Pricing and trading credit default swaps

Tomasz R. Bielecki, Illinois Institute of Technology, Chicago, USA
Monique Jeanblanc, Université d’Évry Val d’Essonne, Evry, France
Yann Le Cam, Université d’Évry Val d’Essonne, Evry, France
Marek Rutkowski, University of New South Wales, Sydney, Australia

5th Winter School on Mathematical Finance
Lunteren, January 23-25, 2006
Begin at the beginning, and go on till you come to the end. Then,

L. Carroll, Alice’s Adventures in Wonderland
A probability space \((\Omega, \mathcal{G}, \mathbb{P})\) is given. All the processes are assumed to be \(\mathcal{G}\)-adapted and càdlàg.

We denote

\[B_t = \exp(\int_0^t r(s)ds) \]

the savings account, where \(r\) is deterministic.
Self-Financing Trading Strategies and Dividend-paying Assets

Let S^i, $i = 1, \ldots, k$ denote the price processes of securities that pay dividends according to a process of finite variation D^i, with $D^i_0 = 0$, and S^j, $j = k + 1, \ldots, m$ non-dividend-paying assets.

The **wealth process** associated to the strategy $\phi = (\phi^1, \ldots, \phi^m)$ is

$$V_t(\phi) = \sum_{\ell=1}^m \phi^\ell_t S^\ell_t.$$

A strategy ϕ is said to be **self-financing** if $V_t(\phi) = V_0(\phi) + G_t(\phi)$ where the **gains process** $G(\phi)$ is

$$G_t(\phi) = \sum_{i=1}^k \int_{[0,t]} \phi^i_u dD^i_u + \sum_{\ell=1}^m \int_{[0,t]} \phi^\ell_u dS^\ell_u.$$
We say that \mathbb{Q}, equivalent to \mathbb{P}, is a \textbf{martingale measure} if

- the discounted price $B_t^{-1}S^i_t$ of any non-dividend paying traded security is a \mathbb{Q}-martingale with respect to \mathcal{G}
- the ex-dividend price process S^i_t associated with the dividend process D^i satisfies:

$$S^i_t = B_t \mathbb{E}_Q \left(S^i_T B_T^{-1} + \int_{[0,T]} B_u^{-1} dD_u^i \bigg| \mathcal{G}_t \right).$$

The processes $S^i_t B_t^{-1} + \int_{[0,t]} B_u^{-1} dD_u^i$ are \mathbb{Q}-martingales.

For any self-financing trading strategy ϕ, the discounted wealth process $B_t^{-1}V_t(\phi)$ is a \mathbb{Q}-martingale.
Defaultable Market

The probability space is endowed with a reference filtration \mathcal{F}.

The \textbf{default time} τ is a \textbf{non-negative random variable}.

$H_t = 1_{\{\tau \leq t\}}$ is the \textbf{default process}, with natural filtration \mathcal{H}. Note that $\mathcal{H}_t = \sigma(t \wedge \tau)$ and that τ is a \mathcal{H}-stopping time.

We set $\mathcal{G} = \mathcal{F} \vee \mathcal{H}$.
Some examples

- τ is a stopping time in a Brownian filtration
- λ is a given non-negative F-adapted process and

$$\tau = \inf\{t : \int_0^t \lambda_u du \geq U\}$$

where U is a non-negative r.v. independent of F.

Defaultable claim

A defaultable claim maturing at T is a quadruple (X, A, Z, τ), where

- X is an \mathcal{F}_T-measurable random variable,
- A is an \mathcal{F}-adapted continuous process of finite variation
- Z is an \mathcal{F}-predictable process.

The payoff X is done at time T if $\tau > T$

The payoff Z_τ is done at default time τ if $\tau \leq T$

The process A corresponds to a cumulative continuous payment till default time.
The **dividend process** D of a defaultable claim $(0, A, Z, \tau)$ equals, on $t \leq T$,

\[
D_t = A_{\tau \wedge t} + 1_{\tau \leq t} Z_{\tau} \\
= \int_{[0,t]} (1 - H_u) dA_u + \int_{[0,t]} Z_u dH_u
\]
A credit default swap with a constant rate κ and recovery at default is a defaultable claim $(0, A, Z, \tau)$, where

- $Z_t \equiv \delta(t)$
- $A_t = -\kappa t$ for every $t \in [0, T]$.

The function (or process) $\delta : [0, T] \rightarrow IR$ represents the default protection, and the constant $\kappa \in IR$ represents the CDS rate (also termed the spread, premium or annuity of a CDS).
We assume here that \textbf{F is the trivial filtration}. Let

\[G(t) = \mathbb{Q}(\tau > t) = \int_t^\infty f(u)du \]

be the \(\mathbb{Q}\)-survival probability. In that case, for any function \(h\),

\[
\mathbb{E}(h(\tau)|\mathcal{H}_t) \mathbb{1}_{\{t<\tau\}} = \mathbb{1}_{\{t<\tau\}} \frac{1}{\mathbb{P}(t < \tau)} \mathbb{E}(h(\tau) \mathbb{1}_{\{t<\tau\}})
\]

\[
= \mathbb{1}_{\{t<\tau\}} \frac{1}{G(t)} \mathbb{E} \left(\int_t^\infty h(u)f(u)du \right)
\]
We assume that $r = 0$.

The ex-dividend price of a CDS maturing at T with rate κ is

$$S_t(\kappa) = \mathbb{E}_Q \left(\mathbb{1}_{\{t<\tau\leq T\}} \delta(\tau) \mid \mathcal{H}_t \right) - \mathbb{E}_Q \left(\mathbb{1}_{\{t<\tau\}} \kappa((\tau \wedge T) - t) \mid \mathcal{H}_t \right)$$

$$= \mathbb{1}_{\{t<\tau\}} \frac{1}{G(t)} \left(\int_t^T \delta(u) f(u) \, du - \kappa \int_t^T G(u) \, du \right).$$

For a CDS initiated at time 0, the value κ is determined so that $S_0(\kappa) = 0$, hence

$$\int_0^T \delta(u) f(u) \, du = \kappa \int_0^T G(u) \, du$$

Note that the price S_t can take negative values.
The process

\[M_t = H_t - \int_0^t (1 - H_u) \gamma(u) \, du = H_t - \int_0^{t \wedge \tau} \gamma(u) \, du, \]

where \(\gamma(u) = \frac{f(u)}{G(u)} \) is a (\(\mathbb{Q}, \mathbb{H} \))-martingale.

The process

\[L_t = \mathbb{1}_{\{t < \tau\}} \frac{1}{G(t)} \]

is a (\(\mathbb{Q}, \mathbb{H} \))-martingale which satisfies \(dL_t = -L_t \, dM_t \).
Using

\[S_t(\kappa) = L_t \left(\int_t^T \delta(u) f(u) du - \kappa \int_t^T G(u) du \right) \]

and IP formula, one proves that the dynamics of the ex-dividend price \(S_t(\kappa) \) are

\[dS_t(\kappa) = -S_t- (\kappa) dM_t + (1 - H_t)(\kappa - \delta(t) \gamma(t)) dt . \]
The dividend process associated with the CDS is
\[
dD_t = -\kappa (1 - H_t) dt + \delta(t) dH_t
\]
hence,
\[
d(S_t(\kappa) + D_t) = -S_{t-}(\kappa) dM_t + (1 - H_t) (\kappa - \delta(t) \gamma(t)) dt
\]
\[
-\kappa (1 - H_t) dt + \delta(t) dH_t
\]
\[
= (\delta(t) - S_{t-}(\kappa)) dM_t
\]
The function \(\tilde{S}_t(\kappa) \) such that \(\mathbb{1}_{\{t < \tau\}} \tilde{S}_t(\kappa) = \mathbb{1}_{\{t < \tau\}} S_t(\kappa) \) is the \textbf{predefault-price}, it satisfies
\[
d\tilde{S}_t(\kappa) = \left(\tilde{S}_t(\kappa) \gamma(t) + (\kappa - \delta(t) \gamma(t)) \right) dt,
\]
We assume that \(\tilde{S}_t(\kappa) \neq \delta(t) \) for every \(t \in [0, T] \).
Hedging with CDS

Our aim is to find a replicating strategy for the defaultable claim $(X, 0, Z, \tau)$, where X is a constant and $Z_t = z(t)$.

Let \hat{g} and ϕ^1 be two functions defined as

$$\hat{g}(t) = \frac{1}{G(t)} \left(\int_0^t z(s) dG(s) + XG(T) \right)$$

$$\phi^1(t) = \frac{h(t) - \hat{g}(t)}{\delta(t) - \tilde{S}_t(\kappa)}$$

Let $\phi^0_t = V_t(\phi) - \phi^1(t)S_t(\kappa)$, where $V_t(\phi) = \mathbb{E}_Q(Y|\mathcal{H}_t)$ and

$$Y = 1_{\{T \geq \tau\}}z(\tau) + 1_{\{T < \tau\}}X$$

Then the self-financing strategy $\phi = (\phi^0, \phi^1)$ based on the savings account and the CDS is a replicating strategy.
Proof: The terminal value of the wealth is

\[V_T = z(\tau)\mathbb{1}_{\tau<T} + X\mathbb{1}_{T<\tau} \]

On the one hand

\[
E(V_T|\mathcal{H}_t) = V_t = z(\tau)\mathbb{1}_{\tau\leq t} + \mathbb{1}_{\tau<t} \frac{1}{G(t)} \left(XG(T) + \int_0^t z(s)dG(s) \right)
\]

\[
= \int_0^t z(s)dH_s + (1 - H_t) \frac{1}{G(t)} \left(XG(T) + \int_0^t z(s)dG(s) \right)
\]

hence \(dV_t = (z(t) - \hat{g}(t))dM_t \) with \(\hat{g}(t) = \frac{1}{G(t)}(\int_0^t z(s)dG(s) + XG(T)) \).

On the other hand, \(dV_t = \phi^1_t dS_t(\kappa) = \phi^1_t(\delta(t) - S_{t-}(\kappa))dM_t \).
First to default

We assume again that F is the trivial filtration.

We now assume that two CDS’s with default times τ_1 and τ_2 are given. Let G be the survival probability of the pair (τ_1, τ_2)

$$G(t, s) = \mathbb{P}(\tau_1 > t, \tau_2 > s).$$

We assume that the pair (τ_1, τ_2) admits a density f. Some easy computation lead to $\mathbb{P}(t < \tau_1 | \tau_2) = h(t, \tau_2)$ where:

$$h(t, s) = \frac{\partial_2 G(t, s)}{\partial_2 G(0, s)}$$
Martingales

- **Filtration** $H^i = \sigma(\tau_i \wedge t)$ The processes

\[M^i_t = H^i_t - \int_0^{t \wedge \tau_i} \frac{f_i(s)}{1 - F_i(s)} ds \]

where

\[F_i(s) = \mathbb{P}(\tau_i \leq s) = \int_0^s f_i(u) du \]

are H^i-martingales. In terms of G:

\[1 - F_1(t) = G(t, 0), \quad f_1(t) = -\partial_1 G(t, 0) \]
Filtration $\mathbb{H} = \mathbb{H}^1 \vee \mathbb{H}^2$ Let $F^{(1)}$ be the \mathbb{H}^2-submartingale

$$F_t^{(1)} = \mathbb{P}(\tau_1 \leq t | \mathcal{H}^2_t)$$

with decomposition $F_t^{(1)} = Z_t^{(1)} + \int_0^t a_s^{(1)} ds$ where $Z^{(1)}$ is an \mathbb{H}^2-martingale.

The process

$$M_t^{(1)} = H_t^1 - \int_0^{t \wedge \tau_1} \frac{a_s^{(1)}}{1 - F_s^{(1)}} ds$$

is a \mathbb{H}-martingale
In a closed form, the process

\[M_t^{(1)} = H_t^1 - \int_0^{t \wedge \tau_1} \frac{a_s^{(1)}}{1 - F_s^{(1)}} ds \]

is a \mathbf{H}-martingale, where

- $a_t^{(1)} = -H_t^2 \partial_1 h^{(1)}(t, \tau_2) - (1 - H_t^2) \frac{\partial_1 G(t,t)}{G(0,t)}$

- $h^{(1)}(t, s) = \frac{\partial_2 G(t,s)}{\partial_2 G(0,s)}$

- $F_t^{(1)} = \mathbb{P}(\tau_1 \leq t | \mathcal{H}_t^2)$
Indeed, some easy computation enables us to write

\[
F_t^{(1)} = H_t^2 \mathbb{P}(\tau_1 \leq t | \tau_2) + (1 - H_t^2) \frac{\mathbb{P}(\tau_1 \leq t < \tau_2)}{\mathbb{P}(\tau_2 > t)}
\]

\[
= H_t^2 (1 - h^{(1)}(t, \tau_2)) + (1 - H_t^2) \frac{G(0, t) - G(t, t)}{G(0, t)}
\]

where

\[
h^{(1)}(t, v) = \frac{\partial^2 G(t, v)}{\partial v \partial G(0, v)}.
\]
\[
M_t^{(1)} = H_t - \int_0^{t \wedge \tau_1 \wedge \tau_2} \gamma_1(s) \, ds - \int_0^{t \wedge \tau_1 \wedge \tau_2} \gamma_1^2(s, \tau_2) \, ds
\]

with
\[
\gamma_1(s) = -\frac{\partial_1 G(s, s)}{G(s, s)}
\]
\[
\gamma_1^2(t, s) = -\frac{f(t, s)}{\partial_2 G(t, s)}
\]

Note that \(\gamma_1\) is the intensity of \(\tau_1\) before \(\tau_2\) and \(\gamma_1^2(t, \tau_2)\) is the intensity of \(\tau_1\) after \(\tau_2\).
The process

\[M_t^2 = H_t^2 - \int_0^{t \wedge \tau_2} \frac{a_s^{(2)}}{1 - F_s^{(2)}} ds \]

where

- \(a_t^{(2)} = -H_t^1 \partial_2 h^{(2)}(\tau_1, 1) - (1 - H_t^1) \frac{\partial_2 G(t, t)}{G(t, 0)} \)

- \(h^{(2)}(t, s) = \frac{\partial_1 G(t, s)}{\partial_1 G(t, 0)} \).

- \(F_t^{(2)} = \mathbb{P}(\tau_2 \leq t | \mathcal{H}_t^1) \)

is a \(\mathbb{H} \)-martingale.
It is rather easy to find the dynamics of S^1. One starts from the fact that, on the set $\{\tau_1 > t, \tau_2 > t\}$

$$S^1_t = \frac{1}{G(t, t)} \left(- \int_t^T \delta(u) G(du, t) - \kappa \int_t^T du \ G(u, t) \right)$$

$$= V^1(t)$$

and, on the set $\{\tau_1 > t > \tau_2\}$

$$S^1_t = \frac{1}{\partial_2 G(t, \tau_2)} \left(- \int_t^T du \ \delta(u) f(u, \tau_2) - \kappa \int_t^T du \ \partial_2 G(u, \tau_2) \right)$$

$$= V^2(t, \tau_2)$$
Hence

\[S^1_t = (1 - H^1_t)(1 - H^2_t) V^1(t) + (1 - H^1_t) H^2_t V^2(t, \tau_2) \]

and

\[
\begin{align*}
\text{d}S^1_t &= (1 - H^1_t)(1 - H^2_t) \text{d}V^1(t) + (1 - H^1_t) H^2_t \text{d}V^2(t, \tau_2) \\
&\quad - S^1_t \text{d}H^1_t - (1 - H^1_t) \{ V^1(t) - V^2(t, \tau_2) \} \text{d}H^2_t
\end{align*}
\]

where

\[
\begin{align*}
\text{d}V^1(t) &= \left((\gamma_1(t) + \gamma_2(t)) V^1(t) + \kappa_1 - \delta_1(t)\gamma_1(t) - S^1_t|2(\kappa_1)\gamma_2(t) \right) \text{d}t \\
\text{d}V^2(t, \tau_2) &= \left(\gamma^1|2(t, \tau_2) V^2(t, \tau_2) - \gamma^1|2(t, \tau_2)\delta_1(t) + \kappa_1 \right) \text{d}t
\end{align*}
\]
and the function $S_{t|2}^1(\kappa_1)$ equals

$$S_{t|2}^1(\kappa_1) = \frac{\int_t^T \delta_1(u)f(u,t)du}{\int_t^\infty f(u,t)du} - \kappa_1 \frac{\int_t^T du \int_u^\infty dz f(z,t)}{\int_t^\infty f(u,t)du}.$$

Note that $V^2(\tau_2, \tau_2) = S_{\tau_2|2}^1(\kappa_1)$
Let \(S^1_t(\kappa_1) \mathbb{I}_{\{t < \tau(1)\}} = \tilde{S}^1_t(\kappa_1) \mathbb{I}_{\{t < \tau(1)\}} \) where \(\tau(1) = \tau_1 \wedge \tau_2 \).

The dynamics of the pre-default price \(\tilde{S}^1_t(\kappa_1) \) are

\[
d\tilde{S}^1_t(\kappa_1) = (\gamma_1(t) + \gamma_2(t))\tilde{S}^1_t(\kappa_1) \, dt + (\kappa_1 - \delta_1(t)\gamma_1(t) - S^1_{t|2}(\kappa_1)\gamma_2(t)) \, dt,
\]
The pre-default price of a FtD claim \((X, 0, Z, \tau_{(1)})\), where \(Z = (Z_1, Z_2)\) and \(X = c(T)\), equals

\[
\tilde{\pi}(t) = \int_t^T du Z_1(u) \int_t^\infty dv f(u, v) + \int_t^T dv Z_2(v) \int_t^\infty du f(u, v) \frac{G(t, t)}{G(t, t)} + c(T) \frac{G(T, T)}{G(t, t)}.
\]

Moreover,

\[
d\tilde{\pi}(t) = (\gamma_1(t) + \gamma_2(t))\tilde{\pi}(t) dt - \sum_{i=1}^n Z_i(t) \gamma_i(t) dt,
\]

\[
= \sum_{i=1}^n \gamma_i(t)(\tilde{\pi}(t) - Z_i(t)) dt.
\]
Assume that the linear system
\[
\phi_1^1 (\tilde{S}_t^1(\kappa_1) - \delta_1(t)) + \phi_2^2 (\tilde{S}_t^2(\kappa_2) - S_{t|1}(\kappa_2)) = Z_1(t) - \tilde{\pi}(t),
\]
\[
\phi_2^2 (\tilde{S}_t^2(\kappa_2) - \delta_2(t)) + \phi_1^1 (\tilde{S}_t^1(\kappa_1) - S_{t|2}(\kappa_1)) = Z_2(t) - \tilde{\pi}(t),
\]
admits a unique solution \(\phi_t = (\phi_1^1, \phi_2^2) \) and let
\[
\phi_0^t = V_t(\phi) - \phi_1^1 S_{t|1}^1(\kappa_1) - \phi_2^2 S_{t|2}^2(\kappa_2)
\]
where
\[
dV_t(\phi) = \sum_{i=1}^{2} \phi^i_t (dS^i_t(\kappa_i) - \kappa_i dt), \quad V_0(\phi) = E_Q(Y)
\]
Then the self-financing strategy \(\phi \) replicates the first-to-default claim \((X, 0, Z, \tau(1))\).
Stochastic intensity

We now assume that some \textbf{reference filtration} \mathbf{F} such that $\mathcal{F}_t \subseteq \mathcal{G}_t$ is given. We set $\mathbf{G} = \mathbf{F} \lor \mathbf{H}$ so that $\mathcal{G}_t = \mathcal{F}_t \lor \mathcal{H}_t = \sigma(\mathcal{F}_t, \mathcal{H}_t)$ for every $t \in \mathbb{R}_+$. The filtration \mathbf{G} is referred to as to the \textbf{full filtration}.

We define the process

$$F_t = \mathbb{Q}\{\tau \leq t \mid \mathcal{F}_t\},$$

and the \textbf{survival process} $\mathcal{G}_t = 1 - F_t = \mathbb{Q}\{\tau > t \mid \mathcal{F}_t\}$.

The process G

$$G_t = \mathbb{Q}\{\tau > t \mid \mathcal{F}_t\}$$

is a supermartingale and admits a decomposition as

$$G_t = Z_t - A_t$$

where Z is an \mathcal{F}-martingale and A an \mathcal{F} predictable increasing process. We assume that G is a continuous process with $G_0 = 1$ and $G_t > 0$.
From the remark that, if \((Y_t, t \geq 0)\) is a \(G\)-adapted process, there exists an \(F\) adapted process \((y_t, t \geq 0)\) such that

\[
Y_t \mathbb{1}_{t < \tau} = y_t \mathbb{1}_{t < \tau}
\]

we obtain the key formulae:

- For any integrable \(G_T\) measurable r.v. \(Y\)

\[
\mathbb{E}(\mathbb{1}_{\{T < \tau\}} Y \mid G_t) = \mathbb{1}_{\{t < \tau\}} \frac{1}{G_t} \mathbb{E}(G_T Y \mid F_t).
\]

- Let \(y\) be an \(F\)-predictable process. Then,

\[
\mathbb{E}(y_\tau \mathbb{1}_{\tau < T} \mid G_t) = y_\tau \mathbb{1}_{\{\tau < t\}} + \mathbb{1}_{\{\tau > t\}} \frac{1}{G_t} \mathbb{E}\left(\int_t^T y_u dF_u \mid F_t\right).
\]
The ex-dividend price of a credit default swap, with a rate process \(\kappa \) and a protection payment \(\delta_\tau \) at default, equals, for every \(t \in [s, T] \),

\[
S_t(\kappa) = \mathbb{E}_Q \left(\mathbb{1}_{\{t < \tau \leq T\}} \delta_\tau \bigg| G_t \right) - \mathbb{E}_Q \left(\mathbb{1}_{\{t < \tau \}} \int_t^{\tau \wedge T} \kappa_s ds \bigg| G_t \right),
\]

\[
= \mathbb{1}_{\{t < \tau \}} \frac{1}{G_t} \mathbb{E}_Q \left(-\int_t^T \delta_u dG_u + \int_t^\infty dG_u \int_t^{u \wedge T} \kappa_v dv \bigg| \mathcal{F}_t \right).
\]
We now assume that \((\text{H})\) hypothesis holds between \(F\) and \(G\), that is \(F\)-martingales are \(G\)-martingales. It is known that if the \(F\) market is complete and arbitrage free, and if using \(G\)-adapted strategies in the \(F\)-market does not induce arbitrage opportunities, then this hypothesis holds. It is well known that \((\text{H})\) hypothesis is equivalent to

\[
P(\tau \leq t | F_t) = P(\tau \leq t | F_\infty)
\]

hence the process \(F\) is increasing (\(G\) is decreasing). We assume that \(F\) is a Brownian filtration and that \(F\) is absolutely continuous wrt Lebesgue measure.
The process

\[M_t = H_t - \int_0^{t \wedge \tau} \gamma_u \, du, \]

with \(\gamma_t \, dt = \frac{dF_t}{G_t} \) is a \(\mathbf{G} \)-martingale. The dynamics of the ex-dividend price \(S_t(\kappa) \) are

\[dS_t(\kappa) = -S_t(\kappa) \, dM_t + (1-H_t)B_tG_t^{-1} \, dm_t + (1-H_t)(r_tS_t(\kappa)+\kappa-\delta_t\gamma_t) \, dt, \]

where \(m \) is the \((\mathbb{Q}, \mathbf{F})\)-martingale given by

\[
m_t = \mathbb{E}_Q \left(\int_0^T B_u^{-1} \delta_u G_u \gamma_u \, du - \kappa \int_0^T B_u^{-1} G_u \, du \ \bigg| \mathcal{F}_t \right).
\]
Hedging defaultable claims

Our aim is to hedge

$$Y = \mathbb{1}_{\{T \geq \tau\}} Z_{\tau} + \mathbb{1}_{\{T < \tau\}} X.$$

using two CDS with maturities T_i, rates κ_i and protection payment δ^i. We assume $r = 0$. Let ζ^i_t defined as

$$m^i_t = \mathbb{E}_Q \left(\int_0^T \delta^i_u G_u \gamma_u \, du - \kappa_i \int_0^T G_u \, du \, \bigg| \mathcal{F}_t \right), \quad dm^i_t = \zeta^i_t dW_t$$

and

$$m^Z_t = \mathbb{E}_Q \left(- \int_0^\infty Z_u \, dG_u + G_T X \big| \mathcal{F}_t \right), \quad dm^Z_t = \zeta^Z_t dW_t$$
Assume that there exist \mathbf{F}-predictable processes ϕ^1, ϕ^2 such that

$$ \sum_{i=1}^{2} \phi^i_t (\delta^i_t - \tilde{S}^i_t(\kappa_i)) = Z_t - \hat{g}_t, \quad \sum_{i=1}^{2} \phi^i_t \zeta^i_t = \zeta_t, $$

where \hat{g} is given by

$$ \hat{g}_t = \frac{1}{G_t} \mathbb{E}_Q \left(- \int_t^T Z_u dG_u + G_T X \bigg| \mathcal{F}_t \right). $$

Let $\phi^0_t = V_t(\phi) - \sum_{i=1}^{2} \phi^i_t S^i_t(\kappa_i)$, where the process $V(\phi)$ is given by

$$ dV_t(\phi) = \sum_{i=1}^{2} \phi^i_t (dS^i_t(\kappa_i) + dD^i_t) $$

with the initial condition $V_0(\phi) = \mathbb{E}_Q(Y)$. Then the self-financing trading strategy $\phi = (\phi^0, \phi^1, \phi^2)$ is admissible and it is a replicating strategy for a defaultable claim $(X, 0, Z, \tau)$.
Pricing First to default claims

We now assume that some reference filtration \mathbf{F} is given. Let the default times $\tau_i, i = 1, 2$ be such that (H) hypothesis holds between \mathbf{F} and $\mathbf{G} = \mathbf{F} \vee H^1 \vee H^2$ hence between \mathbf{F} and $\mathbf{G}^1 = \mathbf{F} \vee H^1$ (resp. $\mathbf{G}^2 = \mathbf{F} \vee H^2$). We denote by

$$G(t, s; u) = P(\tau_1 > t, \tau_2 > s|\mathcal{F}_u)$$

Under H hypothesis, $G(t, t; t)$, $G(0, t; t)$ and $G(t, 0; t)$ are increasing processes, supposed to be continuous. Furthermore, for $t < u, s < u$

$$\mathbb{P}(\tau_1 \leq t, \tau_2 \leq s|\mathcal{F}_u) = \mathbb{P}(\tau_1 \leq t, \tau_2 \leq s|\mathcal{F}_\infty)$$
Then, one can generalize the previous results, established in the case of trivial filtration. In the case $r = 0$, the dynamics of the pre-default price $\tilde{S}_t^1(\kappa_1)$ are

$$d\tilde{S}_t^1(\kappa_1) = \left((\gamma_1(t) + \gamma_2(t))\tilde{S}_t^1(\kappa_1) + \kappa_1 - \delta_1(t)\gamma_1(t) - S_{t|2}^1(\kappa_1)\gamma_2(t) \right) dt + G_t^{-1} dm_t,$$

with

$$\gamma_1(t) = -\frac{\partial_1 G(t, t; t)}{G(t, t; t)}$$
Assume that the recovery Z, paid at first default time, is a \mathbf{F}-predictable process. The first default time $\tau_{(1)}$ satisfies

$$\mathbb{P}(\tau_{(1)} > t | \mathcal{F}_t) = G(t, t; t) = G(t, t; \infty) = G^{(1)}(t)$$

and

$$\mathbb{E}(Z(\tau_{(1)}) \mathbb{1}_{t < \tau_{(1)} < T} | \mathcal{G}_t) = \mathbb{1}_{\tau_{(1)} > t} \mathbb{E}(\int_t^T Z_u dG^{(1)}(u) | \mathcal{F}_t)$$
In the case where τ_1 and τ_2 are conditionally independent with respect to \mathcal{F}_t, then $G^{(1)}(u) = G^1(u)G^2(u)$ with $G^i(t) = \mathbb{P}(\tau_i > t|\mathcal{F}_t)$, hence

$$dG^{(1)}(u) = G^1(u)dG^2(u) + G^2(u)dG^2(u)$$
Begin at the beginning, and go on till you come to the end. *Then, stop.*

L. Carroll, *Alice’s Adventures in Wonderland*
Thank you for your attention