On the Tail Probability for Discounted Sums of Heavy-tailed Losses

Roger J.A. Laeven
University of Amsterdam
www.fee.uva.nl/ke/laeven

Winter School on Mathematical Finance
January 24, 2006
Main references

This talk is mainly based on

Outline

● The general problem;

● Classes of heavy-tailed distributions;

● The main results;

● Examples.
The general problem

Consider the randomly weighted sum \(\sum_{i=1}^{n} \theta_i X_i \), with

- \(\{X_n, n = 1, 2, \ldots\} \) a sequence of i.i.d. r.v.’s;
- \(\{\theta_n, n = 1, 2, \ldots\} \) a sequence of non-negative dependent r.v.’s;
- the sequences \(\{X_n, n = 1, 2, \ldots\} \) and \(\{\theta_n, n = 1, 2, \ldots\} \) being independent.

We want to investigate its tail probability and functionals (risk measures) thereof.
The general problem: interpretation

- X_n: represents the net loss or payoff of an insurance or financial product (or portfolio, line of business, conglomerate,...) in (development) year n.

 - Is assumed to be independent across time.

 - In insurance, typically heavy-tailed.

- θ_n: represents the stochastic discount factor for year n.

 - Case 1: $\theta_n = Y_1 \cdots Y_n$, with $\{Y_n, n = 1, 2, \ldots\}$ a sequence of non-negative i.i.d. r.v.’s.

 - Case 2: no assumption on the dependence structure. Includes e.g., GARCH models.
The general problem: possible solutions

- Monte Carlo simulation;

- Easy-computable bounds or approximations à la Roger & Shi (1995);

- Asymptotics.
Classes of heavy-tailed distributions [1]

- Class S:

$$\lim_{x \to +\infty} \frac{F^n(x)}{F(x)} = n,$$

for any (or equivalently, for some) $n \geq 2$.

- Class L:

$$\lim_{x \to +\infty} \frac{F(x+y)}{F(x)} = 1,$$

for any real number y (or equivalently, for $y = 1$).
Classes of heavy-tailed distributions [2]

- Class \mathcal{D}:
 \[
 \limsup_{x \to +\infty} \frac{F(xy)}{F(x)} < +\infty,
 \]
 for any $0 < y < 1$ (or equivalently for some $0 < y < 1$).

- $\mathcal{D} \cap \mathcal{L} \subset \mathcal{S} \subset \mathcal{L}$; see e.g., Embrechts, Klüppelberg & Mikosch (1997).
Classes of heavy-tailed distributions [3]

- Class $\mathcal{R}_{-\alpha}$:
 \[
 \lim_{x \to +\infty} \frac{F(xy)}{F(x)} = y^{-\alpha},
 \]
 for any $y > 0$.

- Class $\mathcal{R}_{-\infty}$:
 \[
 \lim_{x \to +\infty} \frac{F(xy)}{F(x)} = \begin{cases}
 0, & y > 1; \\
 +\infty, & 0 < y < 1.
 \end{cases}
 \]
Asymptotic results [1]

Let

- \{Y_n, n = 1, 2, \ldots\} i.i.d. supported on \((0, +\infty)\);

- \(Z_n := Y_1Y_2 \cdots Y_n\);

- \(0 < a_n < +\infty, n = 1, 2, \ldots\)

If \(F_Y \in S \cap \mathcal{R}_{-\infty}\), then it holds for each \(n = 1, 2, \ldots\) that

\[
\mathbb{P} \left(\sum_{i=1}^{n} a_iZ_i > x \right) \sim \sum_{i=1}^{n} \mathbb{P}(a_iZ_i > x).
\]
Asymptotic results [2]

Let

- \{X_n, n = 1, 2, \ldots\} i.i.d. supported on \((-\infty, +\infty)\).

If \(F_X \in D \cap L\) and \(F_Y \in R_{-\infty}\), then it holds for each \(n = 1, 2, \ldots\) that

\[
P \left(\sum_{i=1}^{n} (a_i + X_i)Z_i > x \right) \sim \sum_{i=1}^{n} P((a_i + X)Z_i > x)
\]

and that

\[
P \left(\sum_{i=1}^{n} (a_iX_i)Z_i > x \right) \sim \sum_{i=1}^{n} P((a_iX)Z_i > x).
\]
Asymptotic results [3]

If X and Y follow a lognormal law with $\sigma_Y < \sigma_X$, then it holds for each $n = 1, 2, \ldots$ that

$$\mathbb{P} \left(\sum_{i=1}^{n} (a_i + X_i)Z_i > x \right) \sim \sum_{i=1}^{n} \mathbb{P} ((a_i + X)Z_i > x)$$

and that

$$\mathbb{P} \left(\sum_{i=1}^{n} (a_iX_i)Z_i > x \right) \sim \sum_{i=1}^{n} \mathbb{P} ((a_iX)Z_i > x).$$
Asymptotic results [4]

Let

- \(\{\theta_n, n = 1, 2, \ldots\} \) non-negative and dependent.

If \(F_X \in \mathcal{R}_{-\alpha} \) for some \(\alpha > 0 \) and there exists some \(\delta > 0 \) such that \(\mathbb{E}[\theta_i^{\alpha+\delta}] < +\infty \) for each \(1 \leq i \leq n \), then it holds for each \(n = 1, 2, \ldots \) that

\[
\mathbb{P} \left(\sum_{i=1}^{n} \theta_i X_i > x \right) \sim \sum_{i=1}^{n} \mathbb{P}(\theta_i X > x)
\]

\[
\sim F(x) \sum_{i=1}^{n} \mathbb{E}[\theta_i^{\alpha}].
\]

Holds even uniformly for \(n = 1, 2, \ldots \); see Wang (2005).
Example: Stop-loss premium and Value-at-Risk [1]

Let \(\tilde{S}_n = \sum_{i=1}^{n} \theta_i X_i \). Then

- Stop-loss premium:
 \[
 \mathbb{E}[(\tilde{S}_n - d)_+] \approx \sum_{i=1}^{n} \mathbb{E}[(\theta_i X - d)_+].
 \]

- VaR:
 \[
 \inf\{s : F_{\tilde{S}_n}(s) \geq p\} \approx \inf\left\{s : \sum_{i=1}^{n} F_{\theta_i X}(s) \leq 1 - p\right\}.
 \]
Example: Stop-loss premium and Value-at-Risk [2]

Furthermore, let \(F_X \in \mathcal{R}_{-\alpha} \) for some \(\alpha > 0 \). Then

- Stop-loss premium:
 \[
 \mathbb{E}[(\tilde{S}_n - d)_+] \approx \mathbb{E}[(X - d)_+] \sum_{i=1}^{n} \mathbb{E}[\theta_i^\alpha].
 \]

- VaR:
 \[
 \inf \{ s : F_{\tilde{S}_n}(s) \geq p \} \approx \\
 \inf \left\{ s : \overline{F}_X(s) \sum_{i=1}^{n} \mathbb{E}[\theta_i^\alpha] \leq 1 - p \right\}.
 \]
Example: Stop-loss premium and Value-at-Risk [3]

- \(\theta_n = Y_1 \cdots Y_n \), i.i.d.: \(\mathbb{E}[\theta_n^\alpha] = \mathbb{E}[Y^\alpha]^n \).

- \((\theta_1, \ldots, \theta_n) \overset{d}{=} \text{LE}_n(\mu_n, \Sigma_n, \phi): \mathbb{E}[\theta_n^\alpha] \) is explicit; see e.g., Fang, Kotz & Ng (1990) and Owen & Rabinovitch (1983).

- \((\theta_1, \ldots, \theta_n) \overset{d}{=} \text{LNVMM}_n(\mu_n, \beta_n, \Sigma_n, G): \mathbb{E}[\theta_n^\alpha] \) is explicit; see e.g., Barndorff-Nielsen (1997).
A numerical illustration

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>1.75</td>
<td>1.56</td>
<td>0.19</td>
<td>11%</td>
<td>0.975</td>
<td>36</td>
<td>30</td>
<td>6</td>
<td>17%</td>
</tr>
<tr>
<td>40</td>
<td>1.48</td>
<td>1.35</td>
<td>0.13</td>
<td>9%</td>
<td>0.99</td>
<td>63</td>
<td>57</td>
<td>6</td>
<td>10%</td>
</tr>
<tr>
<td>60</td>
<td>1.18</td>
<td>1.11</td>
<td>0.07</td>
<td>6%</td>
<td>0.995</td>
<td>96</td>
<td>90</td>
<td>6</td>
<td>6%</td>
</tr>
<tr>
<td>80</td>
<td>1.01</td>
<td>0.96</td>
<td>0.05</td>
<td>5%</td>
<td>0.999</td>
<td>274</td>
<td>265</td>
<td>9</td>
<td>3%</td>
</tr>
<tr>
<td>100</td>
<td>0.90</td>
<td>0.86</td>
<td>0.04</td>
<td>4%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>0.72</td>
<td>0.70</td>
<td>0.02</td>
<td>3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>0.62</td>
<td>0.61</td>
<td>0.01</td>
<td>2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>0.56</td>
<td>0.55</td>
<td>0.01</td>
<td>2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>0.51</td>
<td>0.50</td>
<td>0.01</td>
<td>2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: “Real” versus approximate values of stop-loss premiums and quantiles for Pareto losses and i.i.d. lognormal stochastic discount factors. Fixed parameter values: $n = 5, \alpha = 1.5, \mu = -0.04, \sigma = 0.10$ and 5,000,000 simulations.

Analytic approximations!
References [1]

References [2]

