,

and φt = E [φ|Ft], t = 0, . . . , T . Then we can replace the constraint (9.17) with

(9.18) E
T∑
t=0

γtφt = w.
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Proof This follows from E∗γt = Eφγt = E (E [φγt|Ft]) = E (γtE [φ|Ft]) =
E γtφt, valid for all t ∈ {0, . . . , T}. �

We will solve the optimization problem by again using a Lagrange multiplier
approach taking the alternative budget contraint (9.18) into account. We max-
imize

(9.19) L(C0, . . . , CT , λ) = E
T∑
t=0

αtu(Ct)− λE (

T∑
t=0

γtφt − w).

The necessary conditions for a maximum become

αtu′(Ct)− λNt = 0, t ∈ {0, . . . , T},

where Nt = φt
S0
t
. Then, if I = (u′)−1 is well-defined everywhere, we obtain the

optimal
C∗t = I(λα−tNt), t ∈ {0, . . . , T},

and observe that C∗t is Ft-measurable. Of course the optimal λ∗ has to satisfy

E
T∑
t=0

I(λ∗α−tNt)Nt = w.

Under the usual monotonicity and continuity assumptions, this equation has a
unique solution λ∗, as in Corollary 7.5.

Here is an example that illustrates the above procedure.

Example 9.16 Let u(x) = log x, x > 0. Then we have I(x) = 1
x . We obtain

C∗t =
αt

λNt
,

and

w = E
T∑
t=0

αt

λNt
Nt =

T∑
t=0

αt

λ
,

from which it follows that

λ =

{
T+1
w if α = 1

1−αT+1

w(1−α) if α < 1.

In the first of these two cases, one can compute that C∗t = w
(T+1)Nt

and γt =
w

(T+1)φt
. The maximal value of the objective function becomes (T +1) log w

T+1−∑T
t=0 E logNt.
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We continue to study an optimization problem that combines the previous two,
we want to maximize expected utility derived from both consumption and ter-
minal wealth. The chief difference with the previous problem is that we don’t
require WT = CT anymore. Therefore, we have to assume again that the
market is complete. We denote by Aw the set of all admissible consumption-
investment plans that have w as initial wealth and that satisfy the terminal
condition CT ≤WT . We will assume that two utility functions u1 and u2 (with
ui ∈ C1(0,∞)) are involved. The function u1 describes the utility directly
derived from consumption and u2 the utility derived from terminal wealth as
well. Again, we assume that the ui can be extended to the whole of R by
setting ui(x) = −∞ for x < 0, u right-continuous at x = 0 and moreover
limx↓0 u

′
i(x) = ∞. The aim is to maximize for (C, ξ̄) ∈ Aw the cumulative

expected utility

(9.20) E [

T∑
t=0

αtu1(Ct) + αTu2(WT − CT )].

There is a variation on this problem conceivable, for instance by replacing the
last utility term by u2(WT ) and/or having in the summation an upper limit
equal to T − 1. We don’t consider these possibilities further.

Paralleling the reasoning that led us to Proposition 9.14, we obtain

Proposition 9.17 Given an initial wealth w ≥ 0 and an admissible consump-
tion-investment plan (C, ξ̄), it holds that

(9.21) E∗[
T−1∑
t=0

γt + VT ] = w.

Conversely, given w ≥ 0 and a consumption process C with CT ≤ WT , there
exists a trading strategy ξ̄ such that (C, ξ̄) is admissible if relation (9.21) holds.

Proof Similar to the proof of Proposition 9.14. �

It follows that we can recast the optimization problem as the maximization
of (9.20) subject to the constraints WT ∈ FT , C a (nonnegative) adapted process
such that CT ≤ WT and (9.21). Actually the assumptions that u′i(x) → ∞ as
x ↓ 0 will guarantee that the optimal consumption process C∗ is positive a.s.
for all t and that the optimal terminal wealth is such that W ∗T > C∗T a.s. Hence
the constraint CT ≤ WT will be automatically satisfied in the optimum and is
therefore redundant.

Recall the definition of the φt in Lemma 9.15, its ‘discounted’ analogue Nt
and Equation (9.19). In the present situation we maximize the Lagrangian

L(C0, . . . , CT ,WT , λ) =

E [

T∑
t=0

αtu1(Ct) + αTu2(WT − CT )− λ(

T−1∑
t=0

CtNt +WTNT − w)].
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As before, one can write down the first order necessary conditions, by computing
partial derivatives. Solving these equations and assuming that I1 and I2 are
properly defined inverse functions of u′1 and u′2 respectively, we obtain

C∗t = I1(α−tλNt), t = 0, . . . , T

W ∗T = I1(α−TλNT ) + I2(α−TλNT ).

The optimal value λ∗ follows by inserting the optimal solution into Equa-
tion (9.21), provided that the resulting equation has a unique solution. One
can show that this is for instance the case if u1 = u2 and of HARA type.

As an aside, we mention that the dynamic programming approach to the prob-
lem of maximizing (9.20) results in a recursion formula that bears some obvious
resemblance to (9.9),

vt−1(w) = ess sup{u1(C)+αE[u2

(
(w−C)

S0
t

S0
t−1

+S0
t ξ·∆Xt

)
|Ft−1] : C, ξ ∈ Ft−1}.

There is a crucial difference however with the initialization of the dynamic pro-
gramming algorithm. At time T the final utility is αT (u1(CT ) + u2(WT −CT ))
and so one has to divide terminal wealth into what is kept (for future invest-
ments for instance, there is life after T ) and what is consumed. Therefore the
proper initialization becomes

vT (w) = max{u1(c) + u2(w − c) : 0 ≤ c ≤ w}.

Note that under the additional condition u1(x) = u2(x) = −∞ the constraint
0 ≤ c ≤ w is superfluous.

9.4 Exercises

9.1 Prove Lemma 9.1.

9.2 Prove Proposition 9.8.

9.3 Consider the optimization problem at the beginning of Section 9.2. Show
(by a heuristic argument) that

dP∗

dP
=

S0
T ũ
′(W ∗T )

ES0
T ũ
′(WT )

defines a risk-neutral measure on FT , analogous to Proposition 6.7. Here W ∗T
stands for the wealth resulting from the optimal strategy, and is assumed to be
such that u′ is defined at it. Hint: The expected future rewards, see Defini-
tion 9.5 are maximized by the optimal strategy.

9.4 Consider a market with underlying Ω = {1, 2, 3, 4}. Assume that T = 2 and
that S0

t = 1 for t = 0, 1, 2, the price of the riskless asset is constant and equal
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to one. Let the evolution for the price St of the single risky asset be as given in
the table. We further assume that all singletons have probability 1

4 .

ω S0(ω) S1(ω) S2(ω)
1 5 8 9
2 5 8 6
3 5 4 6
4 5 4 3

The aim is to maximize Eu(WT ), as in Section 9.2, for u(x) = 1− exp(−x).

(a) Let t = 2. Show that the optimal ξ∗2 satisfies ξ∗2(ω) = − 1
3 log 2, if ω ∈ {1, 2}

and that ξ∗2(ω) = 1
3 log 2, if ω ∈ {3, 4}.

(b) Compute the optimal ξ∗1 (a constant!).

(c) What is the resulting optimal expected utility?

9.5 Show that the recursions (9.6) and (9.7) lead to the same optimum at t = 0.

9.6 Consider a CRR model, in which the returns are iid with P(Rt = b) = p
(where p is not necessarily equal to the risk neutral value p∗). Consider the
maximization of Eu(WT ), with u(x) = log x. Compute the optimal trading
strategy ξ∗ via dynamic programming. Hint: show that ṽt(x) = log x + kt for
certain constants kt.

9.7 Consider a CRR model as in Exercise 9.6, so with a parameter p that
determines the probability measure P. Let p∗ be as in Proposition 8.35. Assume
that u(x) = log x and that the initial capital is w.

(a) Show that the optimal attainable terminal wealth is given by

W ∗T = w(1 + r)T
( p
p∗
)BT

(
1− p
1− p∗

)T−BT
,

where BT is the number of ‘up-movements’ of the stock.

(b) Assume that at time T − 1 and that BT−1 ‘up-movements’ have been
observed. Show, using the risk-neutral approach, that for the optimal
replicating strategy one has

ξ1
T = w(1 + r)T

( p
p∗
)BT−1

(
1− p
1− p∗

)T−1−BT−1 p− p∗

ST−1(b− a)p∗(1− p∗)

ξ0
T = w

( p
p∗
)BT−1

(
1− p
1− p∗

)T−1−BT−1
(p∗ − p+ bp∗(1− p)− ap(1− p∗)

(b− a)p∗(1− p∗)
)
.

(c) Show that W ∗T−1 = w(1 + r)T−1
(
p
p∗

)BT−1
( 1−p

1−p∗
)T−1−BT−1

and that the
fraction of the wealth W ∗T−1 that is invested in the risky asset is equal to

(1 + r)(p− p∗)
(b− a)p∗(1− p∗)

.

(d) Conjecture what the fraction of the capital W ∗t is, that is invested in the
risky asset at t < T − 1.
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9.8 Suppose that at each time t ∈ {0, . . . , T} an investor has a certain capital
Wt at her disposal. She consumes part of this, Ct ≥ 0 say, and invests the
remaining Wt − Ct ≥ 0. The latter she does partly, a deterministic fraction πt,
in a riskless asset with fixed return 1 + r =: R and the remaining money in a
risky asset with random yield St. This leads to the evolution

Wt+1 = (Wt − Ct) (πtR+ (1− πt)St) , t = 0, . . . T − 1.

It is assumed that the St are i.i.d. random variables, all having the same distri-
bution as a random variable S, and that all relevant expectations exist and are
finite. Consider the utility function u(x) = 1

γx
γ , x ≥ 0 and γ < 1. Let ρ ∈ (0, 1)

be a discount factor. The aim is to maximize
∑T
t=0 ρ

t Eu(Ct) by appropriately
selecting the πt, t = 0, . . . , T−1, and the consumption Ct, t = 0, . . . , T . Assume
CT = WT . The purpose is to characterize the optimal consumption pattern and
to derive it by dynamic programming. We need more notation. We denote by π∗

the solution, assumed to exist, of the equation E (πR+(1−π)S)γ−1(R−S) = 0,
and ξ = ρE

(
π∗R+ (1− π∗)S

)γ
.

(a) Look at the theory of dynamic programming and rewrite Algorithm 9.7 in
terms of the variables of this exercise.

(b) Compute the optimal consumption C∗T−1 at time T −1, show that C∗T−1 =

αT−1WT−1, with αT−1 = (βT ξ)
1/(γ−1)

1+(βT ξ)1/(γ−1) for βT = 1.

(c) Show that the optimal value function at time T − 1 is given by vT−1(w) =
ρT−1βT−1

wγ

γ , where βT−1 = αγT−1 + βT (1− αT−1)γξ.

(d) Show that the optimal π∗t are the same for all t ≤ T − 1 and that the
optimal consumption is given by C∗t = αtWt, where the (nonrandom)

constants αt ∈ (0, 1) are given by αt−1 = (βtξ)
1/(γ−1)

1+(βtξ)1/(γ−1) , and (recursively)

βt−1 = αγt−1 + βt(1 − αt−1)γξ. In passing you can show that the value

functions are vt(x) = ρtβt
xγ

γ , t = 0, . . . , T .

(e) Note that we can write αt−1 = pt
1+pt

, with pt = (βtξ)
1/(γ−1). Show by

a simple computation the formula βt−1 = ( pt
1+pt

)γ−1, which equals αγ−1
t−1 .

Show also the backward recursion pt−1

a = pt
1+pt

, where a = ξ1/(γ−1).

(f) Here we do some time reversion, we put qk = 1+pT−k
pT−k

= 1 + 1
pT−k

. Show

that qk = 1 + qk−1

a , leading with q0 = 0 to qk =
∑k
j=0 a

−j = ak+1−1
ak(a−1)

, if

a 6= 1 (and k + 1 otherwise).
(g) Finally, show that the optimal consumption is given by C∗t = 1

qT−t
Wt,

t ≤ T − 1. What is v0(x)?
(h) Sketch the solution to the optimal consumption problem for the situation of

logarithmic utility, u(x) = log x. [For this utility function one has u′(x) =
x−1, which corresponds to γ = 0 above.]

[This exercise can be seen as a dynamic version of the situation in Proposition 4.7
and has been derived from the paper Paul A. Samuelson: Portfolio Selection
By Dynamic Stochastic Programming, The Review of Economics and Statistics
51(3), 239–246, 1969.]
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9.9 Show that Equation (9.21) has a unique solution λ if u1 = u2 and of HARA
type and when the optimal values for γt and VT are used.

9.10 Verify the validity of Equations (9.15) and (9.16) by the variational argu-
ments of Section 7.1. You are allowed to interchange expectation and differen-
tiation when needed.
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A Complementary and background results

A.1 Separating hyperplanes

Theorem A.1 Let C be a non-empty convex subset in Rn such that 0 ∈ Rn\C.
Then there exists a linear map T : Rn → R such that Tx ≥ 0 for all x in C and
Tx0 > 0 for at least one x0 ∈ C.

Proof Assume first that 0 /∈ Cl C. Consider the continuous map x → ||x||
and let Bn be the closed ball around zero with radius n, n ∈ N. Restricted to
Cn := Bn ∩ClC, this map attains a minimum dn at some xn if the intersection
is not empty. Obviously the dn are decreasing, since Cn ⊂ Cn+1. But, if
x ∈ Bn+1 \ Bn, then ||x|| > ||x′|| for all x′ ∈ Bn, hence the dn are all equal
to some d. Let then x0 ∈ Cl C such that ||x0|| = d, note that x0 6= 0 and
d > 0. Define Tx = x0 · x. Then Tx0 = d2 > 0. Let x ∈ C and let y be
the projection on the subspace spanned by x0. Then y = λx0 and one easily
shows, exploiting the convexity of C, that λ ≥ 1, see Exercise A.1. But then
Tx = Ty = λTx0 ≥ λd2. This shows the assertion under the extra assumption
0 /∈ Cl C.

To show the assertion for the general case, we may now assume that 0 ∈ ∂C.
We show that Rn \ Cl C 6= ∅. If C is contained in a linear subspace of Rn with
dimension less than n, the assertion is obvious. So we assume that the linear
span of C is equal to Rn and therefore there exists a basis of Rn consisting of n
linear independent vectors vk in C. Let z = −

∑
k vk and suppose that z ∈ ClC.

Then there zm ∈ C such that zm → z and in particular all their coordinates cmk
w.r.t. this basis converge to −1. Hence there is an certain index m0 such that

all cm0

k are negative. Let αk =
−cm0

k

1−
∑
k c

m0
k

for k = 1, . . . , n and α0 = 1
1−

∑
k c

m0
k

.

Then 0 is the convex combination 0 = α0zm0 +
∑n
k=1 αkvk and thus in C, which

contradicts the hypothesis. We conclude that Cl C is not all of Rn.
We can now choose a sequence of zn that all have strictly positive Euclidean

distance to C and zn → 0. Application of the first part of the proof yields the
existence of linear functionals Tn on Rn such that inf{Tn(x− zn) : x ∈ C} > 0.
We can represent Tn by unit vectors ηn, Tnx = ηn · x. By compactness of the
unit sphere, there exists a subsequence (ηnk) converging to some limit vector η,
with ||η|| = 1. But then for all x ∈ C one has

η · x = lim ηnk · (x− znk) ≥ 0.

If η · x were zero for all x ∈ C, then η · x = 0 for all x ∈ Rn, since Rn is the
linear span of C. But this cannot happen, because η 6= 0. Hence there must be
x0 ∈ C such that η · x0 > 0. �

Remark A.2 Notice that the first part of the proof shows that inf{Tx : x ∈
C} > 0 if x /∈ Cl C.
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A.2 Hahn-Banach theorem and some ramifications

Let X be a (real) vector space with a norm ‖ · ‖. Let T : X → R be a linear
operator. The operator norm of T is defined by {‖T‖ := sup{|Tx| : ‖x‖ = 1}.
We call T bounded if ‖T‖ <∞. Recall that T is continuous iff it is bounded.

Definition A.3 Let X be a (real) linear space. Call a function p : X → R
a quasinorm, if p is sub-additive, p(x + y) ≤ p(x) + p(y) for x, y ∈ X and
homogeneous, p(tx) = tp(x), for t ≥ 0, x ∈ X .

A simple and useful example is given by p(x) = c||x||, if X is endowed with a
norm || · || and c > 0.

Theorem A.4 (Hahn-Banach) Let T0 be a linear operator defined on a lin-
ear subspace Y of a real vector space X and p a quasinorm on X . Suppose that
|T0y| ≤ p(y) for all y ∈ Y. Then T0 admits an extension T : X → R such that
|Tx| ≤ p(x) for all x ∈ X . In particular, if T0 is a bounded linear operator on
a subspace of a normed space, then it extends to a bounded linear operator on
X such that ‖T‖ = ||T0||.

Proof Assume that Y 6= X . Then there exists x1 ∈ X \ Y. Let Y1 be the
linear hull of {x1}∪Y. Suppose that T1 is an extension of T0 to Y1. Since every
x ∈ Y1 can uniquely be written as x = αx1 + y, for some y ∈ Y and α ∈ R, it
must hold that T1x = αT1x1 + T0y. Write ξ1 := T1x1, then we have

(A.1) T1x = αξ1 + T0y.

Conversely, every T1 defined by (A.1) for some ξ1 ∈ R is a continuation of T0

to Y1. We will show that it is possible to choose ξ1 ∈ R such that |T1x| ≤ p(x)
for all x ∈ Y1. Thereto it is sufficient to prove that

(A.2) T1x ≤ p(x), ∀x ∈ Y1.

From the proposed definition of T1 with α = ±1, it then follows from (A.2) that
one necessarily has

ξ1 ≤ p(x1 + y)− T0y, ∀y ∈ Y(A.3)

ξ1 ≥ −p(x1 + y) + T0y, ∀y ∈ Y.(A.4)

But these two inequalities are also sufficient for (A.2) to hold. We now show that
one can choose ξ1 such that (A.3) and (A.4) hold true. Let y, y′ be arbitrary
elements of Y. Then

T0(y)− T0(y′) = T0(y − y′) ≤ p(y + x1 − (y′ + x1)) ≤ p(y + x1) + p(y′ + x1),

which yields
−p(y′ + x1)− T0y

′ ≤ p(y + x1)− T0y.

Taking the infimum over y and the supremum over y′, we get

sup{−p(y + x1)− T0y : y ∈ Y} ≤ inf{p(x1 + y)− T0y : y ∈ Y}.
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Hence a ξ1 satisfying (A.3) and (A.4) exists.
We finish the proof by invoking Zorn’s lemma. Consider the family of all

extensions T of T0 to linear subspaces of X that contain Y and that satisfy
|Tx| ≤ p(x) for all x in the domain of T . This family can be endowed with
the partial ordering defined by T1 � T2 iff T2 is an extension of T1. Then there
exists a maximal element, T say, in this family w.r.t. this partial ordering. By
the preceding part of the proof, the domain of T is all of X . Indeed, if this were
not the case, then we could take Y in the previous part Y as the domain of T ,
whereas we have shown that T then admits an extension to a linear subspace
of Y that strictly contains Y, which contradicts maximality of T . �

In the proof of the next theorem we need the concept of Minkowski functional.
Let E be a subset of X . Then one defines µE(x) = inf{t > 0 : t−1x ∈ E}. If
E is absorbing (for all x ∈ X there exists t > 0 such that tx ∈ E), then µE is
finite.

Lemma A.5 Let E be an absorbing convex subset of a linear space X . Then
µE is a quasinorm and {µE < 1} ⊂ E. If E is open, then {µE < 1} = E.

Proof Exercise. �

Theorem A.6 Let Y and Z be nonempty disjoint convex sets of a real normed
linear space X .

(i) Assume that Y is open. Then there exists a continuous linear functional
T on X and a number γ ∈ R such that

Tx < γ ≤ Ty,∀x ∈ Y, y ∈ Z.

(ii) If Y is compact and Z is closed, then

sup{Tx : x ∈ Y} < inf{Tx : x ∈ Z}.

Proof (i) Fix y0 ∈ Y and z 0 ∈ Z. Put x0 = z0 − y0 and C = Y − Z + x0.
Then C is a convex neighbourhood of zero and x0 /∈ C, since Y and Z are
disjoint. Let p be the Minkowski functional of C. By Lemma A.5 we know that
p is a quasinorm and that p(x0) ≥ 1. Let X0 be the 1-dimensional subspace
generated by x0. Define T0 on X0 by T0(tx0) = t. Then T0 is bounded and
linear on X0 and T0(tx0) ≤ tp(x0) = p(tx0) for t ≥ 0, whereas for t < 0 we have
T0(tx0) = t < 0 ≤ p(tx0). By Theorem A.4, T0 can be extended to a linear
map T on X such that T ≤ p. In particular, for x ∈ C, we have Tx ≤ p(x) ≤ 1
and T (−x) = −Tx ≥ −1. Hence |Tx| ≤ 1 on C ∩ (−C), so T is bounded on a
neighbourhood of zero. But then T is continuous.

Let y ∈ Y and c ∈ Z be arbitrary. Since Tx0 = T0x0 = 1, we have
Ty−Tz+1 = T (y−z+x0) ≤ p(y−z+x0). In view of Lemma A.5, p(y−z+x0) < 1
since C is open. It follows that Ty < Tz for all y ∈ Y and z ∈ Z. Define
γ = sup{Ty : y ∈ Y}. Then γ ≤ Tz for all z ∈ Z. But since Y is open, also
{Ty : y ∈ Y} is open and the supremum is not attained. This proves part (i).
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To prove part (ii), we first notice that d(Y,Z) > 0, where d is the metric
induced by the norm, since Y is compact and Z is closed. Hence, there exists
δ > 0 such that also the open δ-neighbourhood Yδ of Y has disjoint intersection
with Z. Application of part (i) yields that Ty < γ ≤ Tz for all y ∈ Yδ and
z ∈ Z. But, since Y is compact, we also have sup{Ty : y ∈ Y} < γ, which
proves the second part. �

We apply Theorem A.6 to the case where X = L1(Ω,F ,P). Recall that the dual
space of a normed space is the linear space of all bounded linear functionals. It
is well known that for p ∈ [1,∞) the dual space of Lp(Ω,F ,P) is isomorphic to
Lq(Ω,F ,P) with q = p

p−1 for all p ≥ 1, but we only need this fact for p = 1.

Lemma A.7 The dual space of L1(Ω,F ,P) is L∞(Ω,F ,P).

Proof Let T : L1(Ω,F ,P)→ R be a bounded linear operator. Define on F the
map ν by

ν(F ) = T (1F ).

Obviously, ν is by linearity of T an additive map and by continuity of T even
σ-additive. Indeed, if Fn ↓ ∅, then |ν(Fn)| ≤ ||T ||P(Fn) ↓ 0. Hence ν is a finite
signed measure on F , that is absolute continuous w.r.t. P. It follows from the
Radon-Nikodym theorem that there is Y ∈ L1(Ω,F ,P) such that

(A.5) ν(F ) = E [1FY ], ∀F ∈ F .

Next we show that Y is a.s. bounded. Let F = {Y > c}, for some c > 0. By
continuity of T , we have

c P (Y > c) ≤ E [1FY ] = |T (1F )| ≤ ||T || ||1F ||1 = ||T ||P(Y > c).

Hence, if P(Y > c) > 0 it follows that ||T || ≥ c. Stated otherwise ||T || ≥
sup{c > 0 : P(Y > c) > 0}. A similar argument yields ||T || ≥ sup{c > 0 :
P(Y < −c) > 0}. It follows that ||Y ||∞ ≤ ||T || <∞.

We finally show that for every X ∈ L1(Ω,F ,P), it holds that T (X) =
E [XY ]. By the above construction this is true for X of the form X = 1F .
Hence also for (nonnegative) simple functions. LetX ∈ L1(Ω,F ,P) be arbitrary.
Choose a sequence (Xn) of simple functions such that Xn → X a.s. and |Xn| ≤
|X|. Then, by dominated convergence, Xn → X in L1(Ω,F ,P) as well and,
since Y is a.s. bounded, we also have XnY → XY in L1(Ω,F ,P). But then
T (X) = E [XY ]. �

Remark A.8 In the proof of Lemma A.7 one actually has that ||Y ||∞ = ||T ||.
The analogous version for p ∈ (1,∞) can be proven as follows. Start from
Equation (A.5). It follows that for every X ∈ L∞(Ω,F ,P) one has T (X) =
EXY . For every n ∈ N, put Xn = sgn(Y )|Y |q−11En , where En = {|Y | ≤ n}.
Note that every Xn is bounded, XnY = |Y |q1En and |Xn|p = |Y |q1En . We
obtain

E |Y |q1En = T (Xn) ≤ ||T || · ||Xn||p = ||T || · (E |Y |q1En)1/p,
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from which it follows that (E |Y |q1En)1/q ≤ ||T || (here it is used that p > 1).
By letting n→∞, we obtain ||Y ||q ≤ ||T || <∞, so Y ∈ Lq(Ω,F ,P).

Finally, for X ∈ Lp(Ω,F ,P) we put Xn = X1{|X|≤n}, so that Xn ∈
L∞(Ω,F ,P) and ||X − Xn||p → 0. It follows by Hölder’s inequality (used
in the fourth step) that

T (X) = T (X −Xn) + T (Xn)

= T (X −Xn) + EXnY

= T (X −Xn) + E (Xn −X)Y + EXY
→ EXY.

Moreover, one also easily shows that actually ||T || = ||Y ||q.

Corollary A.9 Let Y and Z be nonempty disjoint convex sets in L1(Ω,F ,P).
If Y is compact and Z is closed, there exists an almost surely bounded random
variable B such that sup{E [Y B] : Y ∈ Y} < inf{E [ZB] : Z ∈ Z}.

Proof Combine Theorem A.6 and Lemma A.7. �

A.3 Existence of essential supremum

If (fn) is a sequence of measurable functions on some measurable space (Ω,F),
the function f defined by f(ω) = supn fn(ω) is measurable as well. If instead of a
sequence we take an arbitrary collection {fi}i∈I , measurability of the supremum
is no longer guaranteed. But even if this happens, the pointwise supremum may
have undesirable properties. Take for instance (Ω,F ,P) = ([0, 1],B, λ), where
λ is Lebesgue measure. Let fx = 1{x}, x ∈ [0, 1]. Then f = 1, whereas each
fx is almost surely zero. Both observations trigger the following definition and
theorem.

Theorem A.10 Let {fi}i∈I be an arbitrary collection of measurable functions
on (Ω,F ,P). Then there exists a measurable function f : Ω→ R such that

(i) f ≥ fi a.s. for all i ∈ I
(ii) If f ′ is any measurable function with the property that f ′ ≥ fi a.s. for all

i ∈ I, then f ′ ≥ f a.s.

The function f is thus a.s. unique and called the essential supremum of {fi}i∈I ,
notation: f = ess sup{fi}i∈I .

Proof Without loss of generality we may take the collection F := {fi}i∈I
bounded, apply an arctan-transformation if needed. Let F ′ be a countable
sub-collection of F , then fF

′
:= sup{f : f ∈ F ′} is measurable. Let

s := sup{E fF
′

: F ′ ⊂ F, F ′ countable}.

Choose a sequence of countable F ′n ⊂ F such that E fF ′n → s and let F ′∞ =
∪nF ′n. Then F ′∞ is countable and E fF ′∞ = s. Let f = fF

′
∞ . If (i) is not true for
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this f , then there exists i∗ ∈ I such that P(f < fi∗) > 0. Put F ∗ = F ′∞ ∪{fi∗}.
Then E fF∗ > E f = s, contradicting the definition of s. Hence we conclude
that (i) holds. Let now f ′ be measurable such that f ′ ≥ fi a.s. for all i ∈ I,
then obviously f ′ ≥ fi for i ∈ F ′∞ a.s. and hence f ′ ≥ f , which proves (ii). �

A.4 Results on the weak topology for measures

Let S be a complete separable metric space with metric d and let S be its Borel
σ-field. Denote by M1(S) the set of all probability measures on S. By D(S)
we denote the subset ofM1(S) that consists of all (finite) convex combinations
of Dirac measures. Recall that a subset E of a metric space is totally bounded,
if for every ε > 0, there exist finitely many open balls of radius ε whose union
contains E. Recall also that a subset of a metric space is compact iff it is totally
bounded and complete.

Lemma A.11 Let µ be a probability measure on (S,S). Then µ is tight, i.e.
for each ε > 0 there exists a compact set K such that µ(K) > 1− ε.

Proof For each n ∈ N there is a countable family of open balls Bnj , each with
radius 1

n , that covers S. Let Un =
⋃n
j=1Bnj , then Un ↑ S and hence for all

ε > 0, there is mn such that P(Unmn) > 1 − 2−nε. Let D =
⋂∞
n=1 Unmn ,

then D is obviously totally bounded, and so is its closure K. But since K,
being a closed subset of S, is complete, it is then also compact. Moreover,
µ(Kc) ≤ µ(Dc) ≤

∑
n≥1 µ(U cnmm) < ε. �

Proposition A.12 Let µ ∈M1(S). Then there exists a sequence (µn) ⊂ D(S)
such that µn → µ weakly.

Proof We first show that the assertion holds, if µ(Kc) = 0 for some compact set
K. For every n we can cover K by a finite set of open balls Bn,j , j = 1, . . . , kn
each having radius 1

n . Put An,1 = Bn,1 ∩K and for j > 1, recursively, An,j =

Bn,j ∩K \ (∪j−1
i=1An,i). Then all An,j are contained in Bn,j and ∪knj=1An,j = K.

Ignoring the j for which An,j is empty, we select xn,j ∈ An,j . Put

µn =
∑
j

µ(An,j)δxn,j ,

where δxn,j is the Dirac measure concentrated at xn,j . Note that also µn is
concentrated on K. Let f ∈ Cb(S). Since µ is concentrated on K, we have∫

f dµ =
∑
j

∫
An,j

f dµ.

Since f is uniformly continuous on K, we have that

ηn := sup{|f(x)− f(y)| : d(x, y) <
1

n
} → 0.
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Hence

|
∫
An,j

f dµ− µ(An,j)f(xn,j)| = |
∫
An,j

(f − f(xn,j)) dµ|

≤
∫
An,j

|f − f(xn,j)| dµ

≤ ηnµ(An,j).

By summing over j we obtain

|
∫
f dµ−

∫
f dµn| ≤ ηnµ(K) = ηn,

which yields the result.
For an arbitrary probability measure µ ∈ M1(S) we argue as follows. Let

ε > 0. In view of Lemma A.11, there exists a compact set K such that µ(K) >
1− ε. Define the (conditional) probability measure µ′ by µ′(B) = µ(B|K). Let
f ∈ Cb(S) and let µn be the measures as in the first part of the proof (with µ′

replacing µ). Then

|
∫
f dµ−

∫
f dµn| ≤ ε||f ||+ |µ(K)

∫
K

f dµ′ −
∫
K

f dµn|

≤ ε||f ||+ |(µ(K)− 1)

∫
K

f dµ′|+ |
∫
K

f dµ′ −
∫
K

f dµn|

≤ 2ε||f ||+ |
∫
K

f dµ′ −
∫
K

f dµn|.

Since the last term vanishes in view of the first part of the proof, the conclusion
of the theorem follows. �

Corollary A.13 If S0 is a countable dense subset, then we can choose the xn,j
in the proof of Proposition A.12 in S0. Moreover, we can approximate µ with a
convex mixture of Dirac distributions, where the mixing coefficients are rational.

Proof Obvious. �

A.5 Proofs of results of Section 9.1

This section contains proofs of results in Section 9.1. We shall use the indepen-
dence lemma 8.36.

Lemma A.14 Suppose v0, . . . , vT are functions on Rd satisfying

vT (x) ≥ gT (x),∀x ∈ Rd,
vt(x) ≥ gt(x, y) + v̂t+1(x, y),∀(x, y) ∈ Rd × Rm,∀t ∈ {0, . . . , T − 1}.

Then for all sequences u it holds that

(A.6) vt(X
u
t ) ≥ Jt(u) a.s., t = 0, . . . , T,

and E v0(X0) ≥ J(u).
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Proof Let t = T . Then vT (Xu
T ) ≥ gT (Xu

T ) = E [gT (Xu
T )|FT ] = JT (u), so (A.6)

holds for t = T . We proceed by backward induction, so assume that (A.6)
holds true at times t+ 1, . . . , T . Notice that by independence of εt and Ft and
Lemma 8.36 it holds that

(A.7) v̂t+1(Xu
t , Ut) = E [vt+1(ft(X

u
t , Ut, εt))|Ft] = E [vt+1(Xu

t+1)|Ft].

Then, by the assumption on vt, (A.7), and the induction assumption,

vt(X
u
t ) ≥ gt(Xu

t , Ut) + E [vt+1(Xu
t+1)|Ft]

≥ E [gt(X
u
t , Ut) + Jt+1(u)|Ft]

= E [gt(X
u
t , Ut) + E [

T−1∑
s=t+1

gs(X
u
s , Us) + gT (Xu

T )|Ft+1]|Ft]

= E [

T−1∑
s=t

gs(X
u
s , Us) + gT (Xu

T )|Ft]

= Jt(u).

This shows (A.6). Applying this inequality for t = 0 and taking expectations
yields the final assertion. �

Lemma A.15 Suppose that the Ut are such that Ut = ut(Xt), for some mea-
surable functions ut : Rd → Rm, and let M be the class of sequences u =
(u0, . . . , uT−1) of such functions. Suppose that for all u ∈ M one defines func-
tions vu0 , . . . , v

u
T by

vuT (x) = gT (x)

vut (x) = gt(x, ut(x)) + E vut+1(ft(x, ut(x), εt)), t = 0, . . . , T − 1.

Then it holds that Xu is Markov w.r.t. to the given filtration, vt(X
u
t ) = Jt(u)

for t = 0, . . . , T and

Jt(u) = E [

T−1∑
s=t

gs(X
u
s , us(X

u
s )) + gT (Xu

T )|Xu
t ].

Proof Similar to the proof of Lemma A.14 upon noting that the conditional
expectations w.r.t. Ft reduce to conditional expectations w.r.t. Xu

t in view of
Lemma 9.1. �

Proof of Theorem 9.6 (i) This assertion directly follows from Lemma A.14.
(ii) Suppose that the supremum in (9.4) is attained at y = u∗t (x). Then, for

all t ∈ {0, . . . , T − 1},

vt(x) = gt(x, u
∗
t (x)) + v̂t+1(x, u∗t (x)).

We now apply Lemma A.15 to obtain E v0(X0) = E J0(u∗) = J(u∗). Since for
every other u ∈M, it holds that J(u) ≤ E v0(X0), it follows that u∗ is optimal.
Likewise one shows that vt(X

u∗

t ) = Jt(u
∗).
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Conversely, assume that u∗ ∈ M is optimal. Let t = T − 1 and Xu∗

T−1

be the current state. Suppose that the supremum in (9.4) is not attained for
u∗T−1(Xu∗

T−1) with positive probability. From the definition of vT−1 it follows

that there exists some ũT−1(Xu∗

T−1) such that a.s.

gT−1(Xu∗

T−1, ũT−1(Xu∗

T−1)) + v̂T (Xu∗

T−1, ũT−1(Xu∗

T−1))

≥ gT−1(Xu∗

T−1, u
∗
T−1(Xu∗

T−1)) + v̂t+1(Xu∗

T−1, u
∗
T−1(Xu∗

T−1)),

where the inequality is strict with positive probability. After taking expecta-
tions, a strict inequality emerges. We claim that ũ = (u∗0, . . . , u

∗
T−2, ũT−1) is

a sequence that yields a higher performance than u∗. Indeed X ũ
t = Xu∗

t for
all t ≤ T − 1 and hence E gt(X ũ

t , ũt(X
ũ
t )) = E gt(Xu∗

t , u∗t (X
u∗

t )) for t ≤ T − 2,
whereas

E gT−1(X ũ
T−1, ũT−1(X ũ

T−1)) + E v̂T (X ũ
T−1, ũT−1(X ũ

T−1))

> E gT−1(Xu∗

T−1, u
∗
T−1(Xu∗

t )) + E v̂T (Xu∗

T−1, u
∗
T−1(Xu∗

T−1)).

But then J(ũ) > J(u∗), which contradicts optimality of u∗. Hence we must
have vT−1(Xu∗

T−1) = JT−1(u∗) by virtue of Lemma A.15.
One proceeds by induction. Suppose that the supremum in (9.4) is attained

for u∗s(X
u∗

s ) with probability one, for all t + 1 ≤ s ≤ T − 1, but that, with
positive probability, this is not true for s = t. Then one argues as above that
there exists a ũt such that with ũ = (u∗0, . . . , u

∗
t−1, ũt, u

∗
t+1, . . . , u

∗
T−1) it holds

that J(ũ) > J(u∗), which again contradicts optimality of u∗.
In passing, we also obtain that vt(X

u∗

t ) = Jt(u
∗) and supu J(u) = J(u∗) =

E v0(X0). �

A.6 Exercises

A.1 The proof of the first part of Theorem A.1 says ”one easily shows that
λ ≥ 1”. You may have noticed that in the text before that, convexity of C is
not used, and this is what is needed to establish λ ≥ 1. Define xt = tx+(1−t)x0,
t ∈ [0, 1]. For which t is ‖xt‖ minimal? Exploit this to prove the assertion.

B Glossary of basic results in probability theory

This part is meant for readers who are not familiar with or have only marginally
been exposed to measure theory. We collect a number of basic results in prob-
ability, see for details and an extensive treatment for instance the lecture notes
on Measure theoretic probability.

B.1 σ-algebras and measures

Definition B.1 Let S be a non-empty set. A collection Σ ⊂ 2S is called a
σ-algebra (on S) if
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(i) S ∈ Σ,

(ii) E ∈ Σ⇒ Ec ∈ Σ,

(iii) E1, E2, · · · ∈ Σ⇒
⋃∞
n=1En ∈ Σ.

If Σ is a σ-algebra on S, then (S,Σ) is called a measurable space and the elements
of Σ are called measurable sets.

Notice that always ∅ belongs to a σ-algebra, since ∅ = Sc. One also has
E1, E2, · · · ∈ Σ ⇒

⋂∞
n=1En ∈ Σ. Property (iii) is valid for finite unions too, as

well as the latter intersection property.

If C is any collection of subsets of S, then by σ(C) we denote the smallest σ-
algebra containing C. This means that σ(C) is the intersection of all σ-algebras
that contain C. If Σ = σ(C), we say that C generates Σ. The union of two
σ-algebras Σ1 and Σ2 on a set S is usually not a σ-algebra. We write Σ1 ∨ Σ2

for σ(Σ1 ∪ Σ2).
One of the most relevant σ-algebras is B = B(R), the Borel sets of R. Let O

be the collection of all open subsets of R with respect to the usual topology (in
which all intervals (a, b) are open). Then B := σ(O). Of course, one similarly
defines the Borel sets of Rd, and in general, for a topological space (S,O), one
defines the Borel-sets as σ(O).

Let Σ be a σ-algebra on a set S. We consider mappings µ : Σ → [0,∞]. Note
that ∞ is allowed as a possible value. A mapping µ is called σ-additive or
countably additive, if µ(∅) = 0 and if µ(∪nEn) =

∑
n µ(En) for every sequence

(En) of disjoint sets of Σ.

Definition B.2 Let (S,Σ) be a measurable space. A countably additive map-
ping µ : Σ→ [0,∞] is called a measure. The triple (S,Σ, µ) is called a measure
space.

Some extra terminology follows. A measure is called finite if µ(S) < ∞. It is
called σ-finite, if we can write S = ∪nSn, where the Sn are measurable sets and
µ(Sn) < ∞. If µ(S) = 1, then µ is called a probability measure. Here are the
first elementary properties of a measure.

Proposition B.3 Let (S,Σ, µ) be a measure space. Then the following hold
true (all the sets below belong to Σ).

(i) If E ⊂ F , then µ(E) ≤ µ(F ).

(ii) µ(E ∪ F ) ≤ µ(E) + µ(F ).

(iii) µ(∪nk=1Ek) ≤
∑n
k=1 µ(Ek)

If µ is finite, we also have

(iv) If E ⊂ F , then µ(F \ E) = µ(F )− µ(E).

(v) µ(E ∪ F ) = µ(E) + µ(F )− µ(E ∩ F ).

Measures have certain continuity properties.

Proposition B.4 Let (En) be a sequence in Σ.
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(i) If the sequence is increasing, with limit E = ∪nEn, then µ(En) ↑ µ(E) as
n→∞.

(ii) If the sequence is decreasing, with limit E = ∩nEn and if µ(En) < ∞
from a certain index on, then µ(En) ↓ µ(E) as n→∞.

Corollary B.5 Let (S,Σ, µ) be a measure space. For an arbitrary sequence
(En) of sets in Σ, we have µ(∪∞n=1En) ≤

∑∞
n=1 µ(En).

Consider a measure space (S,Σ, µ) and let E ∈ Σ be such that µ(E) = 0. If N
is a subset of E, then it is fair to suppose that also µ(N) = 0. But this can only
be guaranteed if N ∈ Σ. Therefore we introduce some new terminology. A set
N ∈ S is called a null set or µ-null set, if there exists E ∈ Σ with E ⊃ N and
µ(E) = 0. The collection of null sets is denoted by N , or Nµ since it depends
on µ. One can show that N is a σ-algebra and one can extend µ to Σ̄ = Σ∨N .
If the extension is called µ̄, then we have a new measure space (S, Σ̄, µ̄), which
is complete, all µ̄-null sets belong to the σ-algebra Σ̄.

Let (S,Σ) be a measurable space. Recall that the elements of Σ are called
measurable sets. Also recall that B = B(R) is the collection of all the Borel sets
of R.

Definition B.6 A mapping h : S → R is called measurable if h−1[B] ∈ Σ for
all B ∈ B.

It is clear that this definition depends on B and Σ. When there are more
σ-algebras in the picture, we sometimes speak of Σ-measurable functions, or
Σ/B-measurable functions, depending on the situation. If S is a topological
space with a topology T and if Σ = σ(T ), a measurable function h is also called
a Borel measurable function. We will often use the shorthand notation {h ∈ B}
for the set {s ∈ S : h(s) ∈ B}. Likewise we also write {h ≤ c} for the set
{s ∈ S : h(s) ≤ c}.

Proposition B.7 Let (S,Σ) be a measurable space and h : S → R.

(i) If C is a collection of subsets of R such that σ(C) = B, and if h−1[C] ∈ Σ
for all C ∈ C, then h is measurable.

(ii) If {h ≤ c} ∈ Σ for all c ∈ R, then h is measurable.

(iii) If S is topological and h continuous, then h is measurable with respect
to the σ-algebra generated by the open sets. In particular any constant
function is measurable.

(iv) If h is measurable and another function f : R → R is Borel measurable
(B/B-measurable), then f ◦ h is measurable as well.

The set of measurable functions will also be denoted by Σ. This notation is of
course a bit ambiguous, but it turns that no confusion can arise. Later on we
often need the set of nonnegative measurable functions, denoted Σ+.

Proposition B.8 We have the following properties.
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(i) The collection Σ of Σ-measurable functions is a vector space and products
of measurable functions are measurable as well.

(ii) Let (hn) be a sequence in Σ. Then also inf hn, suphn, lim inf hn, lim suphn
are in Σ, where we extend the range of these functions to [−∞,∞]. The
set L, consisting of all s ∈ S for which limn hn(s) exists as a finite limit,
is measurable.

We turn to a probabilistic setting and change notation. So we consider a set Ω,
to be interpreted as outcomes of some experiment (instead of S) and F (instead
of Σ) a σ-algebra defined on it, called events. With a probability measure,
denoted P, defined on F , one has a probability space (Ω,F ,P). In this setting
Definition B.6 takes the following form.

Definition B.9 A function X : Ω → R is called a random variable if it is
(F-)measurable.

Following the tradition, we denote random variables by X (or other capital
letters), rather than by h, as just above. By definition, random variables are
thus nothing else but measurable functions with respect to a given σ-algebra
F . Given X : Ω → R, let σ(X) = {X−1[B] : B ∈ B}. Then σ(X) is a σ-
algebra, and X is a random variable in the sense of Definition B.9 iff σ(X) ⊂ F .
It follows that σ(X) is the smallest σ-algebra on Ω such that X is a random
variable. Sometimes we need the following result.

Proposition B.10 Let X : Ω → R. If Y : Ω → R is σ(X)-measurable, there
exists a Borel-measurable function f : R→ R such that Y = f ◦X. This result
is, mutatis mutandis, also true when X and Y take values in higher dimensional
Euclidean spaces.

B.2 Lebesgue integrals and expectation

Definition B.11 A function f : S → [0,∞) is called a nonnegative simple
function, if it has a representation as a finite sum

(B.8) f =

n∑
i=1

ai1Ai ,

where ai ∈ [0,∞) and Ai ∈ Σ. The class of all nonnegative simple functions is
denoted by S+.

Definition B.12 Let f ∈ S+. The (Lebesgue) integral of f with respect to the
measure µ is defined as

(B.9)

∫
f dµ :=

n∑
i=1

aiµ(Ai),

when f has representation (B.8).
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We say that a property of elements of S holds almost everywhere (usually abbre-
viated by a.e. or by µ-a.e.), if the set for which this property does not hold, has
measure zero. For instance, we say that two measurable functions are almost
everywhere equal, if µ({f 6= g}) = 0. We continue with a definition, in which
we use that we already know how to integrate simple functions.

Definition B.13 Let f be a nonnegative measurable function. The integral
of f is defined as µ(f) := sup{µ(h) : h ≤ f, h ∈ S+}, where µ(h) is as in
Definition B.12.

Proposition B.14 Let f, g ∈ Σ+. If f ≤ g a.e., then µ(f) ≤ µ(g), and if f = g
a.e., then µ(f) = µ(g).

Lemma B.15 Let f ∈ Σ+ and suppose that µ(f) = 0. Then f = 0 a.e.

The first important limit theorem is the Monotone Convergence Theorem.

Theorem B.16 Let (fn) be a sequence in Σ+, such that fn+1 ≥ fn a.e. for
each n. Let f = lim sup fn. Then µ(fn) ↑ µ(f) ≤ ∞.

The next limit result is known as Fatou’s lemma.

Lemma B.17 Let (fn) be an arbitrary sequence in Σ+. Then lim inf µ(fn) ≥
µ(lim inf fn). If there exists a function h ∈ Σ+ such that fn ≤ h a.e., and
µ(h) <∞, then lim supµ(fn) ≤ µ(lim sup fn).

We now extend the notion of integral to (almost) arbitrary measurable functions.
Let f ∈ Σ. For (extended) real numbers x one defines x+ = max{x, 0} and
x− = max{−x, 0}. Then, for f : S → [−∞,∞], one defines the functions f+

and f− by f+(s) = f(s)+ and f−(s) = f(s)−. Notice that f = f+ − f− and
|f | = f+ + f−. If f ∈ Σ, then f+, f− ∈ Σ+.

Definition B.18 Let f ∈ Σ and assume that µ(f+) <∞ or µ(f−) <∞. Then
we define µ(f) := µ(f+)− µ(f−). If both µ(f+) <∞ and µ(f−) <∞, we say
that f is integrable. The collection of all integrable functions is denoted by
L1(S,Σ, µ). Note that f ∈ L1(S,Σ, µ) implies that |f | <∞ µ-a.e.

Proposition B.19 Let f, g ∈ L1(S,Σ, µ).
(i) If α, β ∈ R, then αf +βg ∈ L1(S,Σ, µ) and µ(αf +βg) = αµ(f) +βµ(g).

Hence µ can be seen as a linear operator on L1(S,Σ, µ).
(ii) If f, g ∈ L1(S,Σ, µ) and f ≤ g a.e., then µ(f) ≤ µ(g).

The next theorem is known as the Dominated Convergence Theorem, also called
Lebesgue’s Convergence Theorem.

Theorem B.20 Let (fn) ⊂ Σ and f ∈ Σ. Assume that fn(s) → f(s) for all s
outside a set of measure zero. Assume also that there exists a function g ∈ Σ+

such that supn |fn| ≤ g a.e. and that µ(g) < ∞. Then µ(|fn − f |) → 0, and
hence µ(fn)→ µ(f).
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Consider again the probabilistic setting. The important concept to understand
is that the expectation of a random variable is a Lebesgue integral. Indeed,
consider a probability space (Ω,F ,P), and let X be a (real) random variable
defined on it. Recall that X : Ω → R is by definition a measurable function.
Making the switch between the notations (S,Σ, µ) and (Ω,F ,P), one has the
following notation for the integral of X w.r.t. P

(B.10) P(X) =

∫
Ω

X dP,

provided that the integral is well defined. Other often used notations for this
integral are PX and EX. The latter is the favorite one among probabilists and
one speaks of the Expectation of X. Note also that EX is always defined when
X ≥ 0 almost surely. The latter concept meaning almost everywhere w.r.t. the
probability measure P. We abbreviate almost surely by a.s.

Remark B.21 It now follows that all results for integrals of functions w.r.t.
general measures are also valid for expectations.

For instance, the Monotone convergence theorem B.16 in this setting reads
as follows. If (Xn) is a sequence in F+ such that Xn+1 ≥ Xn a.s. for each n,
and X = lim supXn, then EXn ↑ EX ≤ ∞.

The Dominated convergence theorem B.20 takes the form E |Xn −X| → 0
and EXn → EX, once Xn(ω)→ X(ω) for all ω outside a set of zero probability

(also written as Xn
a.s.→ X, see Definition B.27) and there is Y ≥ 0 s.t. |Xn| ≤ Y

and EY < ∞. If it happens that all Xn are a.s. bounded by a constant c > 0,
we can take Y = c.

The following proposition is known as Jensen’s inequality.

Proposition B.22 Let g : G → R be convex and X a random variable with
P(X ∈ G) = 1. Assume that E |X| <∞ and E |g(X)| <∞. Then

E g(X) ≥ g(EX).

Definition B.23 Let 1 ≤ p < ∞ and X a random variable on (Ω,F ,P). If
E |X|p < ∞, we write X ∈ Lp(Ω,F ,P) and ||X||p = (E |X|p)1/p. One also has
||X||∞ = inf{C ≥ 0 : P(|X| ≤ C) = 1}. Shorthand notation Lp is often used.

In fact || · ||p (1 ≤ p ≤ ∞) is a norm, provided that one identifies random
variables that are a.s. equal. This identification can be seen as an equivalence
relation, X ∼ Y then means P(X = Y ) = 1, and the set of equivalence classes
of Lp(Ω,F ,P) is denoted Lp(Ω,F ,P), truly a complete space.

The following is the famous Cauchy-Schwarz inequality.

Proposition B.24 Let X,Y ∈ L2. Then E |XY | ≤ ||X||2 ||Y ||2.

Proposition B.25 Let X,Y ∈ L1(Ω,F ,P) be independent random variables.
Then XY ∈ L1(Ω,F ,P) and E (XY ) = EX · EY .
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Theorem B.26 Let p ∈ [1,∞]. The space Lp(Ω,F ,P) is complete in the fol-
lowing sense. Let (Xn) be a Cauchy-sequence in Lp: ||Xn − Xm||p → 0 for
n,m → ∞. Then there exists a limit X ∈ Lp such that ||Xn −X||p → 0. The
limit is unique in the sense that any other limit X ′ satisfies ||X −X ′||p = 0.

B.3 Convergence of random variables

Let X,X1, X2, . . . be random variables. We have the following definitions of
different modes of convergence. We will always assume that the parameter n
tends to infinity, unless stated otherwise.

Definition B.27 Here a three fundamental convergence concepts.

(i) If P(ω : Xn(ω)→ X(ω)) = 1, then we say that Xn converges to X almost
surely (a.s.).

(ii) If P(|Xn−X| > ε)→ 0 for all ε > 0, then we say that Xn converges to X
in probability.

(iii) If E |Xn −X|p → 0 (equivalently, ||Xn −X||p → 0) for some p ≥ 1, then
we say that Xn converges to X in p-th mean, or in Lp.

For these types of convergence we use the following notations: Xn
a.s.→ X, Xn

P→
X and Xn

Lp→ X respectively.

The following relations hold between the types of convergence introduced in
Definition B.27.

Proposition B.28 The following implications hold.

(i) If Xn
a.s.→ X, then Xn

P→ X.

(ii) If for all ε > 0 the series
∑
n P(|Xn−X| > ε) is convergent, then Xn

a.s.→ X.

(iii) If Xn
Lp→ X, then Xn

P→ X.

(iv) If p > q > 0 and Xn
Lp→ X, then Xn

Lq→ X.

Proposition B.29 There is equivalence between

(i) Xn
P→ X and

(ii) every subsequence of (Xn) contains a further subsequence that is almost
surely convergent to X.

It follows that, if Xn
P→ X then there exists a subsequence (Xnk) such that

Xnk
a.s.→ X.

Proposition B.30 Let X,X1, X2, . . . be random variables and g : R → R be

continuous. If Xn
a.s.→ X, we also have g(Xn)

a.s.→ g(X) and if Xn
P→ X, then

also g(Xn)
P→ g(X).
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B.4 Conditional expectation and martingales

Consider a probability space (Ω,F ,P) and let G be a sub-σ-algebra of F .

Definition B.31 Let X ∈ L1(Ω,F ,P). A random variable X̂ is called a version
of the conditional expectation E [X|G], if it is G-measurable and if

(B.11) E X̂1G = EX1G,∀G ∈ G.

Versions are a.s. unique, i.e. if X ′ is another G-measurable random variable
satisfying (B.11), then P(X̂ = X ′) = 1. Usually we don’t bother too much about
possibly different version, and simply write E [X|G] for X̂, although formally
E [X|G] is an equivalence class of random variables.

If G = σ(Y ), where Y is a random variable, then one usually writes E [X|Y ]
instead of E [X|σ(Y )].

The existence of a random variable X̂ satisfying the requirements of Defini-
tion B.31 can for instance be shown as a consequence of the Radon-Nikodym
theorem B.38.

Remark B.32 One can also define versions of conditional expectations for ran-
dom variables X with P(X ∈ [0,∞]) = 1 without requiring that EX < ∞.
Again this follows from the Radon-Nikodym theorem. The definition of condi-
tional expectation can also be extended to e.g. the case where X = X+ −X−,
where EX− <∞, but EX+ =∞.

Proposition B.33 The following elementary properties hold.

(i) If X ≥ 0 a.s., then X̂ ≥ 0 a.s. If X ≥ Y a.s., then X̂ ≥ Ŷ a.s.

(ii) E X̂ = EX.

(iii) If a, b ∈ R and if X̂ and Ŷ are versions of E [X|G] and E [Y |G], then
aX̂ + bŶ is a version of E [aX + bY |G].

(iv) If X is G-measurable, then X is a version of E [X|G].

Theorem B.34 Additional properties of conditional expectations are as fol-
lows.

(i) If H is a sub-σ-algebra of G, then any version of E [X̂|H] is also a ver-
sion of E [X|H] and vice versa (tower property). In short, we write
E [E [X|G]|H] = E [X|H].

(ii) If Z is G-measurable such that ZX ∈ L1(Ω,F ,P), then ZX̂ is a version
of E [ZX|G]. We write ZE [X|G] = E [ZX|G].

(iii) Let X̂ be a version of E [X|G]. If H is independent of σ(X)∨G, then X̂ is
a version of E [X|G ∨ H]. In short, E [X|G ∨ H] = E [X|G]. In particular,
EX is a version of E [X|H] if σ(X) and H are independent, in this case
E [X|H] = EX.
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(iv) Let X be a G-measurable random variable and let the random variable
Y be independent of G. Assume that h ∈ B(R2) is such that h(X,Y ) ∈
L1(Ω,F ,P). Put ĥ(x) = E [h(x, Y )]. Then ĥ is a Borel function and ĥ(X)
is a version of E [h(X,Y )|G].

(v) If c : R → R is a convex function and E |c(X)| < ∞, then c(X̂) ≤ C,
a.s., where C is any version of E [c(X)|G]. We often write c(E [X|G]) ≤
E [c(X)|G] (Jensen’s inequality for conditional expectations).

(vi) ||X̂||p ≤ ||X||p, for every p ≥ 1.

A stochastic process, or simply a process, (in discrete time) is nothing else but
a sequence of random variables defined on some underlying probability space
(Ω,F ,P). The time set is often taken as {0, 1, 2, . . .} in which case we have e.g.
a sequence of random variables X0, X1, X2, . . .. Such a sequence as a whole is
often denoted by X. So we have X = (Xn)n≥0. Unless otherwise stated, all
process below have their values in R, while the extension to Rd-valued processes
should be clear.

We shall need a sequence of sub-σ-algebras of F , that form a filtration F.
This means that F = (Fn)n≥0, where each Fn is a σ-algebra satisfying Fn ⊂ F ,
and moreover Fn ⊂ Fn+1, for all n ≥ 0. The sequence F is thus increasing.
Recall that in general a union of σ-algebras is not a σ-algebra itself. We define
F∞ := σ(∪∞n=0Fn). Obviously Fn ⊂ F∞ for all n. If X is a stochastic process,
then one defines FXn := σ(X0, . . . , Xn). It is clear that FX := (FXn )n≥0 is a
filtration.

Given a filtration F, we shall often consider F-adapted processes. A process
Y is F-adapted (or adapted to F, or just adapted), if for all n the random variable
Yn is Fn-measurable (Yn ∈ Fn). If F = FX for some process X, then another
process Y is FX -adapted, iff for all n, there exists, in view of Proposition B.10,
a Borel function fn : Rn+1 → R such that Yn = fn(X0, . . . , Xn). Obviously X
is adapted to FX .

A filtration can be interpreted as an information flow, where each Fn rep-
resents the available information up to time n. For F = FX , the information
comes from the process X and the information at time n is presented by events
in terms of X0, . . . , Xn.

Given a filtration F, a process Y = (Yn)n≥1 is called F-predictable (or just
predictable) if Yn ∈ Fn−1, n ≥ 1. A predictable process Y may be interpreted
as a strategy, the action at time n depends on the information available at time
n− 1. In a trivial sense, one can ‘perfectly’ predict Yn at time n− 1.

Definition B.35 A stochastic process M = (Mn)n≥0 is called a martingale (or
F-martingale), if it is adapted to a filtration F, if Mn ∈ L1(Ω,F ,P) for all n ≥ 0
and if

(B.12) E [Mn+1|Fn] = Mn a.s.

Equation (B.12), valid for all n ≥ 0 is called the martingale property of M .
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The definition of martingales has been given in terms of ‘one-step-ahead’ con-
ditional expectations. If we change (B.12) in the sense that we replace on the
left hand side E [Mn+1|Fn] with E [Mm|Fn], m ≥ n+ 1 arbitrary, we obtain an
equivalent definition.

If X is any process, we define the process ∆X by

∆Xn = Xn −Xn−1, n ≥ 1.

It trivially follows that Xn = X0 +
∑n
k=1 ∆Xk. Sometimes it is convenient to

adopt the convention ∆X0 = X0, from which we then obtain Xn =
∑n
k=0 ∆Xk.

The martingale property of an adapted integrable process X can then be for-
mulated as E [∆Xn+1|Fn] = 0 a.s. for n ≥ 0. An equivalent formulation is
E [∆Xn+11F ] = 0 for all F ∈ Fn for n ≥ 0.

Let Sn =
∑n
k=1 Yk∆Xk, n ≥ 1, S0 = 0. When X is a martingale, one

speaks of a martingale transform, the terminology is justified is justified by the
following proposition.

Proposition B.36 Let X be an adapted process and Y a predictable process.
Assume that the Xn are in L1(Ω,F ,P) as well as the Yn∆Xn. Then S is a
martingale if X is a martingale.

B.5 Change of measure

The following can also be presented in a much more general way for measures
on a measurable space (S,Σ), but we only need the probabilistic setting.

Definition B.37 Let P and Q be probability measures on a measurable space
(Ω,F). We say that Q is absolutely continuous w.r.t. P (notation Q � P), if
Q(E) = 0 for every E ∈ F with P(E) = 0. The measures P and Q are called
equivalent (notation P ∼ Q) if Q� P and P� Q.

The next theorem is known as the Radon-Nikodym theorem for absolutely con-
tinuous probability measures.

Theorem B.38 Let P and Q be probability measures on F . There is equiva-
lence between Q � P and the existence of a random variable Z ∈ L1(Ω,F ,P)
such that Q(E) = P(1EZ) for all E ∈ F . Moreover, in this case Z is unique in
the sense that any other Z ′ with this property is such that P(Z = Z ′) = 1. The
random variable Z is called the Radon-Nikodym derivative of Q w.r.t. P and is
often written as Z = dQ

dP .

To distinguish between expectations w.r.t. P and Q , these are often denoted by
EP (instead of E) and EQ respectively. Note that for Q� P one has EP Z = 1.
One can additionally show that P(Z > 0) = 1 is equivalent to P ∼ Q.

For X ∈ L1(Ω,F ,Q) one has

(B.13) EQX = EP [XZ].

For conditional expectations, the corresponding result is different.
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Proposition B.39 Let P and Q be two probability measures on (Ω,F) and
assume that Q � P with Z = dQ

dP . Let G be a sub-σ-algebra of F . Let X be a
random variable. Then EQ |X| <∞ iff EP |X|Z <∞ and in either case we have

(B.14) EQ [X|G] =
EP [XZ|G]

EP [Z|G]
a.s. w.r.t. Q .

If Q ∼ P, then this equality is also valid P-a.s.

Put Z̃ = Z
EP [Z|G] , a kind of conditionally normalized version of Z as EP [Z̃|G] = 1.

Observe that (B.14) can then be written as EQ [X|G] = EP [XZ̃|G], much like
formula (B.13) for unconditional expectations.
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