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Stochastic systems with counting process output and a finite state space are considered. This leads 

to studying processes with finite state space that are Markovian with respect to the flow of 

a-algebras, that is generated by the counting process. It appears that there is a close relationship 

between the transition intensities of the Markov process and the intensity of the counting process. 

Some consequences for a stochastic realization problem are then studied. 
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1. Introduction 

Suppose that the dynamic behaviour of some phenomenon may be modelled by 

means of a counting process. It is then attractive to mode1 the intensity of this 

counting process as a Markov process evolving on a finite state space. A practical 

situation where this mode1 shows a very satisfactory behaviour is reported in e.g. 

Kemp (1986). In the case that one can observe the counting process, but not the 

associated finite state Markov process there exists a finite dimensional filter that 

estimates the Markov process. The existence of such a filter is one of the advantages 

of this model. 

On the other hand it has been argued (see Boel, 1985) that in a situation where 

one cannot observe a state process and where there are no physical grounds that 

lead to an obvious choice of a state model, it is perhaps better to use self-exciting 

models for identification purposes. 

Here, in a way, we adopt both these points and the question arises whether this 

yields an interesting model. To put it a little bit more precise, we want to characterize 

the class of counting processes that admit an intensity, which is a function of a 

finite state process which is Markov with respect to the flow of a-algebras generated 

by such a counting process. Or, to formulate it in terms of a stochastic realization 

problem, given a counting process, under what conditions can be represented as 

the output of a stochastic system, where the state process assumes finitely many 

values, and is Markov with respect to the filtration generated by the output. 
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The purpose of this paper is to present a solution of the above stated problems. 

Thus we obtain a representation theory of counting processes via non-stationary 

Markov processes. In particular a detailed investigation will be made of finite state 

processes which are Markov with respect to some given counting process. 

The paper is organized as follows. In Section 2 preliminary results for counting 

processes are reviewed. Section 3 contains results for finite state Markov processes. 

In particular, finite state Markov processes are characterized as solutions of certain 

stochastic differential equations. Section 4 reports the main results. A characteriz- 

ation of finite state processes which are Markov with respect to a counting process 

is given. In Section 5 the results of Section 4 will be used to solve a stochastic 

realization problem. 

2. Basic results for counting processes 

Good sources for the technical background of counting and jump processes are 

Bremaud (1981) or Boel, Varaiya and Wong (1975). Let (a, F, P) be a complete 

probability space. Let n : C! x [0, ~0) + N, be a counting process and let S: = 

u{n,, s < t} be the c-algebra generated by the collection (n,, s < t}. Write F” = 

(9:) t 2 O}. Assume that n admits the minimal decomposition 

dn, = A, dt + dm, 

where h : 0 x [0, ~0) + R, is the F”-predictable intensity process of n and m : 0 x 

[0, 00) + R! is an If”-adapted martingale. The existence of an intensity is of crucial 

importance in this paper. 

We recall the following result, known as the martingale representation theorem 

(see Brtmaud, 1981, p. 76), since it plays a fundamental role. 

Lemma 2.1. Let M : 0 x [0, ~0) + R be an F”-adapted martingale. Then there exists an 

If”-predictable process k : fl x [0, CO) + R such that for all t 2 0, 

M,=M,,+ k,(dn, -A, ds). 

The process k is P(dw)A,(w) dt a.e. or equivalently P(do) dn,(o) a.e. uniquely 

dejined. q 

In Section 4 the relation between two counting processes n and ii will be 

investigated. The following proposition will turn out to be useful there. 

Proposition 2.2. Let n and ri be two counting processes and let A and 1 be their F”-, 

respectively F”^-predictable intensities. Equivalent are: 

(i) S:‘cS:, and 9: and 9: are conditionally independent given 9:. 

(ii) Z, =ji lt+O) dn, and x, = lfi,,o$,. 
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The statements (i) and (ii) of this proposition can also be formulated as follows. 

Let { Tn} and {T,,} be the sequences of the jump times of i and n. Then if ?n < ~0, 

there is k such that ?,, = Tk a.s., and whether for given Tk there is n such that 

fn = Tk, depends only on u( Tk A ?,,, 1 EN). 

In the proof we will use the following lemma. 

Lemma 2.3 (Bremaud and Yor, 1978). Consider twojiltrations F and G, such that 

for all t 2 0: 9, c 9,. Then there is equivalence between: 

(i) Any F-martingale is a G-martingale. 

(ii) Fm and 9, are conditionally independent given 9,. 0 

Proof of Proposition 2.2. (i)+(ii): Write dfi, =I, dt+dk,, the Doob-Meyer 

decomposition of ri with respect to IF ‘. From Lemma 2.3, fi is also an IF”-martingale. 

Hence fi, =I; h, dm, for a P(dw) dn,(w) a.e. unique process h from Lemma 2.1. 

Then dn”, =(x, -h,h,) dt+ h, dn,, which gives dfi, = h, dn, and i, = h,h,. Therefore 

on the jump times Tk of n we have hZ, = h TL. Hence we can also write dn”, = h, drI, = 

h,j\, dt + h, dm,. From the fact that predictable intensities are unique,we find 1, = h,X, 

a.s., which implies that h,lli,l,o, = l{~,-_~). An obvious choice of h that satisfies this 

relation is hi = lag,_,,). It is certainly F”-predictable and 

= E 1 [lf,s, =,,~,,,=~)+~~h~,,‘“,~,,.~“)l=~~ 
nz-, ” 

which can be seen as follows. It h 7,, = 1, then fi jumps at T,, so that I,, > 0, and if 

h,, = 0, then i,, = 0 from A, = h,j;,. The uniqueness of the process h now gives the 

result. 

(ii)+(i): Notice first that S”c sy, since by the assumption C, = Ii l{~,-_~~ dn,, 

the sequence {FL} of jump times of ri is contained in the sequence { Tk}. In view of 

Lemma 2.3 it is now sufficient to prove that any IF”-martingale is an If”-martingale. 

So let M be an [F’-martingale. Then there is an F”-predictable process h such that 

M, = M,,+j:, h,, dr&. Now 

h,dt+d~,=d~,=lc~,~,,~dn,=l~~,~~o~h,dt+l~~,,o~dm,=~,dt+l~~,,~idm, 

by assumption. Because of S” c %$, the process l{~,>~) is F”-predictable, hence 6~ 

is also an (F”-martingale. But then the same conclusions holds for M. 

Remark. The formulation of condition (ii) of Proposition 2.2 can be replaced by: 

(ii)’ There exists an V-predictable process u such that 

ii, = 
I 

t 

us dn, and 1, = u,A,. 
cl 

It then follows that one can identify u as u, = l{~,,~). 
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3. Markov processes with a finite state space 

3.1. Recall first that a stochastic process X with state space (E, 8) is Markov with 

respect to some filtration IF = {s,,, t 2 0) (we will say that it is IF-Markov) if Vt 2 s, 

VBE%, 

P(X, E B ( SS) = P(X, E B ) cr(X,)). 

Or, equivalently, that for all bounded measurable functions f on E we have 

ELf( S*l= w-(X) I (+(X)1. 

From now on we specialize to the case where the state space E is finite, E = 

{c,, . . . , c,}, and 8 is the power set of E. Define Y: fi x [0, co) + (0, 1)” by its 

components Y;, := llx,=C,). Denote by @(t, s) the matrix of transition probabilities 

of X That is for I z s, with the notation zt = z-‘1 (z+O) and the understanding O/O = 0, 

@&s)=P(X,=ci~XS=cj)=(EE;,)+E(Y;,k;,). 

Then we have the following well known facts. Semigroup property: @(t, s) = 

0( t, u)@( u, s) for t 2 u 2 s. Assume that for all t z 0 the following limit exists: 

A(t):=l&D(t+h, t)-I]. 

So A(t) has nonpositive diagonal elements, the other entries are nonnegative and 

the column sums are zero. Such a matrix will be called a Markov matrix. Then 

(a/at)@(t, s) =A(t)@(t, s). In particular (d/at)~(f,O)=A(t)~(t, 0). From this 

equation we get det @J( t, 0) = exp(ji tr A(s) ds). H ence by definition of A(t), we see 

that @(t, 0) is invertible for all t 2 0. 

Proposition 3.1. Dejine 2: f2 x [O,OO) + R” by Z, = @(t, 0))’ Y,. Then Z is an IF- 

martingale and Y satisfies the stochastic diflerential equation 

dY,=A(t)Y,dt+@(t,O)dZ,. (3.1) 

Proof. Using a representation of a conditional expectation when the conditioning 

a-algebra is generated by a finite number of disjoint sets we get 

E[Z,~~J=@(~,O)-‘E[Y,~~,]=@(~,O)~’E(Y,~~T(X,)] 

=@(t,O)-‘E[Y,Iu(Y,)]=@(t,O)-‘~E[~J+E[Y,I$JE;, 

= q&o)-‘@(t, s)Ys = q&o)-'Y, =.q. 

The second assertion can easily be proved by applying the stochastic differentiation 

rule to the product Y, = @(t, O)Z,. q 

Notice that 5; @(s, 0) dZ, apearing in (3.1) is again an If-martingale since @(. , 0) 

is trivially predictable. Proposition 3.1 thus gives a representation of Markov proces- 

ses in terms of a linear stochastic differential equation driven by a martingale. The 

next result gives a converse statement. 
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Proposition 3.2. Let X : R x [0, ~0) + {c’ , . . . , c,} be a stochastic process, F-adapted, 

and let Y be associated with X as before. Assume that Y satisfies 

dY,=A(t)Y,dt+dmy. (3.2) 

Here A:[O,co)+R”“” is a Lebesgue measurable function (deterministic !) and my 

an F-adapted martingale. Then X and Y are IF-Markov processes. 

Proof. WehavetoprovethatE[f(X,)(~~]=E[f(x,)~a(X,)]forallf:{c,,...,c,}~ 

R. Since f(X,) = C,f(c,) Y,, we will only prove E[ Y, 1 .FF5] = E[ Y, / a(~,)]. 

Let B(t) be the solution of B(t) = A(t)B(t) with B(0) = I. Now we can write the 

solution Y, of (3.2) as 

I 
, 

Y,=B(t)Y,+B(t) B-‘(s) dm,Y. 
0 

Notice again that ]i B-‘(s) dm.: . IS an IF-martingale, B(t) deterministic. Hence 

Since we have a(X,) = U( Y5) c 9, we get 

~~~,I~(~,)1=~~~~~,I~~lI~(Y~)1=~~~(~)~~’(~)~,l~(~,)1 

=B(t)BP(s)Y,=E[Y,IF,]. 0 

Concluding we see that the statement X and Y are IF-Markov is equivalent with 

saying that the indicator process Y satisfies equation (3.2). 

Propositions 3.1 and 3.2 will play an important role in Section 4. Here is another 

illustration of the usefulness of this result. 

Applying Propositions 3.1 and 3.2 to the case where X is a counting process and 

IF = IF”, we easily obtain an intuitively appealing criterion to show, in terms of the 

predictable intensity, whether or not a counting process is Markov (see also Jacobsen, 

1982). Of course we need a generalization of Propositions 3.1, 3.2 to include pro- 

cesses that assume countably many values, but this is straightforward in this situation, 

because of the special lower triangular form of the matrix A(t) in the proof below. 

Proposition 3.3. Let n be a counting process, and h its F”-predictable intensity process: 

dn, = A, dt + dm,. Equivalent are: 

(i) n is (F”-) Markov. 

(ii) There exists a measurablef: [0, M) x N,,+ [0, a) such that A, =f( t, n,_). 
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Proof. (i)+(ii): Let Y be the indicator process associated with n and let NT be 

the vector [0, 1,2, . . .]. (Here and elsewhere T denotes transposition.) Then n, = NT Y, 

and Y satisfies by assumption 

d Y, =A(t) y, dt+dm:. 

On the other hand we have immediately from the definition of Y: 

d Y, = (J - I) Y,- dn,, 

where J is defined by its entries Jkl = Sk,,+, , k, 1~ 0 and Ik, = Sk,, k, 12 0. Then 

dY,=(J-Z)Y,h,dt+(J-Z)Y,_dm,. 

Since each component of Y is a special semimartingale we have from the uniqueness 

of the decomposition for all t, 

I 

, 
(J - I) y,+ip ds = 

0 i 

, 
A(s) Y,p ds. 

0 

Since all processes above are left continuous we have for all t > 0: (J-I) Y,_h, = 

A(t) Y,-. After multiplying this equation by Y:_ we get 

-A,_= Y:_A(t)Y,_=-C Aii(t)K,+. 
Ia-0 

Define now f by f( t, n) = -A,,,,(t), then 

A,- =f( r, n,_). 

Then A, being predictable, is indistinguishable from f( t, n,_). 

(ii)%(i): Define F(?)ER’~~ by F,(t)=f(t, n). Hence 

A, = F(t)TY,. 

As in part (i) of the proof 

d Y, = (J - I) Y,- dn, 

Hence 

dY,=(J-I)Y,Y:F(t)dt+(J-I)Y-_dm, 

=(J-I)diag(Y,)F(t)dt+(J-Z)Y,_dm, 

where diag( Y,) is the diagonal matrix with entries (diag( Y,)), = S,jYi,. 

Define A( I) E R NoxNo by Ak,( t) = (J - I)klF,( t), then 

A(t) Y, = (J - I) diag( Y,)F( t) 

and 

d Y, = A(t) Y, dt + (J - I) Y,_ dm,, 

which is of the form as in Proposition 3.2. 0 
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3.2. From the equivalence of IF-Markov processes and solutions of certain linear 

stochastic differential equations (Propositions 3.1 and 3.2) it is easy to see when 

functions of a Markov chain again yield a Markov chain. 

To be specific let as before X be an IF-Markov chain with state space E = 

{c,, . . . > c,}. Let H be another set and f: E -+ H a function. Clearly f(X) is again 

Markov if f is injective. To avoid trivialities let us assume that H = {h,, . . . , h,}, 

m < n and that f is onto. Write 2, =f(X,). Associate with 2 the indicator process 

W as usual: 

Define F E R”’ xn by F,, = lil(e,I=,z,). Notice that 1: F = lz, where l,,, is a column 

vector with as elements +l. Then W, = FY,. Observe that W, like Y, is a special 

semimartingale. Notice that because f is onto F has rank m, i.e. it has full row rank. 

Let K E Rnx(nPm) be a fixed matrix such that its columns span Ker F. Let as before 

A(t) be the matrix of transition intensities of X. We have the following. 

Theorem 3.4. Let X be IF-Markov with finite state space E. Let f: E + H. 7len f(X) 

is again IF -Markov ifs FA( t) K = 0 where K is any matrix whose columns span Ker F 

and F is related to f as indicated above. If this condition is satisjied, then the matrix 

B(t) of transition intensities off(X) is given by B(t) = FA( t)g, where F is any right 

inverse of F. 

Proof. We have dY,=A(t)Y,dt+dmT. Hence 

dW,=FA(t)Y,dt+Fdm:. 

Now 2 is [F-Markov iff d W, = B(t) W, dt+dm,w for some matrix-valued function 

B and an If-martingale m “. Hence we have 2 is [F-Markov if and only if there is a 

B( .) such that FA(t) = B(t)F. Let fi be a fixed right inverse of F. It exists, since 

F has full row rank. Then the last equation implies B(t) = FA( t)@. Of course for 

B to be well defined it should not depend on the particular choice of fi 

Starting from @ all other right inverses G of F are given by G = fi+ KX, where 

X EIR(~~““~~ is an arbitrary matrix. Hence B(t) is well defined iff FA(t)$ = 

FA(t)(i+ KX) or iff FA(t)K -0. 0 

Remarks. (1) The determining condition FA(t)K = 0 can be understood in two 

ways. Firstly for a given matrix A(t) it tells us what functions f (if any) yield a 

Markov process f(X). Secondly if one wants f(X) to be Markov it gives a condition 

on A(t) when this is indeed the case. 

(2) The result as such is not new but can be found in a slightly different form in 

Kemeny and Snell (1960, p. 126) where Markov chains in discrete time are con- 

sidered. However the proof given here is shorter. 
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4. IF”-Markov processes 

4.1. We will combine the results of Corollary 2.2 and Propositions 3.1, 3.2 applied 

to the situation where IF = IF” in order to find an integral representation of a finite 

state IF”-Markov process in terms of its infinitesimal characteristics and the intensity 

of the counting process. Let us before A: = (l/A,)l{,,,,), with the understanding 

that O/O = 0. 

Theorem 4.1. Let X be an IF”-Markov process with state space {c, , . . , c,} and let Y 

be the indicator process associated to X as before. Then 

(9 Y, = Y,+ h:A(s) Y,_ dn,. (4.1) 

(ii) We have the following explicit expression for Y: If the Tk are the jumps times 

of n, then 

Proof. (i) Y is a pure jump process satisfying Y, = Y,,+jh A(s) Y, ds + my where 

m y is an ff “-martingale. Hence a multivariate extension of Lemma 2.1 applies, and 

one obtains for a certain F”-predictable process: Y, = Y”+j:, k, dn, and 

I 

I 

I 

I 
A(s) Y, ds = k,A, ds. 

0 0 

Hence in order to ensure IF”-predictability of k we have 

A(t) Y,_ = k,A,. (4.2) 

So k, = A:A( t) Y,_P(do)A,(w) dt a.e. The proof of (ii) is now immediate. 0 

Example 4.1. Assume that the intensity process A does not depend on t. Then 

A,(w) = A for some nonrandom constant A since A,(. ) is 9: -measurable. Assume 

A > 0. Assume further than X is a homogeneous Markov process. Then 

or 

Y, =(AP’A+Z)“tY,. 

Since Y, is a unit vector for all t, A-IA + Z is a semi-permutation matrix in the sense 

that each of its columns has exactly one +l entry and the other entries are zero. Of 

course two tl entries may occur in the same row. Consequently all the diagonal 

elements Aii of A are either zero or equal to -A. If some Aij = -A then there is in 

the ith column Ai of A exactly one A,i equal to +A. All the other entries of Ai are 

zero. If Aii = 0 for some i then the whole column Ai = 0. 
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A similar remark applies to the general expression Theorem 4.l(ii). We have for 

all i, Aii( T,) s 0. Then if Aii( T,) < 0 there is exactly onej =j( i, T,) such that Aji( T,) = 

-Aii( T,). Since T, can assume any value >O, we have that for each i and t there is 

exactly one j =j(i, t) such that A,,(t) = -A,,(t), all the other entries in the column 

A,(t) being zero. 

From these considerations or directly by inspection of k, we get the following. 

Suppose we have an IF-Markov process X with states { 1,. . . , p}. Then it can always 

be represented in the following way. 

Consider p measurable functions f; : [0, CO) + { 1, . . . , p}. Define E,, = {t: A( t) = i}. 

Observe that for all j the collection {E,,},“_, forms a partition of [0, a), although 

some of the E,, may be empty. Define the matrix M(t) by M( Z)i, = 1 b,,(t). Then we 

have for Y the representation (like in Walrand and Varaiya, 1980), 

dY,=(M(t)-Z)Y,_dn,. (4.3) 

Clearly the interpretation of M(t) is that M(t),, = 1 (or J(Z) = i) iff at time t a 

transition j + i is possible. 

Observe however that not all processes X for which the above representation 

(4.3) holds are IF”-Markov. 

A necessary and sufficient condition for this to hold in view of Propositions 3.1 

and 3.2 is clearly 

(M(t)-Z)Y,_A, =(M(t)-Z)Y,_E[A,I Y,_] 

or equivalently: 

3a:[O,oo)+R”: (M(t)-Z)Y,_h,=(M(t)-Z)diag(a(t))Y,_. 

4.2. The objective of this subsection is to study how A and A are related. We also 

show that an IF”-Markov process X automatically becomes [F’-Markov, where n” 

counts the transitions of X. Conversely if X is IF”-Markov and if n is another 

counting process that satisfies the conditional independence relation of Proposition 

2.2, then it turns out that X is also [F”-Markov. 

Consider the first problem and observe that equation (4.2) relates the intensity 

A, of the counting process with the matrix A(t) of transition inequalities of X by 

means of the intermediate process k. In this subsection we will study this relation 

a little further. 

Multiply (4.3) by YT_ to obtain 

A,Y:_K, = YT_A(t)Y,+. (4.4) 

At a jump time T,, of the counting process there are two possibilities. If X also 

jumps then Y7,, Z Y,,_ = YT,,_, and Y?,,_, k, = Y;,,-,( YT,, - YT,,_,) = -1. If X does 

not jump then YTa_, k, = 0. So we get from (4.4), 
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This last equation (4.5) suggests a connection between A and A. This connection 

will be studied in the sequel. First we need a definition. Define ti : LI x [0, ~0) + R 

by 6, =Csz+rl(~,+~,l. Then n”, =$[ YT, Y],. Here [ YT, Y] is the optional quadratic 

variation process of Y. It satisfies 

I 
f 

YTY, = YiY”s-2 Y;- dY,+[YT, Y],. 
0 

Since YTY, = Y:Y, = 1, we have 

I 

I 
A=- Yf- dY,. 

0 

(4.6) 

We now have the following proposition. 

Proposition 4.2. (i) i is an F Y-adapted (and hence If”-adapted, since $7 c 9:) 

counting process with IF” and IF Y-predictable intensity x, = - Yf_ A( t) Y,_. 

(ii) n - ii is also a counting process. It is only F”-adapted and has En-predictable 

intensity A, + Yf_ A( t) Y,_. 

(iii) ri, = JC: l{~,:,~~) dtz7 and i, = l~~,;_~)/\,. 

(iii’) 9: and 92 are conditionally independent given 9:. 

(iv) Let all the A,,(t) be strictly negative. Then n = J?, 9: = 9: for all t > 0 and 

A, = - Y:_ A(t) Y,_ and 

k, = -( Y:_ A( t) Y,_))‘A( t) Y,_ = -I- 
A,(t) y 

A,,(t) ” ’ 

Proof. (i) In view of equation (4.6) we have dn’, = - Y:A(t) Y, dt- Y:_ dmy. By 

observing that j,, Y,‘_ drnr is again an [F” and lF y martingale we get the desired 

result according to the definition of intensity. 

(ii) Follows from (i). 
. - 

l,i 

(iii) Noticethat lfyIL+ y,I_,f= l~h,L..,O,;\,i,o)= l(,i,LI,n),smceA,L GA,. Hence dii, = 

,,“! dn,. But then dn, = l{;\,,,,) , A dt+ l{;\,>“) dm,, which shows that ~{x,_~~A, is the 

En-intensity of 6 which is then also equal to A, by part (i). 

(iii’) This is an alternative formulation of (iii) in view of Proposition 2.2. 

(iv) From equation (4.4) we have A,,YTV,_, k, = Y’T,,_, A( T,,) YT,, ~, = 

C, A,,(~-N~x,,,_~=C,~ (0. Hence A,, > 0 and k,, # 0, which means that X always 

jumps as soon as n jumps. Hence n = 6 Since always 9”~ 9: c 9: we now also 

have 9” = 3 “,y. Finally n = t? implies A, = 1, = - YT- A( t) Y,_. Hence the expression 

for k, follows from formula (4.1). 0 

It is appropriate to inspect the results of Proposition 4.2 a little closer. In genera1 

we have for all t>O Sfc 9,‘~ 9:. In the case described in Proposition 4.2(iv), 

we get equality of those a-algebra’s. Since now n is also the total number of jumps 

(or transitions) of the Markov chain and &, Cy = 9: it seems logical to expect that 
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we have in the general situation (where < counts the transitions of the chain) 
@=$Y 

I , , which means in words that if we have a Markov chain adapted to a 

counting process then it is also adapted to the counting process that describes the 

total number of transitions of the chain. One could say that 6 is sort of “minimal” 

counting processes to which X is adapted. 

Next we show that the claim Sh = 9”: holds true. It is a consequence of the 

following theorem. 

Theroem 4.3. Let X be jnite state F”-Markov, then Y, is 9:-measurable, and hence 

X isjinite state [F’-Markov. 

_ w 

Proof. Let T,, T,, . . . , be the possibly finite sequence of jump times of i?. From the 

discussion leading to (4.5) we see that AT, = - Y$,_, A( t) Yi, , > 0. Consider first 

T, . Then Ai, is a (measurable) function of 7, only. Hence from Y?, = 

(AT: A( f,)+ I) Y,, the random variable Yi, is also a measurable function of ?, 

only. But then by induction we find that Yy,, = (A 7,: A( f,,) + I) Yf,, , is a measurable 

function of ?, , . . . , fn, say Yf,, = yn( ?, , . . . , fn). 

Consequently, by right continuity of Y, we get 

Notice that y,, is an s$,,-measurable function since s$,, = V( ?, , . . . , T,,). Now we 

invoke the fact that Sf,f n { ?n s t < ‘f,,+,} = 9: n { fn s t < fR+,} (see Brtmaud, 1981, 

p. 308) to see that indeed Y, is 9: measurable. Since a process that is Markov with 

respect to some filtration is also Markov with respect to any other smaller filtration 

to which it is adapted, X is also IF”-Markov. 0 

The statement of the theorem is sometimes immediately seen in specific cases. 

Consider for example the case where A, = A > 0 and A is a constant matrix (example 

4.1). Then we have in fact Y,=(Am’A+Z)‘~Yo. 

So far we have seen the following results. Given the fact that we have an [F”-Markov 

process X, X is also IF’r-Markov and n” has intensity 1, = - Y:_A(t) Y,-, where g is 

as before the process that counts all the transitions of X. As such these results form 

necessary conditions that follow from the existence of such processes. One might 

raise the question how to formulate sufficient conditions on a given Markov matrix 

function A( * ) such that there exists an associated IF”-Markov chain X. 

Secondly, given that a process X is IF’-Markov, what other counting processes 

n do exist such that X is also IF”-Markov. 

Answering the first question will be postponed until Section 5. Concerning 

the second one we have-as a converse of Proposition 4.2(iii)-the following 

proposition. 
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Proposition 4.4. Let X be IF’-Markov. Let n be another counting 

predictable intensity A such that: 

(i) ii, = 
i 

’ li;\,>-ot dn,. 
0 

(ii) X, = lj,i,,O,h,. 

Then X is also F”-Markov. 

process with F’- 

Proof. From Proposition 2.2, we see that S”c 9: and that 9: and 9: are condi- 

tionally independent given S:. Hence X is certainly En-adapted. 

Observe first that 1, = Oe Y:_A( t) Y,- = 0 implies A(t) Y,+ = 0 as a result of the 

fact that A(t) is a Markov-matrix. Since X is IF”-Markov: dY, = A:A( t) Y,_ d6, 

(Theorem 4.1). Hence 

dY, =x:h,A(t)Y, dt+X:A(t)Y,p dm, =A(t)Y, dt+i:A(t)Y,p dfi,. 

From the conditional independence relation and Lemma 2.3, the last term is an 

If”-martingale. Therefore application of Proposition 3.2 completes the proof. q 

Remark. In view of the remark following the proof of Proposition 2.2 one can 

replace conditions (i) and (ii) in Proposition 4.4 by n”, =Jh u,~ dn, and 1, = u,h, for 

some F”-predictable process u. 

Until now we have studied processes X that are IF”-Markov and thus En-adapted. 

As mentioned before, one of the results is then, that X is also IF’- Markov. Knowing 

this, one can prove all the results mentioned in the foregoing, such as x, = 

Y:_ A( t) Y,+ etc. 

An interesting question is to see whether a process which is Markov with respect 

to its own flow of v-algebras and which is F”-adapted, shares the same properties. 

In general this is not true. For instance if n is standard Poisson process and X is 

defined by X, = nrj2, then X is lFX-Markov, but not IF”-Markov. Theorem 4.5 gives 

a sufficient condition for an affirmative answer. Let us first remark that any bounded 

process that is a semimartingale with respect to some filtration is special. (See 

Dellacherie and Meyer, 1980, Thtorkme VII.25.) 

Theorem 4.5. Let X be a finite state IFX-Markov chain and assume that X is adapted 

to IF” for some counting process n. Assume moreover that the indicator process Y, being 

an V-special semimartingale, admits a decomposition such that the predictable process 

offinite variation is continuous. Then 9,” = 9: Vt 2 0 and X is IF’-adapted and thus 

[Fn -Markov. 

Proof. From Lemma 2.1 we get dY, = k, dn, for some F”-predictable process k. By 

definition of n” we have dn’, = 4 d[ YT, Y], = fk:k, dn,. So An”, = 0 iff k, = 0. Therefore 

we can write dY, = k, dn”,. Observe that i is FY-adapted. As in BrCmaud (1981, p. 
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2.13), we can k, as a Radon-Nikodym derivative dY,/dr?, on 

dG,=-Yf_dY,=-Y:_A(t)Y,-dt-Y,-dm: 

so 

dY,= k, dG,=-k,Y:_A(t)Y,Pdt-k,Y:_dmy 

but on the other hand, 

(4.7) 

dY,=A(t)Y, dt+dmT. (4.8) 

Since all processes in (4.7) and (4.8) are FY-adapted, we have from the uniqueness 

of the decomposition of a special semimartingale that -k,Y:_ A( t) Y,_ = A(t) Y,_ 

a.s., which then leads to k, = -( YZA( t) Y,_)+A(t) Y,_. As in the proof of the 

Theorem 4.3 we can conclude that Y is F”-measurable. Therefore 97~ s-_h~ ST. 

Hence X is IFX-Markov is now equivalent to X is [Fy =[F”-Markov. 0 

Remark. The statement of Theorem 4.5 indicates why n,,> cannot be IF”-Markov. 

This is immediately seen by noting that r~,,~ is En-predictable. Hence its dual 

predictable projection with respect to IF” is the process itself, which is discontinuous. 

4.3. In this subsection we mention some consequences of the foregoing for the case 

where X is a homogeneous chain. Some of the results can also be derived from 

Davis and Varaiya (1974). 

Corollary 4.6. Assume that X is a homogeneous chain. 

(i) IfA,, < 0, then in the corresponding column Ai of A there is exactly one j = j( i) 

such that Aii = -A,i and all other Aki’s are zero. Zf Aii = 0 then the whole column Ai = 0. 

(ii) k is now a left continuous piecewise constant process and satisfies 

k,l(r,,==,,r,,+l }=-CA;:Ailcx,,~=c,,l,.~,.,=.,+,,. 
I 

(iii) The sampled chain g,, := X 7,, is now a deterministic process and completely 

known given the initial state 2” = X,,. 

(iv) If there are no absorbing states, then the process A assumes only aJinite number 

of values. SpeciJically A, E {-A,, , . . . , -A,,}. 

Proof. (i), (iii) and (iv) follow immediately from the explicit expression in 

Corollary 4.2 (ii) requires a little work. Recall that we have k, = A:A Y,_. Let T be 

the absorption time of the chain. Then AY,P1(,,T)-O. Hence x, >Oe ts T 

Therefore htl~,,TI=~,l~,~TI=-Y~_AYt~l~,~T). Hence k,=-CiAZAiYi,+l,,,.,= 

--Ci AzAiY,,_, because AiY;f_l(,,TI=O. q 
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At this point one might raise the question in virtue of Corollary 4.6(iv) whether 

A is also a Markov process. Clearly this is the case if all the Aci are different or 

when they are all the same. Interesting is the case when there exists at least one 

pair (i,j) such that A,i = A,,. We will answer this question by means of Theorem 

3.4. Assume that there are 2~ m s n - 1 distinct values among the A,,. Call these 

a,,...,a, and denote for all j = 1,. . . , m by E, the set of all j such that A, = ai. 

Define FE R”“” by Fi, = lljFE,J. We have the following result in the terminology of 
Theorem 3.4. 

The process A is an IF “-Markov chain iff FAK = 0. If the last condition is satisfied 

then the matrix B of transition intensities of A is given by FAk 

Example 4.2. (i) If 

-b 0 0 

0 0 a -b 

then A is Markov with 

B= -’ b 

[ 1 a -b 

and state space {-a, -b}. Here we should take 

(ii) If 

-a 0 0 b 

A= i ; 

-’ 0 0 

a -b 0’ 

0 0 b -b 1 
then A is not Markov, which is seen by calculating 

FAK= a 
-b 

[ 1 -a b ’ 

with 

Remarks. (i) Although it might happen that A is not Markov of course (A, X_) is 

jointly Markov. 
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(ii) Since it follows from Corollary 4.6(iv) that the number of values that A can 

assume is always at most the number of states that X can assume, we see that a 

necessary condition for a process X to be Markov is, that it takes values in a set 

which is at least as big as the set of values of the process A: So n 2 #{A, : t 2 O}. 

Hence a homogeneous chain X cannot have a finite state space if A has a continuously 

varying component. In the same way as checking, whether A is IF”-Markov one can 

investigate whether there exist Markov processes X’ with a smaller state space than 

X by considering all possible choices of F. Thus obtaining a description of a 

“minimal” Markov process. This is of some relevance in connection with the 

stochastic realization problem to be posed in Section 5. 

(iii) The case where A is IF”-Markov itself implies here that it changes value as 

soon as n jumps. Thus we can immediately see from the A-matrix whether A is 

IF”-Markov or not. In Example 4.2(i) we see that at jump times A switches from a 

to b or conversely which is an agreement with the fact that it is Markov. In Example 

4.2(ii) we see that it is possible that A stays in a even when n jumps. 

4.4. In the previous subsection we have seen that the existence of a homogeneous 

[F”-Markov chain X does not necessarily imply that A is also [F”-Markov. Here after 

we describe some consequences of the situation where indeed A is an [F”-Markov 

process with finite state space. Since in this case A assumes only a finite number of 

values it follows that A (being predictable) may be taken as a left continuous process. 

Write X, = A,+, the right continuous version of A. We will apply the previous results 

to this particular choice of X. 

Denote by {A,, . . . , A,,} the state space of X. If there are no absorbing states then 

A,, < 0 and we have that Ai = -A, for all i in view of Corollary 4.6(iv). So all A, > 0. 

For reasons of completeness we will show what happens if some of the A,; are 

equal to zero or if one of the Ai equals zero. The latter case clearly implies that the 

corresponding A,i =O. Hence this case is covered by the first one. Define Bc 

(1,. . . , n} to be the set of integers i such that A, is an absorbing state. Define also 

T = inf{ t 3 0: X, E {hi, i E B}}. 

Notice that T < cc a.s. if and only if B = 0, and for i E B we have Aii( t) = 0, and 

hence the whole column A,(t) - 0. The principal result of this subsection is the next 

proposition which tells that for t i T we can more or less identify the intensity A, 

as one of the A,,( t)‘s, and that A,,(t) only assumes the values -Ai or 0. 

Proposition 4.7. Assume that A is IF”-Markov with state space {A,, . . . , A,,} and 

transition intensity matrix A(t). Let T be the absorption time as dejined above and B 

the set of integers corresponding to the absorbing states. Then 

A, = A, l(r>q + ,~~‘hil(*~=,~il(,,~i,,=,)- C Aii(t)lih,=h,) 
icflc 

andfor ic B”: A,,(t)=-hi ifA,,(t)<O. 

Proof. Let X, = A,+, then Y;, = lfx,=a,) and Y,,_= llh,=h,~. In the notation that we 

have used previously, n’ has rate A, = - Yf_A(t) Y,_ = -CitBC Aii(t)l~h,=h,~l~r~_T). 
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Since X, = 1 - jh,,Olh, (Proposition 4.2(iii)), we have 

Xl. -l- 1 I {ICT]- {A,>O) {r-T) A + l{;\,>“)l{,:~r)~, = l{X,>O$,, f 

since i, > 0 implies t G T and conversely t > T implies 1, = 0. Hence 

-C A,i(t)l~h,=,\,~l~r,_7) = l{x,:-01 C Ail{h,+). 
I 

Now let i E B’. Then 

Observe that 

l(h,~>O)l{h,=A,)= l{A,,cr,i”)l{*,-h,) 

and for i E B’A, = A, implies t S T. Hence we get 

-A;,(r)1 = - 1 1 A {A, A,} - IA,,Cr,s 0) ih,=h,j I. 

Since we may assume that P(A, = A;) > 0 we now get by taking expectations 

-A,,(r) = l{A,,(rb ,,A, 

which proves the second assertion of the proposition. Furthermore 

A, =AT~(,>T)+AA,~(,<TJ 

= AT. l(r-~)+ C ~{A,=A,,A,,c~)=o$,+ C l{,,=,,,A,t,,,c”)Ai 
iiB‘ ii&J’ 

= Ai- l{r>~) + C l{*,=*,,A,,(r)=o)Ai- C Aii(t)l{,,=,,) 
ten’ iEB’ 

which proves the first assertion. 0 

Remarks. (i) If A is a homogeneous IF”-Markov chain, then A is a constant matrix 

and we have for i E B’ the identity A,(t) = -A,. Hence 

And of course if there are no absorbing states or if the value zero is the only one, 

then Ai,( -A, for all i and A, = -Cr,, Aiilfh,=h,). 

(ii) Now it is easy to see that for any functionf which is not injective or constant 

f(A) cannot be a IF”-Markov chain, since we have tacitly assumed that all the Ai are 

different. Hence the number of states of A is now the minimal number of elements 

that a set should have in order that it can serve as a state space for some IF”-Markov 

process. In this sense one can say that A, if it is IF”-Markov, is the minimal IF”-Markov 

chain. 
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5. Stochastic realization 

The purpose of this section is to solve a certain stochastic realization problem, to 

be stated in Subsection 5.2. The solution involves a technical result on the existence 

of F”-Markov process which is formulated in Subsection 5.1. 

5.1. It is known that given a Markov-matrix function A: [0, ~0) + R”““, one can 

always construct a probability space (Q 9, P) and a Markov process X : R x [0, m) + 

(1,. . . , n}, such that its transition probabilities are generated by A. 

In this section we are concerned with a restrictive version of this problem, namely 

given a complete probability space (Q, 9, P) a counting process n : R x [0, 03) + N,, 

and a Markov matrix function A: [0, CO)+IW”~~, does there exist an IF”-Markov 

processX:R=[O,cO)+{l,..., n} such that A generates its transition probabilities. 

We know from previous results that given such a process we have the identities 

i,=-Y:_A(t)Y, and Xr=h,l~:,..OI and that for each (i, t) such that A,,(t) ~0, 

there exists only one j such that A,;(t) = -A,,(t). Hence for the existence of such a 

process X this imposes some necessary conditions on the matrix A(t). In Theorem 

5.1 we present a set of sufficient conditions on both A(t) and A, that implies the 

existence of such a desired process X, and we also give a construction for X. Before 

stating the theorem let us emphasize that one should not overestimate its content, 

since in a sense it looks like a tautology. On the other hand it shows how one can 

extract an IF”-Markov process that is hidden in a suitable matrix function A. After 

having proved the theorem we give an example, how to use the construction of X. 

Theorem 5.1. Given a counting process n with IF”-predictable intensity A and a Markov 

matrix function A : [0, 00) + R”““. There exists an IF”-Markov process X : R x [0, ~0) + 

11,. . .1 n} with A as ifs injinitesimal generator if there is a unique sequence of random 

variables {x,,},, _(,, x, : R + { 1, . . . , n} such that the following two conditions hold: 

6) A,~~,~~(T,)(A,,,,,~(T,,,)+h,,,l) =O vm. 
(ii) 1. A,,,,,, CT,,)<0 then x,+~ is such that A,,,,+,.,,,(T,) = -4,rr ,,,, CT,) and if 

Axf,,x,,, ( Tm 1 = 0, then x,+, = x, . 

Proof. Let us define a process YP : R x [0, ~0) + (0, 1)” by requiring that 

YJ1,r,,~_,C,,,,~,= Y~,,,l(-r,,,~,~--rs-r,,,~ and Y,,, = I,+=,,. Then 

A “T,,, C A;;( T,) Yi,,, = At,,, C A,;( T, ) I,,,, =,I 
i I 

= A :,,, A,,,, ( Trn ) 

= G. fk,,, IX,,, (T~)l~.,~~+,=i~+h+T,~,,,A,,,~~~,,(T~)l~~~,,=i) 

+Ah+,,~At,,,(Tm)l,,~,.,,~~+I#,, 

= -h=,,~A,~~,,,,,(Tm)1{,,,,+1=,}1{A,,,,,,,~cr,,,,~ol 

+ A “,,, 4,7t?I (Tm)l~x,,,=i,+O 

= -h;,,A,,,~,~~(T,)[1~,,,+1=i,-l,,,,=irl 
= 1, 5,,+, = iI - l(x,,,=i) = y>,,,+, - yiT. ,,I . 
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So in vector notation we have 

Y7,,,+ I - YT,,, = A :,,, A( T’ 1 YT,,, . (5.1) 

Notice that A r,,, = 0 implies A( T,,,) Y;,,, = 0. Therefore with the usual convention that 

O/O=0 we have from (5.1), 

YT,,,+ I - YT,,, = AT,:, A( L ) G,,, . (5.2) 

Define now Y: 0 x [0, ~0) + (0, l}” by Y, = YL+. Then Y,,,+, = Y7,,. Hence (5.1) reads 

YT,,, - YT,,,_, = A,:, A(T,) YT,,,~, (5.3) 

which can be rephrased as 

d Y, = A ;‘A( t) Y,+ dn, (5.4) 

or 

We now want to apply Proposition 3.2. Therefore we have to verify that Y,- is 

IF”-predictable. Observe that 

Y,~lV,,,~,=-T,,,+,}= Yr,,,lt,,,,l,,,,+Il. (5.5) 

Now the sequence {x,},,~ is such that x,,, is selected on the basis of knowing x, 

and T,,,, or iteratively is selected on the knowledge of {T,, . . . , T,}. Therefore 

YT,,, = YG,,,,, = l,,,,+,=,, only depends on { Tl, . . . , T,}. From (5.5) and Lemma 2.3 

we now find the desired result. 0 

Example 5.1. Let A be constant between the jump times T, and envolve according 

to A,, AZ, AS, A,, AZ, hi,. . . , etc. Let 

Then we see that A, cannot be a transition matrix of an IF”-Markov chain X : fl x 

[0, ~0) + {1,2,3}. Because from condition (i) of Theorem 5.1 we see that X, = 1 iff 

A,=A,, X,=3 iff A,=A, and X,=2 iff A,=Aj. From X,=1 it can only jump to 2 

according to A,. But from the given sequence of A’s it should jump from 1 to 3. 

However 

is compatible with the sequence of A’s as one can easily verify and thus A2 can act 

as the transition matrix of an IF”-Markov chain X : 0 x [0, ~0) + {1,2,3}. 



l? Spreij / Self-exciting counting processes 293 

5.2. In this section we will address a certain stochastic realization problem, and 

see how we can solve it by means of Theorem 5.1. Let us state the problem precisely. 

We are given a complete filtered probability space (0, 5, IF”, P), where the filtration 

[F” is generated by a counting process satisfying dn, = A, dt+dm,, where A is the 

ff”-predictable intensity process and m an F”-martingale. 

We pose the following question. Does there exist a homogeneous IF”-Markov 

process X with finite state space E and a (measurable) function f: E +Iw+ such 

that A, =f(X,_)? 

One can reformulate this question in terms that are used in stochastic realization 

theory. The concepts involved are then stochastic system, state process, output 

process. However it seems that there is no consensus on how to define in abstract 

terms, what a stochastic system is. One approach can be found in Van Schuppen 

(1979). We will not touch upon all the difficulties that are inherent to this problem. 

We will give a definition that suffices for our purpose. Suppose that we are given 

an object, to be called a stochastic system, with output process y. Then from the 

intuitive interpretation of state a process X that should play the role of state process 

has to satisfy at least the following requirement: the conditional distribution of 

X I+U, z1> 0 given all X, and y, for s d t is the same as the conditional distribution 

of X,,, given X, alone. 

Here we are interested in systems with a counting process output only. The above 

considerations are captured in the next definition, which is probably not the most 

general one. 

Definition 5.2. A stochastic state space system with counting process output is a 

complete filtered probability space (0, 9, F, P) together with an adapted stochastic 

process X: R x [O, 00) + E, an adapted counting processes n and a measurable 

function f: R x E + R, such that X is IF-Markov and f( t, X,-) is the F-predictable 

intensity of n. 

In this section we are concerned with state processes X that assume finitely many 

values and with self-exciting counting processes n, like in previous sections. This 

amounts to studying stochastic systems such that X is Fe-adapted. By taking IF = 5” 

in Definition 5.2, we have that the state X is even F”-Markov. As already mentioned 

in the introduction, the property that the state process is IF”-Markov was a motivation 

for studying IF”- Markov processes. 

Remark. Observe that we can take n as a state process if and only if n is Markov, 

which is the case if and only if its predictable intensity is of the form f(t, n,_) 
(Proposition 3.3). 

An alternative formulation of the question that we posed in the beginning of this 

section is the following. Given a counting process n on (Q 9, P) can we find a 

stochastic system on (0, 9, IF”, P) such that its state process X is homogeneous and 

has finite state space E and such that the output processes is n with F”-predictable 

intensity f(X,_) for some f: E + IL!, . 
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Let us suppose that we can affirmatively answer this question. From Corollary 

4.6 we see that the sequence {AT,,,} is eventually constant or periodic. This observation 

also gives us a sufficient condition for solving the problem, which is the content of 

the next theorem. 

Theorem 5.3. There exists on (0, 9, [F”, P) a finite state IF”-Markov process X with 

state space E and a function f: E + [w+ such that A, = f(X,_) if and only if there exist 

a k EN such that the sequence {A,-,,} for n 3 k is either constant or periodic. 

Proof. We only have to prove that this condition on A is sufficient for the existence 

of x. 

(i) Consider first the case where {AT\} is eventually cyclic, which means that 

there exist integers N’ and p’ such that A,+,,. = A, for i 2 N’. Let N and p be the 

smallest of such integers. Now we can construct an ff”-Markov process X with state 

space {l,..., N+p} as follows. Define AER’~~~‘~(~+“) by A,, = -A,_, for i = 

l,..., N+p,Ai+,,j=-A,i=AT,_,fori=l ,..., N+p-landA,+,,,+,=A,,+,,_,.All 

other A,, are zero. 

A= 

Ao 
-AT&, +A T,c+,,m, 

+AT~ 

-A T,%+,,-Z 
+A T,v+,>~ z -A Th+,,-I 

The existence of the X we are looking for is guaranteed by Theorem 5.1 (take 

Xm=m, etc.) andf is defined byf(i)=AT,_l, i=l,..., N+p. 

(ii) If A is eventually constant, take p = 1 in case (i). Then A,, = 0. Cl 

Remark. The behaviour of the system for t s T,., (TN as defined in the proof of 

Theorem 5.3) can be considered as the transient behaviour of the system. If one 

would assume that time runs from minus infinity, instead from zero, then the 

necessary and sufficient condition in Theorem 5.3 would read: The sequence {AT,,} 

is either periodic or constant. 

One other problem that remains to be solved is that of minimality of the solution 

of the realization problem. In our context minimality means minimality of the 

number of elements of the state space E. We have the following result. 

Corollary 5.4. 7Iie solution of the stochastic realization problem as presented in the 

proof of Theorem 5.3 is minimal. 

Proof. In principle one can prove the corollary by applying the FAK = 0 criterion 

of Theorem 3.4. Here we give an alternative proof. Consider first the case where 
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{A,,} is eventually constant. Assume that there exists a function g such that g(X) 

is Markov and a function h such that h(g(X,)) =f(X,) = A,. Consider a state j of 

X, j < N. Then there is no is j - 1 such that g(i) = g(j), otherwise the sequence 

{AT,,} would reach a loop, which is forbidden by assumption. Similarly there is no 

i G N such that g(i) = g( N + l), otherwise the absorption time would be smaller 

than TN, which is minimal by construction. This shows that g is injective, so that 

E is minimal. A similar argument applies to the other case. Assume again that there 

is a function g such that g(X) is Markov. For the transient states we have the same 

argument as in case (i). For the cyclic part of the chain we have for each recurrent 

state j that there is by definition no transient state i <j such that g(i) = g(j), but 

also no recurrent state i <j such that g(i) = g(j), because that would contradict the 

minimality of the number (period) p. Again g is injective. 0 

6. Conclusions 

The object that we have studied in this paper was a stochastic process X that is 

IF”-Markov, where IF” denotes the filtration that was generated by some given counting 

process n, and has finite state space. The additional requirement 

homogeneous resulted in the fact that then X has to be eventually either cyclic or 

constant. Consequently the idea of viewing n as the output of a stochastic system, 

with such a process X as state process, leads to a rather restricted class of counting 

processes that satisfy this requirement. This partly negative result answers a question 

posed in the introduction, namely whether we get an interesting class of counting 

processes that obeys the afore mentioned conditions. 
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