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The Malliavin Derivative

12.1 Definition and Basic Properties

In the Brownian motion case we saw that there were several ways of defining
the Malliavin derivative:

(1) Either as a stochastic gradient, using the concept of directional derivatives,
either on the Wiener space as in Appendix A (see Definition A.10) or on
the space Ω = S′(R0) as in Chap. 6 (see Definition 6.1).

(2) Or by means of the chaos expansion in terms of iterated integrals with
respect to Brownian motion (see Lemma A.20).

In the Brownian motion case, those approaches are equivalent and they lead
to “essentially” the same differential operator.

We now consider the pure jump martingale case, when

η(t) :=
∫ t

0

∫
R0

zÑ(ds, dz), t ∈ [0, T ].

In this case, it turns out that the two approaches do not give the same oper-
ator and it is necessary to make a choice about which gives the most useful
derivative concept. For several reasons we choose the approach based on the
chaos expansions (see Theorem 9.15). For example, this is a definition that
gives us a Clark–Ocone type theorem for compensated Poisson random mea-
sures similar to Theorem 4.1 for the Brownian motion, see Theorem 12.16.
For the other approach to the Malliavin calculus we refer to [35, 58].

Definition 12.1. The stochastic Sobolev space D1,2 consists of all FT -
measurable random variables F ∈ L2(P ) with chaos expansion

F =
∞∑
n=0

In(fn), fn ∈ L̃2((λ× ν)n),
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satisfying the convergence criterion

‖F‖2
D1,2

:=
∞∑
n=1

nn!‖fn‖2L2((λ×ν)n) <∞. (12.1)

Comparing the aforementioned condition with (10.5) we see that D1,2 is
strictly contained in the space of all FT -measurable random variables in
L2(P ).

Definition 12.2. We define the operator D:

L2(P ) ⊃ D1,2 
 F =⇒ DF ∈ L2(P × λ× ν)
by

Dt,zF =
∞∑
n=1

nIn−1(fn(·, t, z)), F ∈ D1,2. (12.2)

Here In−1(fn(·, t, z)) means that the (n − 1)-fold iterated integral of
fn is regarded as a function of its (n − 1) first pairs of variables
(t1, z1), ..., (tn−1, zn−1), while the final pair (t, z) is kept as a parameter.
In view of Definition 3.1 for the Brownian motion, it is natural to call Dt,zF
the Malliavin derivative of F at (t, z).

Note that we indeed have that DF ∈ L2(P × λ× ν) because

‖DF‖2L2(λ×ν×P ) =
∫ T

0

∫
R0

E
[
(Dt,zF )2]ν(dz)dt

=
∫ T

0

∫
R0

∞∑
n=1

n2(n− 1)!‖fn(·, t, z)‖2L2((λ×ν)n−1)ν(dz)dt

=
∞∑
n=1

nn!‖fn‖2L2((λ×ν)n) = ‖F‖2
D1,2

<∞.

(12.3)

Example 12.3. Choose F =
∫ T
0

∫
R0
f(t, z)Ñ(dt, dz), with the deterministic in-

tegrand f ∈ L2(λ× ν). Then F = I1(f) and hence

Dt,zF = I0(f(·, t, z)) = f(t, z). (12.4)

In particular, if F = η(T ) :=
∫ T
0

∫
R0
zÑ(dt, dz), then

Dt,zη(T ) = z. (12.5)

Example 12.4. Let F = η2(T ), then by (10.6) we have

η2(T ) = I0(f0) + I1(f1) + I2(f2),
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where

f0 = T

∫
R0

z2ν(dz)

f1(t1, z1) = z2
1

f2(t1, z1, t2, z2) = z1z2.

Hence, by (12.2),

Dt,zη
2(T ) = z2 + 2I1(f2(·, t, z))

= z2 + 2
∫ T

0

∫
R0

z1zÑ(dt1, dz1)

= z2 + 2η(T )z.

(12.6)

Since Dt,zη(T ) = z (see (12.5)) we conclude that

Dt,zη
2(T ) = 2η(T )Dt,zη(T ) +

(
Dt,zη(T )

)2

=
(
η(T ) +Dt,zη(T )

)2 − η2(T ).
(12.7)

This shows that D does not satisfy the usual chain rule of a differential opera-
tor. In fact, it illustrates that D is a difference operator and not a differential
operator.

Example 12.5. Let F = Y (T ), as in Example 10.4. Then by (10.7) we have

Dt,zF =
∞∑
n=1

nIn−1(fn(·, t, z)) =
∞∑
n=1

n

n!
(eh(t)z − 1)In−1(eh(t)z − 1)⊗(n−1)

= (eh(t)z − 1)
∞∑
n=1

1
(n− 1)!

In−1(eh(t)z − 1)⊗(n−1)

= F (eh(t)z − 1).

Theorem 12.6. Closability of the Malliavin derivative. Suppose F ∈
L2(P ) and Fk, k = 1, 2, ..., are in D1,2 and that

(1)Fk −→ F , k→∞ in L2(P )
(2)Dt,zFk, k = 1, 2, ..., converges in L2(P × λ× ν).
Then F ∈ D1,2 and

Dt,zFk −→ Dt,zF, k→∞, in L2(P × λ× ν).
Proof Let F =

∑∞
n=0 In(fn) and Fk =

∑∞
n=0 In(f (k)

n ), k = 1, 2, .... From (1)
we know that

f (k)
n −→ fn, k →∞, in L2((λ × ν)n)
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for all n = 0, 1, .... Since (2) holds, we deduce that

∞∑
n=0

nn!‖f (k)
n −f (j)

n ‖2L2((λ×ν)n) =‖Dt,zFk−Dt,zFj‖2L2(λ×ν×P )−→0, k, j →∞.

Hence by the Fatou lemma,

lim
k→∞

∞∑
n=0

nn!‖f (k)
n − fn‖2L2((λ×ν)n)

≤ lim
k→∞

(
lim
j→∞

∞∑
n=0

nn!‖f (k)
n − f (j)

n ‖2L2((λ×ν)n)

)
= 0,

which means that F ∈ D1,2 and

Dt,zFk −→ Dt,zF, k →∞, in L2(P × λ× ν). ��

12.2 Chain Rules for Malliavin Derivative

As in Example 12.5, let us consider

G1 = exp
{∫ T

0

∫
R0

h1(s)zÑ(ds, dz)
}
, (12.8)

with h1 ∈ L2([0, T ]). Its derivative can be written as

Dt,zG1 = G1(eh1(t)z − 1). (12.9)

Let D
E
1,2 denote the set of linear combinations of such exponentials. Now

choose G2 = exp{∫ T
0

∫
R0
h2(t)zÑ(dt, dz)} ∈ D

E
1,2. Then from the above

Dt,z(G1G2) = Dt,z

(
exp

{∫ T

0

∫
R0

(h1(t) + h2(t))zÑ(dt, dz)
})

= G1G2

(
e(h1(t)+h2(t))z − 1

)
=
(
G1 +G1(eh1(t)z − 1)

)(
G2 +G2(eh2(t)z − 1)

)−G1G2

=
(
G1 +Dt,zG1

)(
G2 +Dt,zG2

)−G1G2

= G1Dt,zG2 +G2Dt,zG1 +Dt,zG1Dt,zG2.

By linearity this continues to hold if we replace G1 and G2 by linear combi-
nations F1, F2 of such exponentials. This proves the following result.

Theorem 12.7. Product rule. Let F,G ∈ D
E
1,2. Then FG ∈ D

E
1,2 and

Dt,z

(
FG
)

= FDt,zG+GDt,zF +Dt,zFDt,zG. (12.10)
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By induction it follows that if F ∈ D
E
1,2 then

Dt,z(Fn) = (F +Dt,zF )n − Fn. (12.11)

For a related result see also Lemma 6.1 in [172]. For an extension to
the so-called normal martingales, see, for example, Proposition 1 in [196] or
Proposition 5 in [199].
More generally we have the following result.

Theorem 12.8. Chain rule. Let F ∈ D1,2 and let ϕ be a real continuous
function on R. Suppose ϕ(F ) ∈ L2(P ) and ϕ(F + Dt,zF ) ∈ L2(P × λ × ν).
Then ϕ(F ) ∈ D1,2 and

Dt,zϕ(F ) = ϕ(F +Dt,zF )− ϕ(F ). (12.12)

Proof First assume that ϕ has compact support and F ∈ D
E
1,2. Then

ϕ(F ) =
1√
2π

∫
R

eiyF ϕ̂(y)dy,

where
ϕ̂(y) =

1√
2π

∫
R

e−ixyϕ(x)dx

is the Fourier transform of ϕ. By (12.11) and Theorem 12.6 we get that

Dt,zϕ(F ) =
1√
2π

∫
R

∞∑
n=0

1
n!

(iy)n
(
(F +Dt,zF )n − F )ϕ̂(y)dy

=
1√
2π

∫
R

(
eiy(F+Dt,zF ) − eiyF )ϕ̂(y)dy

=ϕ(F +Dt,zF )− ϕ(F ),

so the result holds in this case. For general F ∈ D1,2 we proceed by approxi-
mation. Choose Fn ∈ D

E
1,2, n = 1, 2, ..., such that Fn −→ F , n→∞, in D1,2,

see (12.1). Then ϕ(Fn) −→ ϕ(F ) in L2(P ) and ϕ(Fn +Dt,zFn)− ϕ(Fn) −→
ϕ(F+Dt,zF )−ϕ(F ) in D1,2. Hence the result holds for all F ∈ D1,2 in the case
of ϕ with compact support. The extension to the case when ϕ(F ) ∈ L2(P )
and ϕ(F +Dt,zF ) ∈ L2(P × λ× ν) follows by a similar limit argument. ��
Example 12.9. The chain rule (12.12) is useful for the evaluation of Malliavin
derivatives. To illustrate this, consider the following:

(1) The derivative of η2(T ) is

Dt,zη
2(T ) =

(
η(T ) +Dt,zη(T )

)2 − η2(T )

=
(
η(T ) + z

)2 − η2(T ) = 2η(T )z + z2,

which is what we found in (12.6).



192 12 The Malliavin Derivative

(2) With

G = exp
(∫ T

0

∫
R0

h(t)zÑ(dt, dz)
)

as in (12.8), the chain rule (12.12) gives

Dt,zG = exp
(∫ T

0

∫
R0

h(t)zÑ(dt, dz) + h(t)z
)
−G

= G
(
eh(t)z − 1),

which is (12.9).
(3) Let F = (η(T )−K)+ be a European call payoff, whereK > 0 is a constant.

Then
Dt,zF =

(
η(T ) + z −K)+ − (η(T )−K)+. (12.13)

12.3 Malliavin Derivative and Skorohod Integral

In this section we explore the relationship between the Malliavin derivative
and the Skorohod integral following the same lines as in the Brownian motion
case. We also derive useful rules of calculus.

12.3.1 Skorohod Integral as Adjoint Operator to the Malliavin
Derivative

For the following result we can also refer to [29, 54, 69, 172].

Theorem 12.10. Duality formula. Let X(t, z), t ∈ [0, T ], z ∈ R, be Sko-
rohod integrable and F ∈ D1,2. Then

E

[∫ T

0

∫
R0

X(t, z)Dt,zFν(dz)dt

]
= E

[
F

∫ T

0

∫
R0

X(t, z)Ñ(δt, dz)

]
.

(12.14)

Proof The proof of this is the same as the proof of the corresponding result
in the Brownian motion case. See Theorem 3.14. ��

12.3.2 Integration by Parts and Closability of the Skorohod
Integral

The following result is basically Theorem 7.1 in [172], here presented in the
setting of Poisson random measures.
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Theorem 12.11. Integration by parts. Let X(t, z), t ∈ [0, T ], z ∈ R, be
a Skorohod integrable stochastic process and F ∈ D1,2 such that the product
X(t, z) · (F +Dt,zF ), t ∈ [0, T ], z ∈ R, is Skorohod integrable. Then

F

∫ T

0

∫
R0

X(t, z)Ñ(δt, dz) (12.15)

=
∫ T

0

∫
R0

X(t, z)
(
F +Dt,zF

)
Ñ(δt, dz) +

∫ T

0

∫
R0

X(t, z)Dt,zFν(dz)dt.

Proof First assume that F ∈ DE
1,2. Let G ∈ D

E
1,2. Then we obtain by

Theorem 12.10 and Theorem 12.7

E

[
G

∫ T

0

∫
R0

FX(t, z)Ñ(δt, dz)

]
= E

[∫ T

0

∫
R0

FX(t, z)Dt,zGν(dz)dt

]

= E

[
GF

∫ T

0

∫
R0

X(t, z)Ñ(δt, dz)

]
− E

[
G

∫ T

0

∫
R0

X(t, z)Dt,zFν(dz)dt

]

−E
[
G

∫ T

0

∫
R0

X(t, z)Dt,zFÑ(δt, dz)

]

= E

[
G

(
F

∫ T

0

∫
R0

X(t, z)Ñ(δt, dz)−
∫ T

0

∫
R0

X(t, z)Dt,zFν(dz)dt

−
∫ T

0

∫
R0

X(t, z)Dt,zFÑ(δt, dz)

)]
.

The proof then follows by a density argument applied to F and G. ��
Remark 12.12. Using the Poisson interpretation of Fock space, the formula
(12.15) has been shown to be an expression of the multiplication formula
for Poisson stochastic integrals. See [125, 220], Proposition 2 and Relation
(6) of [197], Definition 7 and Proposition 6 of [201], Proposition 2 of [199],
and Proposition 1 of [195]. Moreover, formula (12.15) has been known for
some time to quantum probabilitists in identical or close formulations. See
Proposition 21.6 and Proposition 21.8 in [188], Proposition 18 in [34], and
Relation (5.6) in [7], see also [127].

Theorem 12.13. Closability of the Skorohod integral. Suppose that
Xn(t, z), t ∈ [0, T ], z ∈ R, is a sequence of Skorohod integrable random fields
and that the corresponding sequence of integrals

I(Xn) :=
∫ T

0

∫
R0

Xn(t, z)Ñ(δt, dz), n = 1, 2, ...
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converges in L2(P ). Moreover, suppose that

lim
n→∞Xn = 0 in L2(P × λ× ν).

Then we have
lim
n→∞ I(Xn) = 0 in L2(P ).

Proof By Theorem (12.10) we have that
(
I(Xn), F

)
L2(P )

=
(
Xn, Dt,zF

)
L2(P×λ×ν) −→ 0, n→∞,

for all F ∈ D1,2. Then we conclude that limn→∞ I(Xn) = 0 weakly in L2(P ).
And since the sequence I(Xn), n = 1, 2, ..., is convergent in L2(P ), the result
follows. ��
Remark 12.14. In view of Theorem 12.13 we can see that if Xn, n = 1, 2, ...,
is a sequence of Skorohod integrable random fields such that

X = lim
n→∞Xn in L2(P × λ× ν).

Then we can define the Skorohod integral of X as

I(X) :=
∫ T

0

∫
R0

X(t, z)Ñ(δt, dz)= lim
n→∞

∫ T

0

∫
R0

Xn(t, z)Ñ(δt, dz) =: lim
n→∞ I(Xn),

provided that this limit exists in L2(P ).

12.3.3 Fundamental Theorem of Calculus

The following result is basically Theorem 4.2 in [172], here presented for Pois-
son random measures, see, for example, [64].

Theorem 12.15. Fundamental theorem of calculus. Let X = X(s, y),
(s, y) ∈ [0, T ]× R0, be a stochastic process such that

E
[ ∫ T

0

∫
R0

X2(s, y)ν(dy)ds
]
<∞.

Assume that X(s, y) ∈ D1,2 for all (s, y) ∈ [0, T ]×R0, and that Dt,zX(·, ·) is
Skorohod integrable with

E
[ ∫ T

0

∫
R0

( ∫ T

0

∫
R0

Dt,zX(s, y)Ñ(δs, dy)
)2

ν(dz)dt
]
<∞.

Then ∫ T

0

∫
R0

X(s, y)Ñ(δs, dy) ∈ D1,2
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and

Dt,z

∫ T

0

∫
R0

X(s, y)Ñ(δs, dy) =
∫ T

0

∫
R0

Dt,zX(s, y)Ñ(δs, dy) +X(t, z).

(12.16)
In particular, if X(s, y) = Y (s)y, then

Dt,z

∫ T

0

Y (s)δη(s) =
∫ T

0

Dt,zY (s)δη(s) + zY (t). (12.17)

Proof First suppose that

X(s, y) = In(fn(·, s, y)),
where fn(t1, z1, ..., tn, zn, s, y) is symmetric with respect to (t1, z1), ..., (tn, zn).
By Definition 3.1 we have

∫ T

0

∫
R0

X(s, y)Ñ(δs, dy) = In+1(f̂n), (12.18)

where
f̂n(t1, z1, ..., tn, zn, tn+1, zn+1)

=
1

n+ 1
[fn(tn+1, zn+1, ·, t1, z1) + ...+ fn(tn+1, zn+1, ·, tn, zn)

+fn(t1, z1, ·, tn+1, zn+1)]

is the symmetrization of fn with respect to the variables (t1, z1), ..., (tn, zn),
(tn+1, zn+1) = (s, y). Therefore, we get

Dt,z

(∫ T

0

∫
R0

X(s, y)Ñ(δs, dy)

)
= In(fn(t, z, ·, t1, z1) + ...+ fn(t, z, ·, tn, zn)

+fn(·, t, z)).
On the other hand we see that

∫ T

0

∫
R0

Dt,zX(s, y)Ñ(δs, dy) (12.19)

=
∫ T

0

∫
R0

nIn−1(fn(·, t, z, s, y))Ñ(δs, dy) = nIn(f̂n(·, t, z, ·)),

where

f̂n(t1, z1, ..., tn−1, tn−1, t, z, tn, zn)=
1
n

[fn(t, z, ·, t1, z1) + ...+ fn(t, z, ·, tn, zn)]

is the symmetrization of fn(t1, zn, ..., tn−1, zn−1, t, z, tn, zn) with respect to
(t1, z1), ..., (tn−1, zn−1), (tn, zn) = (s, y). A comparison of (12.18) and (12.19)
yields formula (12.16).



196 12 The Malliavin Derivative

Next consider the general case

X(s, y) =
∑
n≥0

In(fn(·, s, y)).

Define

Xm(s, y) =
m∑
n=0

In(fn(·, s, y)), m = 1, 2, ...

Then (12.16) holds for Xm. Since
∥∥∥∥∥
∫ T

0

∫
R0

Dt,zXm(s, y)Ñ(δs, dy)−
∫ T

0

∫
R0

Dt,zX(s, y)Ñ(δs, dy)

∥∥∥∥∥
2

L2(P×λ×ν)

=
∑

n≥m+1

n2n!
∥∥∥f̂n

∥∥∥2

L2((λ×ν)n+1)
−→ 0, m −→∞,

the proof follows by the closedness of Dt,z. ��

12.4 The Clark–Ocone Formula

In this section we state and prove a jump diffusion version of the Clark–Ocone
formula (see Theorem 4.1). For this result we refer to, for example, [154].

Theorem 12.16. Let F ∈ D1,2. Then

F = E[F ] +
∫ T

0

∫
R0

E[Dt,zF |Ft]Ñ(dt, dz), (12.20)

where we have chosen a predictable version of the conditional expectation pro-
cess E[Dt,zF |Ft], t ≥ 0.

Proof The proof is similar to the one for the Brownian motion case (Theorem
4.1). Let us consider the chaos expansion of F =

∑∞
n=0 In(fn), where fn ∈

L̃2((λ× ν)n), n = 1, 2, .... Then the following equalities hold true:
∫ T

0

∫
R0

E[Dt,zF |Ft]Ñ(dt, dz) =

∫ T

0

∫
R0

E

[ ∞∑
n=1

nIn−1(fn(·, t, z))|Ft

]
Ñ(dt, dz)

=

∫ T

0

∫
R0

∞∑
n=1

n(n− 1)!E[Jn−1(fn(·, t, z))|Ft]Ñ(dt, dz)

=
∞∑

n=1

n!

∫ T

0

∫
R0

E
[ ∫ T

0

∫
R0

· · ·
∫ t−2

0

∫
R0

fn(t1, z1, ..., tn−1, zn−1, t, z)Ñ(dt1, dz1)

· · · Ñ(dtn−1, dzn−1)|Ft

]
Ñ(dt, dz)

=

∞∑
n=1

n!Jn(fn) =

∞∑
n=1

In(fn) = F − E[F ]. ��
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Remark 12.17. Comparing (12.20) with the Itô representation (9.33), we can
see that the difference is that (12.20) provides an explicit formula for the
process Ψ(t, z), t ≥ 0, z ∈ R0.

Example 12.18. Suppose F ∈ D1,2 has the form F = ϕ(η(T )) for some contin-
uous real function ϕ(x), x ∈ R. Then by the Clark–Ocone theorem combined
with the Markov property of the process η, we get

ϕ(η(T )) = E
[
ϕ(η(T ))

]
+
∫ T

0

∫
R0

E[ϕ(η(T ) + z)− ϕ(η(T ))|Ft]Ñ(dt, dz)

= E
[
ϕ(η(T ))

]
+
∫ T

0

∫
R0

E[ϕ(y + η(T − t) + z)

− ϕ(y + η(T − t))]|y=η(t)Ñ(dt, dz).

(12.21)

12.5 A Combination of Gaussian and Pure Jump Lévy
Noises

We now outline how the results of the previous sections can be generalized to
the case of combinations of independent Gaussian and pure jump Lévy noise.
Let us sketch a framework for treating this combination of noises. Here we
follow the ideas in [2], though this work is settled in the white noise framework.
The white noise setting will also be treated later in this book (see Chap. 13).

Another approach to deal with the noise generated by general stochastic
measures with independent values can be found in [61]. See also [71].

Denote the probability space on which W = W (t), t ≥ 0, is a Wiener
process by (Ω0,FWT , PW ) (see Sect. 1.1) and denote the one on which
Ñ(dt, dz) = N(dt, dz) − ν(dz)dt is a compensated Poisson random mea-
sure by (Ω0,F ÑT , P Ñ ) (see Sect. 9.1).

Let (Ω1,F (1)
T , μ1), ..., (ΩN ,F (N)

T , μN ) be N independent copies of
(Ω0,FWT , PW ) and let (ΩN+1,F (N+1)

T , μN+1), ..., (ΩN+R,F (N+R)
T , μN+R)

be R independent copies of (Ω0,F ÑT , P Ñ ), for some N,R ∈ N ∪ {0}. We set

Ω = Ω1 × ...×ΩN+R, FT = F (1)
T ⊗ ...⊗F (N+R)

T , P = μ1 × ...× μN+R.

(12.22)

In the sequel, we call the space (Ω,F , P ) the Wiener–Poisson space.
We can consider the product of the form

Hα(ω) :=
L∏
k=1

Iα(k)(fk,α(k))(ωk) (12.23)

for any α ∈ J L, which is the set of indices of the form α = (α(1), ..., α(L)),
with α(k) = 0, 1, ..., for k = 1, ..., L. Here Iα(k)(fk,α(k)) is the α(k)-fold iterated
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Itô integral with respect to the Wiener process, if k = 1, ..., N , or to the
compensated Poisson random measure, if k = N + 1, ..., L.

The elements Hα, α ∈ J L, constitute an orthogonal basis in L2(P ). Any
real FT -measurable random variable F ∈ L2(P ) can be written as

F =
∑
α∈JL

Hα

for an appropriate choice of deterministic symmetric integrands in the iterated
Îto integrals.

Definition 12.19. (1) We say that F ∈ D1,2 if

‖F‖2
D1,2

:=
N∑
k=1

∑
α∈JL

α(k)α(k)!‖fk,α(k)‖2
L2([0,T ]α

(k)
)

(12.24)

+
L∑

k=N+1

∑
α∈JL

α(k)α(k)!‖fk,α(k)‖2
L2(([0,T ]×R0)α(k)

)
<∞.

(2) If F ∈ D1,2, we define the Malliavin derivative DF of F as the gradient

DF =
(
D1,tF, ..., DN,tF,DN+1,t,zF, ..., DL,t,zF

)
, (12.25)

where

Dk,tF =
∑
α∈JL

α(k)
Hα−ε(k)(t), t ∈ [0, T ] (k = 1, ..., N),

and

Dk,t,zF =
∑
α∈JL

α(k)
Hα−ε(k)(t, z), t ∈ [0, T ], z ∈ R0 (k = N + 1, ..., L).

Here ε(k) = (0, ...0, 1, 0, ...0) with 1 in the kth position, cf. Definition 3.1 and
Definition 12.1.

Based on the same concepts and arguments as in the previous sections,
one can show the following Clark–Ocone formula:

Theorem 12.20. Clark–Ocone theorem for combined Gaussian-pure
jump Lévy noise. Let F ∈ D1,2. Then

F =E[F ]+
N∑
k=1

∫ T

0

E
[
Dk,tF |Ft

]
dWk(t)+

L∑
k=N+1

∫ T

0

∫
R0

E
[
Dk,t,zF |Ft]Ñk(dt, dz).

(12.26)
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A generalization of this formula to processes with conditionally independent
increments can be found in [228].

Similar to the Brownian motion case one can obtain a Clark–Ocone for-
mula under change of measure for Lévy processes. This was first proved by
[113] for random variables in D1,2. Subsequently the result was generalized in
[185] to all random variables in L2(P ), by means of white noise theory (see
Chap. 13). We present the statement of this generalized version later without
proof, and refer to the original papers for more information. We first recall the
Girsanov theorem for Lévy processes, as presented in [183] (cf. Problem 9.5).
See also [149].

Theorem 12.21. Girsanov theorem for Lévy processes. Let θ(s, x) ≤ 1,
s ∈ [0, T ], x ∈ R0 and u(s), s ∈ [0, T ], be F−predictable processes such that

∫ T

0

∫
R0

{| log(1 + θ(s, x)) | +θ2(s, x)}ν(dx)dt <∞ P -a.e., (12.27)

∫ T

0

u2(s)ds <∞ P − a.e. (12.28)

Let

Z(t) = exp
{
−
∫ t

0

u(s)dW (s)−
∫ t

0

u2(s)ds

+
∫ t

0

∫
R0

{log(1 − θ(s, x)) + θ(s, x)}ν(dx)ds

+
∫ t

0

∫
R0

log(1− θ(s, x))Ñ (ds, dx)
}
, t ∈ [0, T ].

Define a measure Q on FT by

dQ(ω) = Z(ω, T )dP (ω).

Assume that Z(T ) satisfies the Novikov condition, that is,

E

[
exp

(
1
2

∫ T

0

u2(s)ds+
∫ T

0

∫
R0

{
(1− θ(s, x)) log(1− θ(s, x))

+θ(s, x)
}
ν(dx)ds

)]
<∞.

Then E[Z(T )] = 1 and hence Q is a probability measure on FT . Define

ÑQ(dt, dx) = θ(t, x)ν(dx)dt + Ñ(dt, dx)

and
dWQ(t) = u(t)dt+ dW (t).

Then ÑQ(·, ·) and WQ(·) are compensated Poisson random measure of N(·, ·)
and Brownian motion under Q, respectively.
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In this setting, the Clark–Ocone formula gets the following form. See [113,
185].

Theorem 12.22. Generalized Clark–Ocone theorem under change of
measure for Lévy processes. Let F ∈ L2(P ) ∩ L2(Q) be FT -measurable.
Assume that u satisfies (4.7), that θ ∈ L2(P × λ × ν) and that (t, x) →
Dt,xθ(s, z) is Skorohod integrable for all s, z, with δ(Dt,xθ) ∈ G∗. Then the
integral representation of F with respect to WQ and ÑQ is as follows:

F = EQ[F ] +
∫ T

0

EQ
[
DtF − F

∫ T

t

Dtu(s)dWQ(s)|Ft
]
dWQ(t)

+
∫ T

0

∫
R0

EQ
[
F (H̃ − 1) + H̃Dt,xF |Ft

]
ÑQ(dt, dx),

where

H̃ = exp
{∫ t

0

∫
R0

[
Dt,xθ(s, z) + log(1− Dt,xθ(s, z)

1 − θ(s, z) )(1− θ(s, z))]ν(dz) ds

+ log(1− Dt,xθ(s, z)
1− θ(s, z) )ÑQ(ds, dz)

}
.

12.6 Application to Minimal Variance Hedging
with Partial Information

Consider a financial market where the unit prices Si(t), t ≥ 0, of the assets
are as follows:

risk free asset S0(t) ≡ 1, t ∈ [0, T ],
risky assets dSj(t) = σj(t)dW (t)

+
∫

R
n
0

γj(t, z)Ñ(dt, dz), t ∈ (0, T ], j = 1, ..., n,

where σ(t) = [σi,j(t)] ∈ R
n×n and γ(t, z) = [γi,j(t, z)] ∈ R

n×n are predictable
processes, which might depend on S(s) = (S1(s), ..., Sn(s)), s ∈ [0, t].

Let E = {Et, t ≥ 0} be a given filtration such that

Et ⊆ Ft, t ∈ [0, T ].

We think of Et as the information available to an agent at time t.

Definition 12.23. A predictable process ϕ = ϕ(t), t ∈ [0, T ], is called admis-
sible if

(1)ϕ(t) is E-adapted
(2)E

[∑n
j=1

∫ T
0
ϕ2
j(t)
(∑n

i=1 σ
2
i,j(t) +

∫
R0
γ2
i,j(t, z)ν(dz)

)
dt
]
<∞.

The set of all E-admissible portfolios is denoted by AE.
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We now pose the following question: given a claim F ∈ L2(FT ), how close
can we get to F at time T by hedging with portfolios? If we consider closeness
in terms of variance, the precise formulation of this question is the following:
given F ∈ L2(FT ) find ϕ∗ ∈ AE such that

inf
ϕ∈AE

E
[(
F − E[F ]−

∫ T

0

ϕ(t)dS(t)
)2]

= E
[(
F − E[F ]−

∫ T

0

ϕ∗(t)dS(t)
)2]

.

(12.29)

Such a portfolio ϕ∗ is called a partial information minimal variance portfolio.

We use Malliavin calculus to obtain explicit formulae for such portfolios
ϕ∗. We refer to [25] for the following result. See also [161] and [69] for an
extension to the white noise setting and [59, 60] for market models driven by
general martingales and random fields.

Theorem 12.24. Suppose F ∈ D1,2. Then the partial information minimal
variance portfolio ϕ∗ ∈ AE for F is given by

ϕ∗(t) = Q−1(t)R(t), t ∈ [0, T ]. (12.30)

Here Q(t) ∈ R
n×n has components

Qik(t) = E
[
Nik(t)|Et

]
,

where

Nik(t) =
n∑
j=1

σij(t)σjk(t) +
∫

R0

γij(t, z)γjk(t, z)νj(dz) (i, j = 1, .., n).

The matrix Q−1(t) is the inverse of Q(t) (if it exists). The vector R(t) ∈ R
n

has components
Ri(t) = E

[
Mi|Et

]
,

where

Mi(t) =
n∑
j=1

σij(t)E
[
Dj,tF |Ft

]
+
∫

R0

γij(t, z)E
[
Dj,t,zF |Ft

]
νj(dz).

Moreover, Dj,tF , t ∈ [0, T ], denotes the Malliavin derivative with respect to
Wj and Dj,t,zF , t ∈ [0, T ], z ∈ R0, stands for the Malliavin derivative with
respect to Ñj.

Proof Let ϕ∗
j be as above and define

F̂ := E[F ] +
n∑
j=1

∫ T

0

ϕ∗
j (t)dSj(t)

= E[F ] +
n∑
j=1

∫ T

0

ϕ∗
j (t)σj(t)dWj(t) +

∫ T

0

∫
R0

ϕ∗
j (t)γj(t, z)Ñj(dt, dz).
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To prove the statements it is enough to show that

E
[
(F − F̂ )G

]
= 0

for all G ∈ L2(P ), FT -measurable of the form

G := E[G] +
n∑
j=1

∫ T

0

ψj(t)dSj(t)

= E[G] +
n∑
j=1

∫ T

0

ψj(t)σj(t)dWj(t) +
∫ T

0

∫
R0

ψj(t)γj(t, z)Ñj(t, z),

with ψ ∈ AE. By the Clark–Ocone theorem (Theorem 12.16) we have

F = E[F ] +
n∑
j=1

∫ T

0

E
[
Dj,tF |Ft

]
dWj(t) +

∫ T

0

∫
R0

E
[
Dj,t,zF |Ft

]
Ñj(t, z).

This gives

E
[
(F − F̂ )G

]
= E

[( n∑
j=1

∫
T

0
E
[
Dj,tF |Ft

]
dWj(t) −

n∑
j=1

n∑
k=1

∫
T

0
ϕ∗

j (t)σjk(t)dWk(t)

+

n∑
j=1

∫
T

0

∫
R0

E
[
Dj,t,zF |Ft

]
Ñj(dt, dz) −

n∑
j=1

n∑
k=1

∫
T

0

∫
R0

ϕ∗
j (t)γjk(t, z)Ñk(dt, dz)

)

·
( n∑

j=1

n∑
k=1

∫ T

0
ψj(t)σjk(t)dWk(t) +

n∑
j=1

n∑
k=1

∫ T

0

∫
R0

ψj(t)γjk(t, z)Ñk(dt, dz)
)]

= E
[ n∑

j=1

∫
T

0

(
E
[
Dj,tF |Ft

]−
n∑

k=1

ϕ∗
k(t)σkj(t)

)
·
( n∑

k=1

ψk(t)σkj(t)
)
dt

+

n∑
j=1

∫
T

0

∫
R0

(
E[Dj,t,zF |Ft

]−
n∑

k=1

ϕ
∗
k(t)γkj(t, z)

)
·
( n∑

k=1

ψk(t)γkj(t, z)
)
νj(dz)dt

= E
[ n∑

j=1

∫ T

0

n∑
k=1

ψk(t)
(
σkl(t)E

[
Dj,tF |Ft

]−
n∑

i=1

ϕ∗
i (t)σij(t)σkj(t)

+

∫
R0

(
γkj(t, z)E

[
Dj,t,zF |Ft

]−
n∑

i=1

ϕ∗
i (t)γij(t, z)γkj(t, z)

)
νj(dz)

]
dt
]

= E
[ n∑

k=1

∫ T

0
ψk(t)Lk(t)dt

]
= 0,

where

Lk(t) =
n∑
j=1

(
σkj(t)E

[
Dj,tF |Ft

]−
n∑
i=1

ϕ∗
i (t)σij(t)σkj(t)

+
∫

R0

[
γkj(t, z)E

[
Dj,t,zF |Ft

]−
n∑
i=1

ϕ∗
i (t)γij(t, z)γkj(t, z)

]
ν(dz)

)
.
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This holds for all ψ ∈ AE if and only if

E
[
Lk(t)|Et

]
= 0, t ∈ [0, T ], k = 1, ..., n.

We can write

Lk(t) = Mk(t)−
n∑
i=1

ϕ∗
i (t)Nik(t),

where

Mk(t) =
n∑
k=1

(
σkj(t)E

[
Dj,tF |Ft

]
+
∫

R0

γkj(t, z)E
[
Dj,t,zF |Ft

]
νj
)

and

Nik(t) =
n∑
j=1

(
σij(t)σkj(t) +

∫
R0

γij(t, z)γkj(t, z)νj(dz)
)
.

Therefore, we conclude that, for k = 1, ..., n,

E
[
Mk(t)|Et

]−
n∑
i=1

ϕ∗
i (t)E

[
Nik(t)|Et

]
= 0

or
Q(t)ϕ∗(t) = R(t),

where
Q ∈ R

n×n, Qik(t) = E
[
Nik(t)|Et

]
, i, k = 1, ..., n,

and
R(t) ∈ R

n, Ri(t) = E
[
Mi(t)|Et

]
, i = 1, ..., n.

The solution of this equation is

ϕ∗(t) = Q−1(t)R(t), t ≥ 0,

which completes the proof. ��
Corollary 12.25. (a) Suppose n = 1 and Et ⊆ Ft, t ≥ 0. Then

ϕ∗(t) =
E
[
σ(t)E

[
DtF |Ft

]
+
∫

R0
γ(t, z)E

[
Dt,zF |Ft

]
ν(dz)

∣∣Et]
E
[
σ2(t) +

∫
R0
γ2(t, z)ν(dz)|Et

] . (12.31)

(b) Suppose n = 1, σ and γ are E-predictable. Then

ϕ∗(t) =
σ(t)E

[
DtF |Et

]
+
∫

R0
γ(t, z)E

[
Dt,zF |Et

]
ν(dz)

σ2(t) +
∫

R0
γ2(t, z)ν(dz)

. (12.32)
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Example 12.26. (1) Suppose n = 1 and

dS(t) = dW (t) +
∫

R0

zÑ(dt, dz).

What is the closest hedge to F :=
∫ T
0

∫
R0
zÑ(dt, dz) in terms of minimal

variance? Since DtF ≡ 0, t ≥ 0, and Dt,zF = z = E
[
Dt,zF |Ft

]
, t ≥ 0,

z ∈ R0, we get

ϕ∗(t) =
(
1 +

∫
R0

z2ν(dz)
)−1

∫
R0

z2ν(dz), t ∈ [0, T ]. (12.33)

We see that this process is actually constant.
(2) Suppose n = 1 and Et ⊆ Ft, t ≥ 0, and

dS(t) = dη(t) =
∫

R0

zÑ(dt, dz).

Let us consider F = S2(T ) = η2(T ). Then

Dt,zF =
(
η(T ) +Dt,zη(T )

)2 − η2(T ) = 2η(T )z + z2.

Hence the minimal variance portfolio is

ϕ∗(t) =
( ∫

R0

z2ν(dz)
)−1

∫
R0

(
2z2E

[
S(T )|Et

]
+ z3

)
ν(dz)

= 2E
[
S(t)|Et

]
+

∫
R0
z3ν(dz)∫

R0
z2ν(dz)

.

(12.34)

(3) Suppose n = 1 and Et = Ft, t ≥ 0, and

dS(t) = dη(t) =
∫

R0

zÑ(dt, dz).

Let us consider F = S2(T ) = η2(T ). Then, since S is a martingale with
respect to F, we get

ϕ∗(t) = 2η(t−) +

∫
R0
z3ν(dz)∫

R0
z2ν(dz)

. (12.35)

The closest hedge F̂ in this case is therefore given by

F̂ − E[F ] =
∫ T

0

2η(t−)dη(t) +
∫ T

0

∫
R0

z

∫
R0
ζ3ν(dζ)∫

R0
ζ2ν(dζ)

Ñ(dt, dz). (12.36)
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If we compare this to (9.34), that is,

F − E[F ] =
∫ T

0

2η(t−)dη(t) +
∫ T

0

∫
R0

z2Ñ(dt, dz),

we see that the closest hedge to the non-replicable claim

G :=
∫ T

0

∫
R0

z2Ñ(dt, dz)

is the replicable claim

Ĝ :=
∫ T

0

z

∫
R0
ζ3ν(dζ)∫

R0
ζ2ν(dζ)

Ñ(dt, dz) =
∫ T

0

∫
R0
ζ3ν(dζ)∫

R0
ζ2ν(dζ)

dη(t).

(4) Suppose n = 1 and

dS(t) =
∫

R0

zÑ(dt, dz)

and

F :=
∫ T

0

∫
R0

znÑ(dt, dz).

Then the minimal variance portfolio

ϕ∗(t) =
(∫

R0

z2ν(dz)
)−1

∫
R0

zn+1ν(dz), t ∈ [0, T ],

is constant.
(5) Suppose n = 1, Et = Ft, t ≥ 0, and

dS(t) = S(t−)
∫

R0

zÑ(dt, dz).

Let us consider F = S2(T ). In this case

Dt,zF =
(
S(T ) +Dt,zS(T )

)2 − S2(T ).

Since S(T ) = S(0) expU(T ), where

U(T ) :=
∫ T

0

∫
R0

(
log(1 + z)− z)ν(dz)ds+

∫ T

0

∫
R0

log(1 + z)Ñ(ds, dz),

then we have

Dt,zS(T ) = S(0) exp{U +Dt,zU)} − S(0) exp{U}
= S(0) expU exp{log(1 + z)− 1}
= S(0) expUz = S(T )z.



206 12 The Malliavin Derivative

Hence

Dt,zF =
(
S(T ) + S(T )z

)2 − S2(T ) = 2S2(T )z + S2(T )z2

and the minimal variance hedging portfolio is

ϕ∗(t) =

∫
R0
S2(T )

(
2z2 + z3

)
ν(dz)∫

R0
z2ν(dz)

.

(6) Suppose n = 1, Et = Ft, t ≥ 0, and

dS(t) =
∫

R0

zÑ(dt, dz).

Consider the digital claim

F := χ[k,∞)(S(T )).

The claim F may not belong to D1,2. Then an extended version of
Theorem 12.24 can be applied (see Chap. 13). In this case we have

Dt,zF = χ[k,∞)(S(T ) + z)− χ[k,∞)(S(T )),

which yields

ϕ∗(t) =
( ∫

R0

z2ν(dz)
)−1

∫
R0

zE
[
Dt,zF |Ft

]
ν(dz)

=
( ∫

R0

z2ν(dz)
)−1

∫
R0

zE
[
χ[k,∞)(S(T − t) + z)

− χ[k,∞)(S(T − t))|S(t)
]
ν(dz).

12.7 Computation of “Greeks” in the Case of Jump
Diffusions

In Sect. 4.4 it has been demonstrated how Malliavin calculus can be employed
to compute option price sensitivities, commonly referred to as the “greeks,”
for asset price processes modeled by stochastic differential equations driven by
a Wiener process. The greeks are in a sense “risk measures”, which are used by
investors on financial markets to hedge their positions. These greeks measure
changes of contract prices with respect to parameters in the underlying model.
Roughly speaking, greeks are derivatives with respect to a parameter θ of a
risk-neutral price, that is, for example, of the form

∂

∂θ
E [φ(S(T ))] ,

where φ(S(T )) is the payoff function and S(T ) is the underlying asset, which
depends on θ.
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The Malliavin approach of [81] for the calculation of greeks has proven to
be numerically effective and in many respects sometimes better than other
tools such as, the finite difference or the likelihood ratio method [43]. This
technique is especially useful if it comes to handling discontinuous payoffs
and path dependent options. See for example, [45] for more information and
the references therein.

In this section we wish to extend the method of [81] as presented in Sect. 4.4
to the case of Itô jump diffusions. The general idea is to take the Malliavin
derivative in the direction of the Wiener process on the Wiener–Poisson space,
see Sect. 12.5. This enables us to stay in the framework of a variational cal-
culus for the Wiener process without major changes. However, it should be
mentioned that the pure jump case cannot be treated by this approach in the
same way, since the Malliavin derivative with respect to the jump component
is a difference operator in the sense of Theorem 12.8.

We remark that there are several authors in the literature dealing with
jump diffusion models, see, for example, [15, 54, 55].

Rather than striving for the most general setting, we want to illustrate
the basic ideas of this method by considering asset prices described by the
Barndorff–Nielsen and Shephard model (see [18]). See also [28].

12.7.1 The Barndorff–Nielsen and Shephard Model

Adopting the notation of Sect. 12.5 we assume that the one-dimensional
Wiener process W (t) and the compensated Poisson random measure
Ñ(dt, dz) = N(dt, dz) − ν(dz)dt is constructed on the Wiener–Poisson prob-
ability space (Ω,F , P ) given by

(Ω,F , P ) = (Ω0 ×Ω0,FWT ⊗F ÑT , PW × P Ñ ),

where PW is the Gaussian and P Ñ is the white noise Lévy measure on the
Schwartz distribution space Ω0 = S′(R). As before, let us denote by Dt and
Dt,z the Malliavin derivatives in the direction of the Wiener process and the
Poisson random measure, respectively. The operator Dt can be defined on the
Hilbert space

D̃1,2, (12.37)

which is the closure of a suitable space of smooth random variables (e.g., the
linear span of basis elements Hα as given in Sect. 12.5) with respect to the
semi-norm

‖F‖1,2 :=

(
E
[
F 2
]
+ E

[∫ T

0

|DtF |2 dt
])1/2

.

It can be seen from this construction that the results obtained in Chap. 3 still
hold for Dt on the Wiener–Poisson space (Ω,F , P ). So, for example, in this
setting the chain rule for Dt reads
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Dtφ(F1, ..., Fm) =
m∑
j=1

∂

∂xj
φ(F1, ..., Fm)DtFj λ× PW × P Ñ − a.e., (12.38)

if φ : R
m −→ R is a bounded continuously differentiable function and

(F1, ..., Fm) is a random vector with components in D̃1,2. See Theorem 3.5.
In this section, we want to briefly discuss the Barndorff–Nielsen and Shep-

hard (BNS) model which was introduced in [18]. This model exhibits nice
features and can, for example, be used to fit it to high-frequency stock price
data.

In the following, we consider a financial market consisting of a single risk-
free asset and a risky asset (stock). Further, let us assume that the stock price
S(t) is defined on the Wiener–Poisson space (Ω,F , P ) and given by

S(t) = Sx(t) = x exp(X(t)), 0 ≤ t ≤ T, (12.39)

where

dX(t) = (μ+ βσ2(t))dt + σ(t)dW (t) + ρdZ(λt), X(0) = 0 (12.40)

with stochastic volatility σ2(t) given by the Lévy–Ornstein–Uhlenbeck (OU)
process

dσ2(t) = −λσ2(t)dt + dZ(λt), σ2(0) > 0. (12.41)

Here Z(t) is a “background driving” Lévy process given by a subordinator,
that is, a nondecreasing Lévy process. Such a process has the representation

Z(t) = mt+
∫ t

0

∫
R0

zN(ds, dz) (12.42)

for a constant m ≥ 0 with Lévy measure ν such that supp(ν) ⊆ (0,∞).
Further, the law of Z(t), 0 ≤ t ≤ T , is completely determined by its cumulant
generating function

κ(α) := log (E [exp(αZ(1))]) , (12.43)

(see, e.g., [32]). The processes W (t) and Z(t) are independent. In addition,
r > 0 is the constant market interest rate and the constants λ > 0, ρ ≤ 0
stand for the mean-reversion rate of the stochastic volatility and the leverage
effect of the (log-) price process, respectively. Moreover, μ and β are constant
parameters.

Using the Itô formula (Theorem 9.4) one finds that the volatility process
in (12.41) has the explicit form

σ2(t) = σ2(0)e−λt +
∫ t

0

eλ(s−t)dZ(λs), 0 ≤ t ≤ T. (12.44)

Throughout the rest of this section we require that the subordinator Z(t)
has no drift (i.e., m = 0) in (12.42) and that ν has a density w with respect
to the Lebsegue measure. The latter implies that
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κ(α) =
∫

R0

(eαz − 1)ν(dz) =
∫

(0,∞)

(eαz − 1)w(z)dz. (12.45)

See [32]. Define
α̂ = sup{α ∈ R : κ(α) <∞}.

In addition, we assume that

α̂ > max{0, 2λ−1(1 + β + ρ)} and lim
α−→α̂

κ(α) = ∞. (12.46)

The last condition ensures the square integrability of the asset process S(t) and
the existence of an invariant distribution of the volatility process. See [167].

As mentioned the greeks are derivatives of the expected (discounted) pay-
off under a risk neutral measure Q. However, a measure change from the real
world measure to Q might result in a dynamics being different from the BNS
model (12.40) and (12.41). Therefore, we are interested in “structure preserv-
ing” risk neutral measures Q, which transform BNS models into BNS models
with possibly different parameters and Lévy measure for Z(t). It turns out (see
[167]) that the risk neutral dynamics of the BNS model under such measures
takes the general form

dX(t) = (r − λκ(ρ)− 1
2
σ2(t))dt + σ(t)dW (t) + ρdZ(λt) (12.47)

and
dσ2(t) = −λσ2(t)dt + dZ(λt), σ2(0) > 0. (12.48)

From now on we confine ourselves to the risk neutral dynamics of the BNS
model given by (12.47) and (12.48), for which conditions (12.45) and (12.46)
are satisfied. In what follows we replace Q by our white noise measure P (since
we only deal with probability laws under expectations).

12.7.2 Malliavin Weights for “Greeks”

In the sequel we want to compute the Malliavin weights for the delta and
gamma of an option. To this end we need the following auxiliary results:

Lemma 12.27. Suppose that F θ is a real valued random variable, which de-
pends on a parameter θ ∈ R. Further require that the mapping θ �−→ F θ(ω) is
continuously differentiable in [a, b] ω-a.e. and that

E

[
sup
a≤θ≤b

∣∣∣∣ ∂∂θF θ
∣∣∣∣
]
<∞.

Then θ �−→ E
[
F θ
]

is differentiable in (a, b), and for θ ∈ (a, b) we have

∂

∂θ
E
[
F θ
]

= E

[
∂

∂θ
F θ
]
.
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Proof The result follows from the mean value theorem and dominated con-
vergence. The details are left to the reader. ��

Adopting the notation in [28], we denote by L2(S) the space of locally
integrable functions φ : R

m −→ R such that

E
[
φ2(S(t1), ..., S(tm))

]
<∞. (12.49)

Our asset price process depends on the parameters θ = x, r, ρ, and σ2(0). In
the following we write S(·) = Sθ(·) to indicate this dependency.

Lemma 12.28. Let θ �−→ πθ be a process such that θ �−→ ψ(θ) :=
∥∥πθ∥∥

L2(P )

is locally bounded. Further assume that

∂

∂θ
E
[
φ(Sθ(t1), ..., Sθ(tm))

]
= E

[
φ(Sθ(t1), ..., Sθ(tm))πθ

]
(12.50)

is valid for all φ ∈ C∞
c (Rm) (i.e., φ is an infinitely differentiable function

with compact support). Then relation (12.50) also holds for all φ ∈ L2(S).

Proof Let φ be a bounded function. Then there exists a uniformly bounded
sequence of functions φk, k ≥ 1 satisfying (12.50) such that

φk −→ φ a.e.

Using transition probability densities in connection with X(t) in (12.47) one
finds that

φk(S
θ(t1), ..., Sθ(tm)) −→ φ(Sθ(t1), ..., Sθ(tm))

in L2(P ) uniformly on compact sets. Define

u(θ) = E
[
φ(Sθ(t1), ..., Sθ(tm))

]
and uk(θ) = E

[
φk(S

θ(t1), ..., Sθ(tm))
]
.

As above one verifies that uk(θ) −→ u(θ) for all θ. Further let

f(θ) := E
[
φ(Sθ(t1), ..., Sθ(tm))πθ

]
.

By the Cauchy–Schwartz inequality we get∣∣∣∣ ∂∂θuk(θ)− f(θ)
∣∣∣∣ ≤ εk(θ)ψ(θ),

where

εk(θ) =
(
E
[(
φk(S

θ(t1), ..., Sθ(tm))− φ(Sθ(t1), ..., Sθ(tm))
)2])1/2

.

Since θ �−→ ψ(θ) is locally bounded, it follows that

∂

∂θ
uk(θ) −→ f(θ) as k −→∞

uniformly on compact sets. Hence, φ also fulfills (12.50). So (12.50) is valid
for all bounded measurable functions. The general case finally follows from a
truncation argument. ��
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Let us remark that L2(S) contains important options as, for example, the call
option.

We are coming to the main result that is due to [28]:

Theorem 12.29. Let φ ∈ L2(S) and let a ∈ L2([0, T ]) be an adapted process
such that ∫ ti

0

a(t)dt = 1 P − a.e.

for all i = 1, ...,m. Then
(1) The delta of the option is given by

∂

∂x
E
[
e−rTφ(Sx(t1), ..., Sx(tm))

]
= E

[
e−rTφ(Sx(t1), ..., Sx(tm))πΔ

]
,

where the Malliavin weight πΔ is given by

πΔ =
∫ T

0

a(t)
xσ(t)

dW (t).

(2) The gamma of the option is given by

∂2

∂x2
E
[
e−rTφ(Sx(t1), ..., Sx(tm))

]
= E

[
e−rTφ(Sx(t1), ..., Sx(tm))πΓ

]
,

where the Malliavin weight πΓ has the form

πΓ =
(
πΔ
)2 − 1

x
πΔ − 1

x2

∫ T

0

(
a(t)
σ(t)

)2

dt.

Proof It is easily seen that θ �−→ Sθ is pathwise differentiable (with exception
of the boundary values x = 0 and σ2(0) = 0) for the different parameters
θ = x, r, ρ, σ2(0). Further, one checks that the assumptions of Lemma 12.27
and Lemma 12.28 are satisfied. So it remains to verify relation (12.50) for
φ ∈ C∞

0 (Rm).
(1) Using Lemma 12.27, we find

∂

∂x
E
[
e−rTφ(Sx(t1), ..., Sx(tm))

]

= E

[
e−rT

∂

∂x
φ(Sx(t1), ..., Sx(tm))

]

= E

[
e−rT

mi∑
i=1

φxi
(Sx(t1), ..., Sx(tm))

∂

∂x
Sx(ti)

]

= E

[
e−rT

mi∑
i=1

φxi
(Sx(t1), ..., Sx(tm))

1
x
Sx(ti)

]
.
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By applying the chain rule (Theorem 3.5 or (12.38)) and the fundamental
theorem of stochastic calculus (Theorem 3.18) in the direction of W (t) we
obtain

DtS
x(ti) = σ(t)Sx(ti)χ[0,ti](t).

Since
∫ ti
0
a(t)dt = 1, we get

∫ T

0

a(t)
xσ(t)

DtS
x(ti)dt =

1
x
Sx(ti).

Hence,

∂

∂x
E
[
e−rTφ(Sx(t1), ..., Sx(tm))

]

= E

[
e−rT

∫ T

0

mi∑
i=1

φxi
(Sx(t1), ..., Sx(tm))

a(t)
xσ(t)

DtS
x(ti)dt

]
.

Then the chain rule (12.38) yields

∂

∂x
E
[
e−rTφ(Sx(t1), ..., S

x(tm))
]
=e−rTE

[∫ T

0

mi∑
i=1

Dtφ(Sx(t1), ..., S
x(tm))

a(t)

xσ(t)
dt

]
.

Finally, the duality formula (Theorem 3.14) gives the Malliavin weight πΔ =∫ T
0

a(t)
xσ(t)dW (t).

(2) Define F x =
∫ T
0

a(t)
xσ(t)dW (t). Then ∂

∂xF
x = − 1

xF
x. Thus

∂2

∂x2
E
[
e−rTφ(Sx(t1), ..., Sx(tm))

]

=
∂

∂x
E
[
e−rTφ(Sx(t1), ..., Sx(tm))F x

]

= − 1
x
E
[
e−rTφ(Sx(t1), ..., Sx(tm))F x

]
(12.51)

+E

[
e−rT

mi∑
i=1

φxi
(Sx(t1), ..., Sx(tm))

1
x
Sx(ti)F x

]
.

Repeated use of the arguments of (1) gives

E

[
e−rT

mi∑
i=1

φxi
(Sx(t1), ..., Sx(tm))

1
x
Sx(ti)F x

]

= E

[
e−rT

∫ T

0

mi∑
i=1

Dtφ(Sx(t1), ..., Sx(tm))
a(t)
xσ(t)

F xdt

]

= E

[
e−rT

mi∑
i=1

Dtφ(Sx(t1), ..., Sx(tm))δ
(
a(·)
xσ(·)F

x

)]
.
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Finally, noting that DtF
x = a(t)

xσ(t) , it follows from the integration by parts
formula (Theorem 3.15) that

δ

(
a(·)
xσ(·)F

x

)
= F x

∫ T

0

a(t)
xσ(t)

dW (t) −
∫ T

0

(
a(t)
xσ(t)

)2

dt

= (F x)2 −
∫ T

0

(
a(t)
xσ(t)

)2

dt,

which, in connection with (12.52), gives the proof. ��

12.8 Exercises

Problem 12.1. (*) Let

η(t) =
∫ t

0

∫
R0

zÑ(dz, dz), t ∈ [0, T ].

Use Definition 12.2 and the chaos expansions found in Problem 10.1 to com-
pute the following:

(a)Dt,zη
3(T ) , (t, z) ∈ [0, T ]× R0,

(b)Dt,z exp η(T ) , (t, z) ∈ [0, T ]× R0.

Problem 12.2. (*) Compute the Malliavin derivatives in Problem 12.1 by
using the chain rule (see Theorem 12.8) together with (12.5).

Problem 12.3. Let the process X(t), t ∈ [0, T ], be the geometric Lévy pro-
cess

dX(t) = X(t−)[α(t)dt+ β(t)dW (t) +
∫

R0

γ(t, z)Ñ(dt, dz)],

where the involved coefficients are deterministic. Find Dt,zX(T ) for t ≤ T .

Problem 12.4. Use the integration by parts formula (Theorem 12.11) to
compute the Skorohod integrals

∫ T

0

Fδη(t) =
∫ T

0

∫
R0

FzÑ(δt, dz)

in the following cases:

(a) F = η(T )
(b)F = η2(T )
(c) F = η3(T )
(d)F = exp{η(T )}
(e) F =

∫ T
0 g(s)dη(s), where g ∈ L2([0, T ]).
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Problem 12.5. Solve Problem 9.6 using the Clark–Ocone theorem.

Problem 12.6. Consider the following market

risk free asset: dS0(t) = 0, S0(0) = 1

risky asset: dS1(t) = S1(t−)
∫

R0

zÑ(dt, dz), S1(0) > 0,

where z > −1 ν-a.e. Find the closest hedge in terms of minimal variance for
the following claims:

(a) F = S2
1(T ),

(b)F = exp {λS1(T )}, with λ ∈ R constant.

Problem 12.7. Consider the claim F = η3(T ) in the Bachelier–Lévy market

risk free asset: dS0(t) = 0, S0(0) = 1

risky asset: dS1(t) =
∫

R0

zÑ(dt, dz), S1(0) = 0.

(a) Is the claim replicable in this market?
(b) If not, what is the closest hedge in terms of minimal variance?




