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1. INTRODUCTION

This paper extends derivative pricing based on multivariate affine processes to affine models with
Markov switching drift and diffusion coefficients. In the economic and finance literature, models
with Markov switching parameters are often said to be regime switching.

In many economic and finance applications, processes fall prey to changes in regime. Regimes
are time periods between which the dynamics of these processes are substantially different (Hamil-
ton 1989). E.g. the mean returns, correlations and volatilities of stock prices are different in bull
and bear markets, and the mean reversion level of interest rates may be lower in crisis scenarios.
Based on this observation, the pricing of derivatives should account for the existence of different
regimes.

Furthermore, many financial products benefit from multidimensional analysis. The price of
a European call option is better modeled by allowing for stochastic interest rates and stochastic
volatility. Also other products require multidimensional analysis directly through their structure.
The price of a credit default swap (CDS) is derived from the dynamics of the interest rate and the
hazard rate of default of the underlying. When we want to adjust to a price of a derivative for the
creditworthiness of its seller, an additional process for the hazard rate of the seller enters into the
game. This is known as a credit valuation adjustment (CVA), and together with a similar adjust-
ment for the buyer’s creditworthiness, the debit valuation adjustment (DVA), these are common
and increasingly important drivers of multivariate analysis (Hull and White 2013).

In this paper, we consider the popular and broad class of multivariate affine processes that is
often used to jointly model time series such as interest rates, stochastic volatility, hazard rates and
log-asset prices (Duffie et al. 2003). Affine processes include the Vasicek and Cox-Ingersoll-Ross
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short rate models as special univariate cases. The primary advantage of affine processes over gen-
eral multivariate processes in general is that the price of many derivatives has a closed form or
is implicit in a system of ordinary differential equations (ODEs). ODE solutions are markedly
more tractable than the partial differential equations (PDEs) that multivariate processes produce.
We generalize multivariate affine processes to include Markov switching drift and diffusion co-
efficients. Our resulting Markov switching- (MS-)affine process maintains the property of ODE
pricing solutions.

There is a rather restraint body of literature on this problem. Elliott and Mamon (2002) consider
pricing a bond based on a short rate that follows a univariate Vasicek model with Markov switching
mean reversion level. Elliott and Siu (2009) extend this result to bond prices based on a short rate
that follows a univariate affine process with Markov switching mean reversion level and (in the
Vasicek case) diffusion.

We take a more formal approach and follow the line of argumentation of Filipović (2009,
Chapter 10). We derive the characteristic function of the MS-affine process and show that it can
be expressed using the solutions of two systems of ODEs. We also prove that these solutions exist
and are unique, provided that the parameters of the process are admissible in some sense. The
characteristic function is the basis to price a wide variety of payoffs.

Effectively, our main theorem extends all pricing ODEs for affine processes to MS-affine pro-
cesses. These include CVA and DVA adjustments, CDSs, exchange options, and many more.
Moreover, for all these derivatives we may have regime dependent payoffs. The regime dependent
payouts are used, for example, when the payoff of a derivative relies on the rating of a counterparty,
and for this counterparty we have a rating migration matrix. Each rating (e.g. AAA, AA, etc.) can
be seen as a regime in which the dynamics of the processes are different. Another example is
when the dynamics of the affine process are different after some policy is introduced, but we are
unsure when this policy takes effect. The different regimes would be the different states that the
development and implementation of this policy can be in.

This remainder of this paper is outlined as follows. First we define the MS-affine process and
the admissibility of its parameters. Then we provide two theorems that can be used for derivative
pricing. We conclude with a simple example on how to apply these theorems to a bond price.

2. MODEL AND ANALYSIS

Let Wt be a d-dimensional Brownian motion with filtration {Gt}. Let St be a continuous time
Markov chain with state space S = {1, . . . , h}, filtration {Ht} and generator Q that switches
between the regimes in S . Wt and St are independent and defined on a filtered probability space
h⌦,F , {Ft},Pi, where Ft = Gt _Ht.

Definition 2.1 We call the process X on the canonical state space X = Rm
+ ⇥Rn

, m � 0, n � 0,

m+ n = d � 1, MS-affine if

dXt = µSt(Xt)dt+ �St(Xt)dWt, (1)
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where

�s(x)�
>
s (x) = as +

dX

i=1

xi↵i, µs(x) = bs +
dX

i=1

xi�i = bs + Bx (2)

for some d⇥ d-matrices as and ↵i, and d-vectors bs and �i, with B =
⇥
�1 · · · �d

⇤
.

Hence only as and bs are regime dependent, not ↵i and �i.1

Xt may stack all sorts of financial variables. For example, if rt is the short rate, At some
asset price, Vt the stochastic volatility of the stock price, and ht the hazard rate of default of the
counterparty, then Xt = (rt, lnAt, Vt, ht) models these processes jointly. For financial applications
this model is usually under the risk neutral measure. This implies (among other things) that the
drift of lnAt is rt � 1

2Vt.
For ease of notation, we write Zt = eSt 2 {0, 1}h, a vector of zeros with St-th entry one. Z is

the state space of Zt. Then by Elliott (1993),

dZt = QZtdt+ dMt, (3)

where Mt is a martingale. Without proof we assume throughout this text that for every x 2 X ,
z 2 Z there exists a unique solution (X,Z) = (Xx, Zz) of (1) with X0 = x and Z0 = z.

To ensure that the process does not escape X we need some admissibility conditions on the
parameters in (2). In what follows, we denote I = {1, . . . ,m} and J = {m+ 1, . . . , d}. Also, for
any sets of indices M and N , and vector v and matrix w, vM = [vi]i2M and wMN = [wij]i2M,j2N
are the corresponding sub-vector and sub-matrix.

Definition 2.2 We call X an MS-affine process with admissible parameters if X is MS-affine and

as,↵i are symmetric positive semi-definite,

asII = 0 for all s 2 S (and thus asIJ = a>sJI = 0),

↵j = 0 for all j 2 J,

↵i,kl = ↵i,lk = 0 for k 2 I\{i}, for all i, l 2 {1, . . . , d},

bs 2 X for all s 2 S,

BIJ = 0,

BII has nonnegative off-diagonal elements.

We now state our main contribution. diag(Fs) refers to the (block) diagonal matrix from the
regime specific matrices F1, . . . , Fh.

Theorem 2.1 Let X be an MS-affine process with admissible parameters. Let u 2 iRd
, t  T ,

x 2 X and z 2 Z . Then there exists unique solutions A(t, u) : R+ ⇥ iRd
! Cd⇥d

and B(t, u) :

1Taking ↵i and �i regime dependent complicates further analysis and we are not sure whether ODE solutions to
the characteristic function are possible in that case.
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R+ ⇥ iRd
! Cd

to

@tA(t, u) = A(t, u)
�
diag

�
1
2BJ(t, u)

>asJJBJ(t, u) + b>s B(t, u)
�
+Q

�
, (4)

A(0, u) = Ih,

@tBi(t, u) =
1
2B(t, u)>↵iB(t, u) + �>

i B(t, u), i 2 I,

@tBJ(t, u) = B
>
JJBJ(t, u),

B(0, u) = u,

such that the Ft-conditional regime specific characteristic function satisfies

E
h
eu

>XTZT

���Ft

i
= A(T � t, u)eB

>(T�t,u)XtZt. (5)

Before proving the above theorem, we state (without proof) the following lemma, which is useful
in an MS setting. ⌦ denotes the Kronecker product.

Lemma 2.2 Let FSt 2 Rp⇥q
be a set of d matrices with Markov switching index, then (Zt ⌦

Ip)FSt = diag(FSt)(Zt ⌦ Iq).

Also, we use the following lemma adapted from Filipović (2009, Lemma 10.1).

Lemma 2.3 Consider the system of ODEs

@ty(t, y0) = f(y(t, y0)), y(0, y0) = y0, (6)

where f : Cd
! Cd

is a locally Lipschitz continuous function. Then:

1. For every y0 2 Cd
there exists a lifetime t+(y0) 2 (0,1] such that there exists a unique

solution y(·, y0) : [0, t+(y0)) ! Cd
of (6).

2. The domain D =
�
(t, y0) 2 R+ ⇥ Cd

��t  t+(y0)
 

is open in R+ ⇥ Cd
and maximal in the

sense that either t+(y0) = 1 or limt"t+(y0) ky(t, y0)k = 1, respectively, for all y0 2 Cd
.

Proof of Theorem 2.1. Define �t = A(T � t, u)eB(T�t,u)>Xt . We prove that �tZt is martingale
because this implies that E

⇥
eu

>XTZT

��Ft

⇤
= E [�TZT |Ft] = �tZt, and then (5) is true. The

dynamics of �tZt follow from Itô’s lemma and Lemma 2.2,

d(�tZt) = d�tZt + �tdZt =
⇣
(@tA(T � t, u)) eB(T�t,u)>Xt

+ �t (@tB(T � t, u))> Xt + �tB(T � t, u)>µSt(Xt)

+ 1
2�tB(T � t, u)>�St(Xt)�St(Xt)

>B(T � t, u)
⌘
Ztdt+ �tQZt

+ �tB(T � t, u)>�St(Xt)dWtZt + �tdMt

= �t

�
B(T � t, u)>�St(Xt)dWtZt + dMt

�
.

Therefore, �tZt is a local martingale. The remaining part of the proof is showing that this local
martingale is uniformly bounded, so it is also a martingale.
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We know from Filipović (2009, proof of Theorem 10.2) that by admissibility, for any u 2

Cm
� ⇥ iRn, t 2 R+ a unique solution B(t, u) : R+ ⇥ Cm

� ⇥ iRn
! Cm

� ⇥ iRn exists with infinite
lifetime, so <

�
B(t, u)>x

�
 0 for all x 2 X .

Apply Lemma 2.3 to the vectorization of the ODE of A(t, u) (4), so y = vec(A), y0 = vec(Ih)
and f the vectorization of the RHS of (4). f is differentiable by differentiability of B(t, u) and thus
locally Lipschitz continuous. Therefore a unique solution for A exists with lifetime t+(vec(Ih)) 2
(0,1]. We prove by contradiction that t+(vec(Ih)) = 1. Suppose t+(vec(Ih)) < 1, then
limt"t+(vec(Ih)) k vec(A(t, u))k = 1. Note that

k vec(A(t, u))k2 = vec(A(t, u))⇤ vec(A(t, u)) = tr(A(t, u)⇤A(t, u)).

Define � = maxi=1,...,h{��i, 0}, with �i the eigenvalues of Q+Q>, then

@tk vec(A(t, u))k
2 = tr(@tA(t, u)

⇤A(t, u) + A(t, u)⇤@tA(t, u))

= tr
��
Q+Q>�A(t, u)⇤A(t, u)

�

+ 2 tr
�
<
�
diag

�
1
2BJ(t, u)

>asJJBJ(t, u) + b>s B(t, u)
��

A(t, u)⇤A(t, u)
�

 tr
��
Q+Q>�A(t, u)⇤A(t, u)

�
+ � tr (A(t, u)⇤A(t, u))

 tr
�
Q+Q> + �Ih

�
tr(A(t, u)⇤A(t, u))

= tr
�
Q+Q> + �Ih

�
k vec(A(t, u))k2.

For the second equality we have substituted @tA(t, u) with (4). The first inequality follows from
� � 0 and the fact that for all s 2 S ,

<
�
1
2BJ(t, u)

>asJJBJ(t, u) + b>s B(t, u)
�

= 1
2<(BJ(t, u))

>asJJ<(BJ(t, u))�
1
2=(BJ(t, u))

>asJJ=(BJ(t, u)) + b>s <(B(t, u))  0

by the admissibility restrictions on asJJ and bs and the codomain of B(t, u). The second inequal-
ity holds because Q + Q> + �Ih is positive semi-definite by construction and for any positive
definite matrices C and D of the same size it holds that tr(CD)  tr(C) tr(D). Applying Gron-
wall’s inequality gives k vec(A(t, u))k2  hetr(Q+Q>+�Ih)t, for all t < t+(vec(Ih)). This yields
limt"t+(vec(Ih)) k vec(A(t, u))k < 1, so by contradiction it follows that t+(vec(Ih)) = 1; A(t, u)
has infinite lifetime for all u 2 Cm

� ⇥ iRn.
Combining these results we have that �t and B(t, u) are uniformly bounded for all t  T , so

�tZt is a martingale.
Theorem 2.1 is pivotal to derivatives pricing, but cannot be applied directly. Additionally, we

need that (5) holds when u 2 Rd. Filipović (2009, Theorem 10.3 and Corollary 10.1) proves this
for affine processes, and we conjecture that this result extends to MS-affine processes.

3. SIMPLE EXAMPLE

As an example on how to apply the above theorems to derivative pricing, we consider the bond
price in a MS-Vasicek short rate model. Take the short rate model drt = � (µSt � rt) dt+�StdWt,
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where St is the continuous time Markov chain that switches between regimes and has generator Q.
Introduce the integrator dRt = rtdt, R0 = 0, then Xt = (rt, Rt) is a MS-affine process, and for
u = (0,�1) we have

1> E
⇥
eu

>XTZT

��F0

⇤
= E

⇥
e�RT

��F0

⇤
= E


exp

✓
�

Z T

0

rtdt

◆����F0

�
.

Using Theorem 2.1 we can solve the LHS and thus obtain the price of the bond (the RHS, if it is
finite). More examples can be found in Filipović (2009, Chapter 10.3).
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