Introduction to stochastic finance in continuous time

Additional exercises

this version: October 4, 2017

1 Let X_{1}, X_{2}, \ldots be independent random variables with $\mathbb{E} X_{i}=1$ for all i. Define $P_{n}=\prod_{i=1}^{n} X_{i}$ and let $\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)(n \geq 1)$. Show that the P_{n} form a martingale sequence.

2 Suppose a continuous model for the stock price is such that $\log (S(T) / S(t))$ has a normal $N\left(\left(r-\frac{1}{2} \sigma^{2}\right)(T-t), \sigma^{2}(T-t)\right)$ distribution (under $\left.\mathbb{Q}\right)$. Assume that at time t the price $S(t)$ is known to be equal to s. Then the price of the usual European call option at time t is known to be

$$
e^{-r(T-t)} \mathbb{E}_{\mathbb{Q}}\left(s \frac{S(T)}{S(t)}-K\right)^{+}
$$

Show by computation of an integral that the explicit expression of this price is given by the Black-Scholes formula of Equation (1.27).

3 Give a direct proof of Proposition 1.5.
4 Suppose one doesn't use the risk-neutral probabilities $q_{u}(N)$ and $q_{d}(N)$ in Theorem 1.4, but instead $p_{u}(N)=\frac{1}{2}+\left(\mu-\frac{1}{2} \sigma^{2}\right) \frac{\sqrt{\Delta}}{2 \sigma}$ and the corresponding $p_{d}(N)$ for some $\mu \in \mathbb{R}$ and sufficiently small positive $\Delta=\frac{T}{N}$. What would then be the limit laws of $\log S_{N}(t)$ and $\log S_{N}(t)-\log S_{N}(s)$ (for $\left.t>s\right)$?

5 Consider the interval $[0,1]$. A partition Π of $[0,1]$ is a set $\Pi=\left\{t_{0}, \ldots, t_{n}\right\}$ with $0=t_{0}<t_{1}<\ldots<t_{n}=1$. The mesh $\mu(\Pi)$ of Π is defined as the biggest 'gap': $\mu(\Pi)=\max \left\{t_{j}-t_{j-1}: j=1, \ldots, n\right\}$.
For $p>0$ the p-th order variation of a function $f:[0,1] \rightarrow \mathbb{R}$ over a partition $\Pi=\left\{t_{0}, \ldots, t_{n}\right\}$ of $[0,1]$ with $0=t_{0}<t_{1}<\ldots<t_{n}=1$ is defined as $V^{p}(f ; \Pi)=\sum_{i=1}^{n}\left|f\left(t_{i}\right)-f\left(t_{i-1}\right)\right|^{p}$. Put $V^{p}(f)=\lim V^{p}(f ; \Pi)$, where the limit is taken over (sequences of) partitions with mesh tending to zero.
(a) Let $p=1$ and $f \in C^{1}[0,1]$, so with bounded (left/right in the endpoints) derivative. Argue (use Riemann sums) that $V^{1}(f)=\int_{0}^{1}\left|f^{\prime}(t)\right| \mathrm{d} t$.
(b) Let $p=2$ and $f \in C^{1}[0,1]$. Show first that there exists $C>0$ such that $|f(t)-f(s)| \leq C|t-s|$ for all $s, t \in[0,1]$, then $\sum_{j}\left(t_{j}-t_{j-1}\right)^{2} \leq \mu(\Pi)$ for $t_{j} \in \Pi$ and finally that $V^{2}(f)=0$.

6 Let X have the standard normal distribution and $\phi(\lambda)=\mathbb{E} \exp (\mathrm{i} \lambda X)$, for $\lambda \in \mathbb{R}$.
(a) Argue that $\phi^{\prime}(\lambda)=\mathrm{i} \mathbb{E}(X \exp (\mathrm{i} \lambda X))$.
(b) Show (use integration by parts) that $\phi^{\prime}(\lambda)=-\lambda \phi(\lambda)$.
(c) Conclude that $\phi(\lambda)=\exp \left(-\frac{1}{2} \lambda^{2}\right)$.

7 Let X be a random variable with $\mathbb{P}(X \geq 0)=1$ and $\mathbb{P}(X>0)>0$.
(a) Show that there exists $n \in \mathbb{N}$ such that $\mathbb{P}(X>1 / n)>0$. (Reason by contradiction, assume that $\mathbb{P}(X>1 / n)=0$ for all $n \in \mathbb{N}$.)
(b) Show that $\mathbb{E} X>0$.
(c) Suppose X is such that $\mathbb{P}(X \geq 0)=1$ and $\mathbb{E} X=0$. Show that it follows that $\mathbb{P}(X>0)=0$, equivalently $\mathbb{P}(X=0)=1$.

8 Consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and that X is random variable having the $N(0,1)$ distribution. Let ϕ denote the density of the $N(0,1)$ distribution and let ϕ_{a} denote the density of the $N(a, 1)$ distribution. Let $z(x)=\frac{\phi_{a}(x)}{\phi(x)}$. Define $\mathbb{Q}(F)=\mathbb{E}\left(\mathbf{1}_{F} Z\right)$ for $F \in \mathcal{F}$, where $Z=z(X)$.
(a) Compute $\mathbb{E} Z=1$ (use an integral).
(b) Show that $\mathbb{Q}(X \leq x)=\Phi(x-a)$, where Φ is the distribution function of $N(0,1)$.
(c) Conclude that $X^{\mathbb{Q}}:=X-a$ has the standard normal distribution under \mathbb{Q}.
(d) Show that $z(x)=\exp \left(a x-\frac{1}{2} a^{2}\right)$ and that Z has the same distribution as $\exp \left(a W(1)-\frac{1}{2} a^{2}\right)$, where W is a Brownian motion.
We see that the change of measure from \mathbb{P} to \mathbb{Q} is 'neutralized' by replacing X by $X-a$ in the sense that $X-a$ has, under \mathbb{Q}, the same distribution as X under \mathbb{P}.

9 Show that (the value of) the Itô integral of (6.3) doesn't depend on the specific representation of the simple process a. Hint: If $a(t)=\sum_{i=1}^{m} b_{i} \mathbf{1}_{\left(s_{i-1}, s_{i}\right]}(t)$ is another representation, consider $a(t)=\sum_{i=1}^{m} \sum_{j=1}^{n} b_{i} \mathbf{1}_{\left(s_{i-1}, s_{i}\right] \cap\left(t_{j-1}, t_{j}\right]}(t)$.

10 Here are some consequences of Example 6.2.
(a) Show Equality (6.4).
(b) What is the limit of its right hand side when the t_{i} come from a sequence of partitions of $[0, T]$ with mesh tending to zero? What is in the same situation the limit of $W^{n}(t)$?
(c) What is the 'reasonable' value of $\int_{0}^{T} W(s) \mathrm{d} W(s)$?

11 Prove Proposition 7.2.
12 Here you prove the converse of Theorem 7.6. Suppose (the context of the theorem applies) that a claim $F(S(T), Z(T))$ can be hedged by a self-financing portfolio with value process V if the type $V(t)=v(t, S(t), Z(t))$, where v is sufficiently differentiable. Show that v satisfies Equation (7.7).

