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In this paper we present a recursive algorithm that produces estimators of an 
unknown parameter that occurs in the intensity of a counting process. The 
estimators can be considered as approximations of the maximum likelihood 
estimator. We prove consistency of the estimators and derive their asymptotic 
distribution by using Lyapunov functions and weak convergence for martingales. 
The conditions that we impose in order to prove our results are similar to those in 
papers on (qUaSi) kaSt squares eStiIIIatiOn. 0 1991 Academic Press, Inc. 

INTRODUCTION 

We assume that we are given a complete probability space (52, F, P) 
together with a filtration {F,},.,, satisfying the usual conditions in the 
sense of [2]. All stochastic processes to be encountered below are assumed 
to be adapted with respect to the given filtration and have cadlag paths. 
Similarly the martingale property is also to be understood with respect to 
this filtration. Let N: Q x [0, co) + No be a counting process, such that 
its Doob-Meyer decomposition takes the following form (in differential 
notation) 

dN,=(pTOdt+dm,. (1) 

Here cp : Sz x [0, co) + [0, CXJ)~ is a predictable process, t9 E (0, co)” an 
unknown parameter and m: Sz x [0, co) + R a local martingale. Superscript 
T usually denotes transposition. 

The purpose of this paper is to give a recursive scheme that generates 
estimators {e} of the unknown 8. This scheme is given below as the set of 
Equations (2a)-(2e) (see the appendix for the implementation of this 
scheme). In an earlier paper [6] we have presented a similar but slightly 
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RECURSIVE AML ESTIMATION 237 

different set of equations. For a heuristic derivation of these equations we 
refer to [6], where also an account for the terminology approximate 
maximum likelihood (AML) estimation can be found. 

A recursive scheme is attractive in two ways. Suppose one has observa- 
tions over an interval [0, T], and using these observations one wants an 
estimator of 0. One way to obtain such an estimator is to use nonlinear 
optimization techniques applied to the likelihood ratio. The use of a 
recursive scheme like (2a)-(2e) may be considered as an alternative 
approach to get an estimator 4,. Another potential application is in the 
field of adaptive control. In problems of this type one has to use at each 
time instant t of the observation interval a control law which depends on 
an estimate of the unknown parameter using the observation up to that 
*time t and this naturally calls for an efficient way to update current 
estimates, when new observations come in. A recursive scheme provides 
such an efficient, easy to compute, way of updating estimators. 

The conditions that we impose in Theorem 3 in order to prove a.s. con- 
vergence of the estimators are of the same form as those in, e.g., [l, 51, 
where (quasi) least squares estimation has been studied and considerably 
weaker than those in [6]. However, we do not need all the conditions of 
[ 11. In the sequel 8, will denote the “true” parameter value, 1 is the vector 
in Rd whose entries are all equal to 1. After giving an assumption on the 
parameter space, we present our estimation algorithm and an analysis of its 
asymptotic properties. 

THE RESULTS 

ASSUMPTION 1. 6, lies in a compact subset of rW”, . Hence there exists 
E > 0 such that E < Ooi < l/~, Vi = 1, . . . . d. 

AML ALGORITHM. 

@a) 

~r=z,,z*,X,+&(l-zl,) l+&-‘(1 -I,,) 1 PC) 

z1r= 1 {q5:x,>Er$1} WI 

zz*= 1 {,;x,<s-'o:l} (2e) 

Comment. Introducing the E above is done to establish a.s. convergence 
of (fi,} to 0,. If we compare (2) to the AML algorithm in [63 we see that 
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we use the extra indicator process Z2. Clearly we require knowledge of E to 
compute the 6,. The proof of f?, + 8, as. that we will give parallels to a 
certain extent the procedure in [ 11, First we state an auxiliary result. 
Define 0;’ = St, $,$T/df0,, ds. Denote by ;1, the minimal eigenvalue of 0;’ 
and by X, its maximal eigenvalue. 

LEMMA 2. There exist constants _c and C such that 

(i) ~+E’X,~~,,,(Q,‘)~E~‘~~+C 

(ii) _~+E~~~~~,,,(Q,‘)~E-*~~+_c. 

Proof: Define _c=inf,,,=,xTQ;‘x and C=~up~~~~=~x~Q;‘x. Since 
sdT1< #Tfi, < ~~‘4~1 we have for all x E lRd: 

xTQ,‘x+~2~T&,-1~~~TQ,1~~~TQ,‘x+&-2xT~;’x. (3) 
By taking infima in (3) in the right order we obtain (i). The second asser- 
tion follows by taking suprema. 

THEOREM 3. Consider the AML algorithm (2). Assume that 4, -+ 00 
a.s. and that there exists a function f: [0, 00 ) + [0, 00) such that 
lim .~ _ m .f (x)/x = 03 and such that 

supf(log Q< co 
1 

a.s. 
fro -f 

Then 4, + 8, a.s. 

Remarks. 1. Observe that ;1, + co a.s. implies that N, + cc a.s. because 

s 
‘~fe,ds=e~~;~e,~~,e~e,. 

0 

2. A possible choice off that can be found in the literature [l, 51 is 
f(x) =x1 +‘, with a > 0. 

The crucial step in the proof of Theorem 3 is Lemma 4 below. We will 
postpone the proof of this lemma and show first, after stating the lemma, 
how we use it in the proof of Theorem 3. 

LEMMA 4. Consider (2). Let 2, =X, - 8, and P, = fTQ;‘81. Then 
P, = 0 (log X, ) a.s. (t + 00 ). 

Proof of Theorem 3. 

p* f (log 2,) 27 1% 2, p, 
=Anin(Q,‘)= 2, 

.- 
ki,(Q,-l,'f(log~,) log&' 

(4) 
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Consider the right-hand side of (4). Its last factor is bounded in view of 
Lemma 4. The first factor is bounded because of the assumption in the 
theorem. The second factor is bounded because of Lemma 2 and the third 
factor tends to zero because of the assumption on J We conclude that 
8, + 0 a.s. But now it is easy to show that gt -+ 8, a.s. : 

8,=e,-e,=X,r,,z*,+(1-z,,)(El-~e,)+(1-~,,)(E-’l-~e,). 

Since q5ftI,,>qiTlc there is r] >O such that q5:0,> $Tl(c+ v]). Because 
2, -+ 0 we eventually have 1 pi, 1 < q, V’i. But then 

fjqY,=$hy,+qye,> -qyl~+~p(E+‘1)=~=1&. 

Therefore I,, + 1. In a similar way one can prove that I,, + 1, which 
implies that i5r, + 0 a.s. 1. 

The proof of Lemma 4 involves a series of other lemmas. 

LEMMA 5. Let P, > 0, P, E Rkxk, and let P, = P, + 
J‘ ’ t(s) t(s)= ds for a 

left continuous function 4: [0, co) + Rk. Then 0 

(i) Sb~(s)TP;l<(s)ds=logdet(P,)-logdet(Po) 

(ii) & t(sJT Psp’4(s) ds = O(log &,,,(P,)). 

Proof [l]. 

LEMMA 6. Let m be a quasi left-continuous locally square integrable 
martingale with (m) = A. Let f: [0, co) + [0, co) be a differentiable 
increasing function with 

i 

a 

lim f(x) = a3 and 
dx 

i - a2 0 (1 +f(x))’ < c0. 

Define g, = 1 +f(A,). Then both g,‘m, and g;*[m, m], converge almost 
surely for t -+ 00. On {A, = co } both limits equal zero as. 

Proof: This is a simple application of Lemma A (see Appendix). 
Consider g,‘m,. Define X, = g;*mf. Then application of the stochastic 
calculus rule yields 

dX,= -2g;~3f’(A,)m~dA,+g,-2(2m,_dm,+d[m, m],) 

= -2g;‘f’(A,)X,dA,+g~~*dA,+g~~*(2m,~dm,+d([m,m],-A,)). 

Notice that f’(A,) 3 0. Application of Lemma A immediately yields the 
desired result, since 
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On (A, = cc } Lemma A also yields that X, + 0 because 

f 

cc 
g,lf’(A,)X,dA,= mX,dloggt. 

0 I 0 

The statement about g,-2 [m, mlt can be proved similarly. I. 

Remarks. 1. The statements of the lemma can be summarized as 

m,=o(g,)+Wl) and Cwmlt=4gf)+W1). 
2. Of course we may replace g, in the lemma by j-(,4,) since we 

consider the behaviour for t -+ co. 

3. Convenient choices of f in applications are f(x) = xc’ + Or)12, with 
a> 0. 

Proof of Lemma 4. For 8 we have the following equation: 

Hence, 

dP,=d(?yQ;lw,) 

or 

P, - PO + Jb’ ‘TT;,’ ds 
s s 

Write (6) in obvious notation as 

P,-Po+L,=2M1,+R,+M2t. 

Compute 

(6) 

(7) 

Observe that 
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Hence ELLA < (M, ), < E-‘L(. Hence M,, = o(L,) + 0( 1) in view of 
Lemma 6 (take f(x) = x), and Remarks 1 and 2 that follow this lemma. 
Consider now R, and notice that 

The integrals in the extreme sides of (8) are of the form encountered 
in Lemma 5. (Take 5(s) = 4,/(d~~,)1’2, Q,-’ = P,.) Therefore R, = 
O(log &,,,(Q;‘)). The last term to analyze in (7) is Mlr: 

< sp4tr(Qo) < co. 

From Lemma 6 we conclude that M2/(M2 ) converges to a finite limit 
and, since (M, ), < se4 tr(Qo), M, is as. bounded. Collecting the above 
results we obtain from (7) 

or 

P,-Po+L,(l+o(l))=O(l)+O(logI,,,(Q,~l,,. 

From Lemma 2 we obtain, after dividing by log A,, 

P 
;+(l+o(l)) 
1% 1, 

&=ow 

Since both P, and (1 + o( 1)) L, are (eventually) nonnegative we obtain 
P, = O(log A,), as was to be proven. fl. 

We close this section by proving that the limit distribution of the AML 
estimators defined by (2) is asymptotically normal. 

THEOREM 7. Assume that (&,> given by (2) is a.s. convergent. Assume 
that there exist P: [0, co) --) Rdxd and h: [0, l] x [0, co)-, [0, co) such 
that 

(i) h is increasing in each of its arguments and for all t, T, 

h(t, T)<h(l, T)=T. 
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(ii) all P(t) are symmetric positive definite for t > 0, P is increasing to 
infinity, continuous, and R(t) = lim., o3 P( T)-‘12 P(h(t, T) P( T))‘12 exists 
and is positive definite for all t > 0. 

(iii) P(t)‘j2 Q1’* -+ Z in probability. Then Q- ‘I2 8, --% N(O, I). 

Proof: Since both I,, and Zzt tend to 1, eventually X, =g,. Therefore, it 
is sufficient to prove that Q; ‘I2 8, -% N(0, I). 

From (2) we obtain Q;lx’,=Q;l%O+M,, where 

Hence the asymptotic law of Q; “*p( is the same as that of 

~;1/2Q,~;1/2(j3,ft. (9) 

As in [6] it is easy to prove that 

Q;1i2Q,Q;1’2 -+ Z as. (10) 

Hence it suffices to establish that the asymptotic law of Q:“M, is N(0, I). 
Now 

Similar to the proof for (lo), it is possible to show that 

Q;1’2(M)tQ;1’2+Z a.s. 

Then using condition (iii) of the theorem, it follows that 

P(t)-“2 (AI), P(t)-“2 -+ z in probability. (11) 

Define now for each TE (0, co) and 1 E Rd a new martingale (w.r.t. the 
filtration {Fh~t,T~},ECO,l,) ZT,” by Z:” =I*P(T)-112 MhCt,TJ. 

Now let W be some continuous Gaussian martingale with quadratic 
variation ( W), = ITR( t) ,I. Such a W exists on a suitable filtered proba- 
bility space, since R(t) is continuously increasing. We claim 

zTvA s w. (12) 

We prove (12) by checking the conditions of Lemma B (see Appendix). 
Compute 

(ZT-“)l=ATP(T)-1’2 (M),,,,T,P(T)p1’2A 

=ATP(T)-1’2 P(h(t, T))1’2 (P(h(t, T))-“* (M),(,,,, 

xP(h(t, T))-“2)P(h(t, T))1’2P(T)-1’2A. 
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From conditions (ii) and (11) we then obtain for T + co, 

(ZK”), + n’R(t) i 

which corresponds to condition (i) of Lemma B. 
Observe that for the jumps of ZT,” we have 

Hence the jumps of ZT,” are bounded by a deterministic quantity that 
tends to zero. Hence also the second condition of Lemma B is satisfied and 
(12) follows. In particular, ITP( T))“* MT = ZF” 3 N(0, ITA). Finally 
by noticing that @‘M, = Q:“P( t) ~ l’* P( t)‘12 M, and by using condition 
(iii) again, we have finished the proof. 

As a final remark we mention that the behaviour of these AML algo- 
rithms, in general, will be superior to a least squares algorithm like in [ 11. 
The easiest way, although it does not give a complete account, to see 
this is to assume that the process cp in (1) is deterministic. Then the 
Fisher information matrix at time t becomes f?; ‘. Hence from Theorem 7 
we see that our estimators have an asymptotic variance that equals the 
Cramer-Rao bound. It is also this observation that led us to considering 
the algorithm (2). 

APPENDIX 

The next lemma generalizes a result in [7]. 

LEMMA A. Let X be a nonnegative stochastic process such that 
X, = X0 + A, - B, + M,. Here A and B are predictable increasing processes 
with A,, = B, = 0 and A4 is a local martingale. Assume that lim, _ m A, < CC 
as. Then both lim,, co X, and lim,, m B, exist and are finite. 

Proof: Without loss of generality we assume that X0 = 0 a.s. Let { T, } 
be a fundamental sequence for M [ 33. Let {S, } be stopping times defined 
by S,= inf{ t > 0 : A, > n}. Each S, is then predictable and hence there exist 
for each n another sequence of stopping times { SL,k}k a 0 announcing S,. 
Define R, = sup { SA,, : k <n}. Then R, < S, and A,” <n. Furthermore, 
{R,=c+Q. 
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Now for all kn {M,,Tn,,Rk}frO is a uniformly integrable martingale, 
and 

In particular, {ML =, ,, Rk In p o is uniformly integrable (M; = max(O, -MS)). 
Hence, 

ELM*, Rk IJ’,l=EClim M,hRkhTnI~sl n-m 

~liminfECM,..,,,IF,I n-m 

= lim inf M, h Rk A r. = M, h Rk. 
n-cc 

Here the inequality follows from Fatou’s lemma. So we see that 
MA R,>wl is a supermartingale with Ml-,, Rk <k. Hence the convergence 
theorem [3] for supermartingales tells us that lim, _ oD M, /\ Rk exists and is 
finite a.s. But then also lim, _ o. (X, h Rk + B, h Rlr) exists and is finite. Since 
both xt h Rk and Bt h Rk are nonnegative and B is increasing, we obtain that 
both lim, _ a X, h Rk and lim, _ to B, h Rk exist and are finite. 

On the set {Rk = co} these limits equal lim,, m X, and lim,, o. B,, 
respectively. But { Rk = cc } t 0, which finishes the proof. 1 

The following lemma is a special case of a much more general result on 
weak convergence of locally square integrable martingales, that can be 
found in, for instance, the monograph by Jacod and Shiryaev [4]. 

LEMMA B (Central limit theorem). Let M, M”, n 2 0 be real valued 
locally square integrable martingales defined on a suitable filtered probability 
space. Let M be a continuous Gaussian martingale with C, = (M >, = EMT. 
Assume that the following two conditions hold: 

(i) (M”), + C, in probability as n -+ UJ for all t. 

(ii) supI I dM:l < c,, where fen} is a deterministic sequence with 
lim, 4 o. c, = 0. Then (M”} converges weakly to M for n + co. Note: 
M”A M. 

Using a suitable discretization of time, (2a)-(2e) can be implemented in 
the following way: 

Let 0= to-z tl ... c T, = T. Suppose that tj is the actual time instant and 
that we have computed X,,, 8,,, Q,,. New observations at tj, I are N,+, and 
cpf,+,. Then we compute from the discretized version of (2a)-(2e): 
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x ,,+l=xz,+Q;;:y;+~ (N,+,-N,-cp~+,X,,(ri+l-ti)) 

It 

~r,+,=~l,,,I,~,+,X,,+,+&(1-I,,,+,)1+E-’(l-I*~,+,)1. 

Finally, for i = N - 1 the result of the computation is an estimate 6,. 
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