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1 Linear functionals on R"

Let E=R™. It is well known that every linear map 7' : E — R™ can uniquely
be represented by an m x n matrix M = M(T) via T = Mz, which we will
prove below for the case m = 1. Take the result for granted, let m = 1 and
(-,-) be the usual inner product on E, (x,y) = x'y. For this case the matrix
M becomes a row vector. Let y = M T € R™, then we have

Tz = (z,y). (1.1)

Hence we can identify the mapping T" with the vector y. Let E* be the set of
all linear maps on E. Then we have for this case the identification of E* with

E itself via equation (1.1]).

Suppose that we know that holds. Then the kernel K of T is the space
of vectors that are orthogonal to y and the orthogonal complement of K is the
space of all vectors that are multiples of y. This last observation is the core of
the following elementary proof of .

Let us first exclude the trivial situation in which 7' = 0. Let K be the kernel
of T. Then K is a proper linear subspace of E. Take a nonzero vector z in
the orthogonal complement of K. FEvery vector xz can be written as a sum
x =M+ u, with A € R and u € K. Then we have

Tr = ATz (1.2)

Of course we have

Ao o2) (1.3)
(2,2)
Let y = <2z>z. Then (z,y) = (zT,; (z,z). But then we obtain from
and that (z,y) = Tz. Uniqueness of y is shown as follows. Let ' € E be
such that Tz = (z,y'). Then (z,y —y') is zero for all z € E, in particular for
x =y —y'. But then y — 3’ must be the zero vector.

The interesting observation is that this proof carries over to the case where one
works with (continuous) linear functionals on a Hilbert space, which we treat
in the next section.

2 Linear functionals on a Hilbert space

Let H be a (real) Hilbert space, a vector space over the real numbers, endowed
with an inner product (-, -), that is complete w.r.t. the norm || - || generated by
this inner product. Let T be a continuous linear functional on H. We will prove
the Riesz-Fréchet theorem, which states that every continuous linear functional
on H is given by an inner product with a fixed element of H.

Theorem 2.1 There ezists a unique element y € H such that Tax = (x,y).



Proof. We exclude the trivial case in which 7" = 0. Let K be the kernel of T
Since T is linear, K is a closed subspace of H. Take an element w with Tw # 0.
Since K is closed, the orthogonal projection u of w on K exists and we have
w = u + z, where z belongs to the orthogonal complement of K. Obviously
z # 0. The rest of the proof is exactly the same as in the previous section. [

This theorem can be summarized as follows. The dual space H* of H (the
linear space of all continuous linear functionals on H) can be identified with
H itself. Moreover, we can turn H* into a Hilbert space itself by defining an
inner product (-,-)* on H*, Let T, T’ € H* and let y,y’ the elements in H that
are associate to H according to the theorem. Then we define (T',T")* = (y,y).
One readily shows that this defines an inner product. Let || - ||* be the norm
on H*. Then H* is complete as well. Indeed, let (T},) be a Cauchy sequence
in H* with corresponding elements (y,,) in H, satisfying T, = (x,y,). Then
|Tn — Twll* = |lyn — Yml||- The sequence (y,) is thus Cauchy in H and has
a limit y. Define Tz = (x,y). Then T is obviously linear and ||T,, — T||* =
[lyn — y|| — 0. Concluding, we say that the normed spaces (H*,|| - ||*) and
(H,|| -||) are isomorphic.

The usual operator norm of a linear functional T" on a normed space is defined
as ||T|[* = sup,.o ‘\%Il It is a simple consequence of the Cauchy-Schwartz
inequality that this norm ||-||* is the same as the one in the previous paragraph.

3 Real and complex measures

Consider a measurable space (S,X). A function p: ¥ — C is called a complex
measure if it is countably additive. Such a p is called a real or a signed measure
if it has its values in R. What we called a measure before, will now be called
a positive measure. In these notes a measure is either a positive or a complex
(or real) measure. Notice that a positive measure can assume the value infinity,
unlike a complex measure, whose values lie in C (see also (3.4).

Let p be a complex measure and FE7, Es,... be disjoint sets in ¥ with £ =
Ui21 E;, then (by definition)

w(E) = Z n(E:),
i>1

where the sum is convergent and the summation is independent of the order.
Hence the series is absolutely convergent as well, and we also have

(B < Z |u(Ei)| < oo (3.4)

For a given set £ € X let II(E) be the collection of all measurable partitions
of E, countable partitions of E with elements in 3. If u is a complex measure,
then we define

HI(E) = sup{ 3 |u(E) : Es € w(E) and =(E) € I(E)}.



It can be shown (and this is quite some work) that |u| is a (positive) measure
on (S,%) with |u|(S) < oo and it is called the total variation measure (of ).
Notice that always |u|(E) > |u(F)| and that in particular pu(E) = 0 as soon as
ul(E) = 0.

In the special case where  is real valued,

1
pt =5 (ul+ )

and
_ 1
po =5 (lul=p)
define two bounded positive measures such that
p=pt—p.

This decomposition of the real measure p is called the Jordan decomposition.

4 Absolute continuity and singularity

Consider a measurable space (S, %). Let u be a positive measure and A a com-
plex or positive measure on this space. We say that A is absolutely continuous
w.r.t. g (notation A < p), if A(E) = 0 for every E € ¥ with u(E) = 0. An
example of absolute continuity we have seen already in the previous section:
< |p| for a complex measure pu. The measures p and A are called mutually
singular (notation A L ) if there exist disjoint sets F and F in ¥ such that
AMA) =AANE) and p(A) = p(ANF) for all A € 3. Notice that in this case
AMF)=u(E)=0.

Proposition 4.1 Let u be a positive measure and \1, Ao arbitrary measures,
all defined on the same measurable space. Then the following properties hold
true.

1. If A L pand Ao L p, then Ay + Ao L .

2. If M < pand Ay < p, then A\ + Ao < p.

8. If My < poand Ay L p, then Ay L Ao

4. If My < poand Ay L p, then Ay = 0.
Proof. Exercise [[.2l O
Proposition 4.2 Let p be a positive measure and A\, and As be arbitrary mea-
sures on (S,X). Assume that A < 1 and As L . Put

A= Ag + s (4.5)

Suppose that X also admits the decomposition A = X, + X, with X, < p and
N, L. Then X, = X\, and N, = A;.



Proof. It follows that

A= Xa =As — AL,
AN, —Ag < pand Ag— A, L p (proposition, and hence both are zero (propo-
sition again). O

The content of proposition [£.2]is that the decomposition of A, if it exists,
is unique. We will see in section [] that, given a positive measure p, such a de-
composition exists for any measure A\ and it is called the Lebesgue decomposition
of A w.r.t. u. Recall

Proposition 4.3 Let p be a positive measure on (S,X) and h a nonnegative
measurable function on X. Then the map X : ¥ — [0, 00] defined by

A(E) = p(15h) (4.6)

is a positive measure on (S,X) that is absolutely continuous w.r.t. u. If h is
complex valued and in L*(S,3, 1), then \ is a complex measure.

Proof. See Williams, section 5.14 for nonnegative h. The other case is exer-

cise [7.3] O

The Radon-Nikodym theorem of the next section states that every measure A
that is absolutely continuous w.r.t. u is of the form (4.6). We will use in that
case the notation
dA
h=—.
dp
In the next section we use

Lemma 4.4 Let u be a finite positive measure and f € LY(S,%,u), possibly
complex valued. Let A be the set of averages

1
= — d
ap H(E)Af My

where E runs through the collection of sets with u(E) > 0. Then u({f ¢ A}) =
0.

Proof. Assume that C\ A is not the empty set (otherwise there is nothing to
prove) and let B be a closed ball in C\ A with center ¢ and radius 7 > 0. Notice
that |c —a| > r for all @ € A. It is sufficient to prove that E = f~1[B] has
measure zero, since C \ A is a countable union of such balls.

Suppose that p(E) > 0. Then we would have

1
|aE—c|§@/E|f—c|du§r.

But this is a contradiction since ag € A. O



5 The Radon-Nikodym theorem

The principal theorem on absolute continuity (and singularity) is

Theorem 5.1 Let u be a positive o-finite measure and X\ a complex measure.
Then there exists a unique decomposition X\ = A\, + A\s and a function h €
LY(S, %, 1) (called the Radon-Nikodym derivative of A\, w.r.t. pi and commonly
denoted by dd);f) such that Ao (E) = u(1gh) for all E € . Moreover, h is unique
in the sense that any other h' with this property is such that u({h # h'}) = 0.

Proof. Uniqueness of the decomposition A = A, + A is the content of proposi-
tion[4.2] Hence we proceed to show existence. Let us first assume that ;(S) < oo
and that A is positive and finite.

Consider then the positive bounded measure ¢ = X\ + pu. Let f € £L2(S, %, ¢).
The Schwartz inequality gives

MO S ALD < o(1£]) < (D(£2) 2 (6(5))V2.

We see that the linear map f — A(f) is bounded on the pre-Hilbert space
L£2(S,%, ¢). Hence there exists, by virtue of the Riesz-Fréchet theorem a
g € L2(S,%, ¢) such that for all f

A(f) = o(f9). (5.7)

Take f = 1g for any E with ¢(E) > 0. Then ¢(E) > ME) = ¢(1gg) > 0 so
that the average Sz ¢(1pg) lies in € [0,1]. From lemma 4.4 we obtain that
#({g ¢ 10,1]}) = 0. Replacing g with gljg<g<1}, we see that still holds
and hence we may assume that 0 < g < 1.

Take now f = 1, where B = {g = 1}. Then we obtain from that
A{g = 1}) = ¢({g = 1}) and hence u({g = 1}) = 0. Define then positive
measures by \,(E) = A(F N B) and \;(F) = M(E N B). It is immediate that
A= Aq + As and that Ay L p.

Rewrite as

A1 =9g)f) =n(fg) (5.8)

Let A = B° = {g €[0,1)}, E € ¥ and n > 1 be arbitrary and take f =
lane(1+g+---g" 1) in (5.8). Then we obtain

Algna(l = ¢")) = p(lenalg +---+9"))

The integral on the left converges by the dominated convergence theorem to
Ao(E) and the integral on the right by the monotone convergence theorem to
1(1g1ag/(1—g). Hence with the nonnegative function h = 14¢/(1—g) we have
Ma(E) = p(1gh), which is what he had to prove. Since u(h) = A\ (S) < oo, we
also see that h € £L1(S, 3, u). Uniqueness of h is left as exercise

If 1 is not bounded but merely o-additive and A bounded and positive we
decompose S into a measurable partition S = J,,~; Sn, with p(S,) < oo.
Apply the previous part of the proof to each of the spaces (S,,Y,) with %,



the trace o-algebra of ¥ on S,,. This yields measures )\, , and functions h,
defined on the S,,. Put then Ao(E) = >, Aan(ENSy,), h =3, 1s, h,. Then
ME) = p(1gh) and u(h) = A\e(S) < oo. For real measures A we apply the
results to AT and A~ and finally, if A is complex we treat the real and imaginary
part separately. The trivial details are omitted. O

Remark 5.2. If we take \ a positive o-finite measure, then the Radon-Nikodym
theorem is still true with the exception that we only have pu(hlg, ) < oo, where
the S,, form a measurable partition of S such that A(S,,) < oo for all n. Notice
that in this case (inspect the proof above) we may take h > 0.

6 Additional results

Proposition 6.1 Let u be a complex measure. Then p < |u| and the Radon-
Nikodym derivative h = % may be taken such that |h| = 1.

Proof. Let h be any function as in the Radon-Nikodym theorem. Since
[|ul(h1g)| = |u(E)| < |pl|(E), it follows from lemma[4.4] that |u|({|h] > 1}) = 0.
On the other hand, for A = {|h| < r} (r > 0) and a measurable partition with
elements A; of A, we have

(A = 3 (k) < 37 (L, [h]) < rlil(4).

J J

Then we find, by taking suprema over such partitions, that |u|(A4) < r|u|(A).

Hence for r < 1 we find |p|(A4) = 0 and we conclude that |p|({|h| < 1}) = 0.

Combining this with the previous result we get |u|({|h| # 1}) = 0. The function

that we look for, is h1{|h|:1} + 1{\h|;£1}~ O
dp

Corollary 6.2 Let u be a real measure, h = FimE Then for any E € 3 we have

T (E) = |ul(1enn=1y) and p~ (E) = |p|(1gnfa=—-1}) and p= L p=. Moreover,
if 1= p1 — pe with positive measures piy, 2, then py < pt and e < p=. In
this sense the Jordan decomposition is minimal.

Proof. The representation of u™ and pu~ follows from the previous proposition.
Minimality is proved as follows. Since p < pq, we have u™(E) = p(E N {h =
1}) < m(En{h =1}) < pa(E). O

Proposition 6.3 If u is a positive measure and A a complexr measure such that
A < p, then |A| < p and

AN _
dp — 'dp
Proof. Exercise [T.8 O



7 Exercises

7.1 Let p be a real measure on a space (5,%). Define v : ¥ — [0,00) by
V(E) = sup{u(F): F € X, F C E,u(F) > 0}. Show that v is a finite positive
measure. Give a characterization of v.

7.2 Prove proposition [£.1}

7.3 Prove a version of proposition adapted to the case where h € £1(S, %, i)
is complex valued.

7.4 Let X be a symmetric Bernoulli distributed random variable (P(X = 0) =
P(X =1) = }) and Y uniformly distributed on [0, 6] (for some arbitrary 6 > 0).
Assume that X and Y are independent. Show that the laws Ly (8 > 0) of
XY are not absolutely continuous w.r.t. Lebesgue measure on R. Find a fixed
dominating o-finite measure p such that £y < p for all  and determine the
corresponding Radon-Nikodym derivatives.

7.5 Let X1, X5, ... be an independent sequence of symmetric Bernoulli random
variables, defined on some probability space. Let

X = ir’ka.
k=1

Find the distribution of X. A completely different situation occurs when we
ignore the odd numbered random variables. Let

Y =3) 47Xy,
k=1

where the factor 3 only appears for esthetic reasons. Show that the distribution
function F : [0,1] — R of Y is constant on (3, 32), that F(1 —z) = 1 — F(x)
and that it satisfies F(x) = 2F (z/4) for z < g. Make a sketch of F' and show
that F is continuous, but not absolutely continuous w.r.t. Lebesgue measure.
(Hence there is no Borel measurable function f such that F(z) = f[O,x] f(u) du,

z € [0,1]).
7.6 Let f € L£1(S,%, u) be such that u(1gf) = 0 for all E € ¥. Show that

p({f # 0}) = 0. Conclude that the function h in the Radon-Nikodym theorem
has the stated uniqueness property.

7.7 Let p and v be positive o-finite measures and A an arbitrary measure on a
measurable space (9,%). Assume that A < v and v < p. Show that A < pu
and that

v
dp — dvdp’



7.8 Prove proposition [6.3}

7.9 Let A and p be positive o-finite measures on (5, X) with A < u. Let h = %.

Show that A({h = 0}) = 0. Show that u({h = 0}) = 0 iff u < X\. What is % if
this happens?

7.10 Let p and v be positive o-finite measures and A a complex measure on
(S,%). Assume that A < p and v < p with Radon-Nikodym derivatives h and
k respectively. Let A = A\, + As be the Lebesgue decomposition of A w.r.t. pu.
Show that (v-a.e.)

dA, h
- %1{k>0}-

7.11 Consider the measurable space (2, F) and a measurable map X : Q — R"
(R™ is endowed with the usual Borel o-algebra B™). Consider two probability
measure P and Q on (2, F) and let P = PX and Q = Q¥ be the corresponding
distributions (laws) on (R™,B™). Assume that P and @ are both absolutely
continuous w.r.t. some o-finite measure (e.g. Lebesgue measure), with corre-
sponding Radon-Nikodym derivatives (in this context often called densities) f
and g respectively, so f,g : R" — [0,00). Assume that g > 0. Show that for
F = o(X) it holds that P <« Q and that (look at excercise the Radon-
Nikodym derivative here can be taken as the likelihood ratio

dP f(X(w))

“~ @™ X))
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