Introduction to stochastic finance in continuous time

Additional exercises

this version: October 4, 2017

1 Let X_1, X_2, \ldots be independent random variables with $\mathbb{E} X_i = 1$ for all *i*. Define $P_n = \prod_{i=1}^n X_i$ and let $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$ $(n \ge 1)$. Show that the P_n form a martingale sequence.

2 Suppose a continuous model for the stock price is such that $\log(S(T)/S(t))$ has a normal $N((r - \frac{1}{2}\sigma^2)(T - t), \sigma^2(T - t))$ distribution (under \mathbb{Q}). Assume that at time t the price S(t) is known to be equal to s. Then the price of the usual European call option at time t is known to be

$$e^{-r(T-t)} \mathbb{E}_{\mathbb{Q}}(s \frac{S(T)}{S(t)} - K)^+$$

Show by computation of an integral that the explicit expression of this price is given by the Black-Scholes formula of Equation (1.27).

3 Give a direct proof of Proposition 1.5.

4 Suppose one doesn't use the risk-neutral probabilities $q_u(N)$ and $q_d(N)$ in Theorem 1.4, but instead $p_u(N) = \frac{1}{2} + (\mu - \frac{1}{2}\sigma^2)\frac{\sqrt{\Delta}}{2\sigma}$ and the corresponding $p_d(N)$ for some $\mu \in \mathbb{R}$ and sufficiently small positive $\Delta = \frac{T}{N}$. What would then be the limit laws of $\log S_N(t)$ and $\log S_N(t) - \log S_N(s)$ (for t > s)?

5 Consider the interval [0, 1]. A partition Π of [0, 1] is a set $\Pi = \{t_0, \ldots, t_n\}$ with $0 = t_0 < t_1 < \ldots < t_n = 1$. The mesh $\mu(\Pi)$ of Π is defined as the biggest 'gap': $\mu(\Pi) = \max\{t_j - t_{j-1} : j = 1, \ldots, n\}$.

For p > 0 the *p*-th order variation of a function $f : [0,1] \to \mathbb{R}$ over a partition $\Pi = \{t_0, \ldots, t_n\}$ of [0,1] with $0 = t_0 < t_1 < \ldots < t_n = 1$ is defined as $V^p(f;\Pi) = \sum_{i=1}^n |f(t_i) - f(t_{i-1})|^p$. Put $V^p(f) = \lim V^p(f;\Pi)$, where the limit is taken over (sequences of) partitions with mesh tending to zero.

- (a) Let p = 1 and $f \in C^1[0, 1]$, so with bounded (left/right in the endpoints) derivative. Argue (use Riemann sums) that $V^1(f) = \int_0^1 |f'(t)| dt$.
- (b) Let p = 2 and $f \in C^1[0, 1]$. Show first that there exists C > 0 such that $|f(t) f(s)| \le C|t s|$ for all $s, t \in [0, 1]$, then $\sum_j (t_j t_{j-1})^2 \le \mu(\Pi)$ for $t_j \in \Pi$ and finally that $V^2(f) = 0$.

6 Let X have the standard normal distribution and $\phi(\lambda) = \mathbb{E} \exp(i\lambda X)$, for $\lambda \in \mathbb{R}$.

- (a) Argue that $\phi'(\lambda) = i\mathbb{E}(X \exp(i\lambda X))$.
- (b) Show (use integration by parts) that $\phi'(\lambda) = -\lambda \phi(\lambda)$.
- (c) Conclude that $\phi(\lambda) = \exp(-\frac{1}{2}\lambda^2)$.

7 Let X be a random variable with $\mathbb{P}(X \ge 0) = 1$ and $\mathbb{P}(X > 0) > 0$.

- (a) Show that there exists $n \in \mathbb{N}$ such that $\mathbb{P}(X > 1/n) > 0$. (Reason by contradiction, assume that $\mathbb{P}(X > 1/n) = 0$ for all $n \in \mathbb{N}$.)
- (b) Show that $\mathbb{E} X > 0$.
- (c) Suppose X is such that $\mathbb{P}(X \ge 0) = 1$ and $\mathbb{E} X = 0$. Show that it follows that $\mathbb{P}(X > 0) = 0$, equivalently $\mathbb{P}(X = 0) = 1$.

8 Consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and that X is random variable having the N(0, 1) distribution. Let ϕ denote the density of the N(0, 1) distribution and let ϕ_a denote the density of the N(a, 1) distribution. Let $z(x) = \frac{\phi_a(x)}{\phi(x)}$. Define $\mathbb{Q}(F) = \mathbb{E}(\mathbf{1}_F Z)$ for $F \in \mathcal{F}$, where Z = z(X).

- (a) Compute $\mathbb{E} Z = 1$ (use an integral).
- (b) Show that $\mathbb{Q}(X \leq x) = \Phi(x a)$, where Φ is the distribution function of N(0, 1).
- (c) Conclude that $X^{\mathbb{Q}} := X a$ has the standard normal distribution under \mathbb{Q} .
- (d) Show that $z(x) = \exp(ax \frac{1}{2}a^2)$ and that Z has the same distribution as $\exp(aW(1) \frac{1}{2}a^2)$, where W is a Brownian motion.

We see that the change of measure from \mathbb{P} to \mathbb{Q} is 'neutralized' by replacing X by X - a in the sense that X - a has, under \mathbb{Q} , the same distribution as X under \mathbb{P} .

9 Show that (the value of) the Itô integral of (6.3) doesn't depend on the specific representation of the simple process *a*. Hint: If $a(t) = \sum_{i=1}^{m} b_i \mathbf{1}_{(s_{i-1},s_i]}(t)$ is another representation, consider $a(t) = \sum_{i=1}^{m} \sum_{j=1}^{n} b_i \mathbf{1}_{(s_{i-1},s_i]} \cap (t_{j-1},t_j](t)$.

10 Here are some consequences of Example 6.2.

- (a) Show Equality (6.4).
- (b) What is the limit of its right hand side when the t_i come from a sequence of partitions of [0, T] with mesh tending to zero? What is in the same situation the limit of $W^n(t)$?
- (c) What is the 'reasonable' value of $\int_0^T W(s) \, \mathrm{d} W(s) ?$

11 Prove Proposition 7.2.

12 Here you prove the converse of Theorem 7.6. Suppose (the context of the theorem applies) that a claim F(S(T), Z(T)) can be hedged by a self-financing portfolio with value process V if the type V(t) = v(t, S(t), Z(t)), where v is sufficiently differentiable. Show that v satisfies Equation (7.7).