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The Wiener–Itô Chaos Expansion

The celebrated Wiener–Itô chaos expansion is fundamental in stochastic anal-
ysis. In particular, it plays a crucial role in the Malliavin calculus as it is pre-
sented in the sequel. This result which concerns the representation of square
integrable random variables in terms of an infinite orthogonal sum was proved
in its first version by Wiener in 1938 [227]. Later, in 1951, Itô [120] showed
that the expansion could be expressed in terms of iterated Itô integrals in the
Wiener space setting.

Before we state the theorem we introduce some useful notation and give
some auxiliary results.

1.1 Iterated Itô Integrals

Let W = W (t) = W (ω, t), ω ∈ Ω t ∈ [0, T ] (T > 0), be a one-dimensional
Wiener process, or equivalently Brownian motion, on the complete probability
space (Ω,F , P ) such that W (0) = 0 P -a.s.

For any t, let Ft be the σ-algebra generated byW (s), 0 ≤ s ≤ t, augmented
by all the P -zero measure events. We denote the corresponding filtration by

F = {Ft, t ∈ [0, T ]} . (1.1)

Note that this filtration is both left- and right-continuous, that is,

Ft = lim
s↗t

Fs := σ
{⋃
s<t

Fs
}
,

respectively,
Ft = lim

u↘t
Fu :=

⋂
u>t

Fu.

See, for example, [129] or [207].
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8 1 The Wiener–Itô Chaos Expansion

Definition 1.1. A real function g : [0, T ]n → R is called symmetric if

g(tσ1 , . . . , tσn) = g(t1, . . . , tn) (1.2)

for all permutations σ = (σ1, ..., σn) of (1, 2, . . . , n).

Let L2 ([0, T ]n) be the standard space of square integrable Borel real func-
tions on [0, T ]n such that

‖g‖2L2([0,T ]n) :=
∫

[0,T ]n

g2(t1, . . . , tn)dt1 · · · dtn <∞. (1.3)

Let L̃2([0, T ]n) ⊂ L2 ([0, T ]n) be the space of symmetric square integrable
Borel real functions on [0, T ]n. Let us consider the set

Sn = {(t1, . . . , tn) ∈ [0, T ]n : 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ T }.
Note that this set Sn occupies the fraction 1

n! of the whole n-dimensional box
[0, T ]n. Therefore, if g ∈ L̃2([0, T ]n) then g|Sn

∈ L2(Sn) and

‖g‖2L2([0,T ]n) = n!
∫

Sn

g2(t1, . . . , tn)dt1 . . . dtn = n!‖g‖2L2(Sn), (1.4)

where ‖·‖L2(Sn) denotes the norm induced by L2 ([0, T ]n) on L2 (Sn), the space
of the square integrable functions on Sn.

If f is a real function on [0, T ]n, then its symmetrization f̃ is defined by

f̃(t1, . . . , tn) =
1
n!

∑
σ

f(tσ1 , . . . , tσn
), (1.5)

where the sum is taken over all permutations σ of (1, . . . , n). Note that f̃ = f
if and only if f is symmetric.

Example 1.2. The symmetrization of the function

f(t1, t2) = t21 + t2 sin t1, (t1, t2) ∈ [0, T ]2,

is
f̃(t1, t2) =

1
2
[
t21 + t22 + t2 sin t1 + t1 sin t2

]
, (t1, t2) ∈ [0, T ]2.

Definition 1.3. Let f be a deterministic function defined on Sn (n ≥ 1) such
that

‖f‖2L2(Sn) :=
∫

Sn

f2(t1, . . . , tn)dt1 · · · dtn <∞.

Then we can define the n-fold iterated Itô integral as

Jn(f) :=

T∫

0

tn∫

0

· · ·
t3∫

0

t2∫

0

f(t1, . . . , tn)dW (t1)dW (t2) · · · dW (tn−1)dW (tn).

(1.6)
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Note that at each iteration i = 1, ..., n the corresponding Itô integral with
respect to dW (ti) is well-defined, being the integrand

∫ ti
0
· · · ∫ t2

0
f(t1, ..., tn)

dW (t1)...dW (ti−1), ti ∈ [0, ti+1], a stochastic process that is F-adapted and
square integrable with respect to dP × dti. Thus, (1.6) is well-defined.

Thanks to the construction of the Itô integral we have that Jn(f) belongs
to L2(P ), that is, the space of square integrable random variables. We denote
the norm of X ∈ L2(P ) by

‖X‖L2(P ) :=
(
E
[
X2
] )1/2

=
(∫

Ω

X2(ω)P (dω)
)1/2

.

Applying the Itô isometry iteratively, if g ∈ L2(Sm) and h ∈ L2(Sn), with
m < n, we can see that

E
[
Jm(g)Jn(h)

]
= E

[( T∫

0

sm∫

0

· · ·
s2∫

0

g(s1, . . . , sm)dW (s1) · · · dW (sm)
)

·
( T∫

0

sm∫

0

· · ·
t2∫

0

h(t1, . . . , tn−m, s1, . . . , sm)dW (t1) · · · dW (tn−m)dW (s1) · · · dW (sm)
)]

=

T∫

0

E
[( sm∫

0

· · ·
s2∫

0

g(s1, . . . , sm−1, sm)dW (s1) · · · dW (sm−1)
)

·
( sm∫

0

· · ·
t2∫

0

h(t1, . . . , sm−1, sm)dW (t1) · · · dW (sm−1)
)]

dsm = . . .

=

T∫

0

sm∫

0

· · ·
s2∫

0

g(s1, s2, . . . , sm)E
[ s1∫

0

· · ·
t2∫

0

h(t1, . . . , tn−m, s1, . . . , sm)

· dW (t1) · · · dW (tn−m)
]
ds1 · · · dsm = 0

(1.7)

because the expected value of an Itô integral is zero. On the other hand, if
both g and h belong to L2(Sn), then

E
[
Jn(g)Jn(h)

]
=

T∫

0

E
[ sn∫

0

· · ·
s2∫

0

g(s1, . . . , sn)dW (s1) · · ·dW (sn−1)

·
sn∫

0

· · ·
s2∫

0

h(s1, . . . , sn)dW (s1) · · ·dW (sn−1)
]
dsn= . . .

=

T∫

0

· · ·
s2∫

0

g(s1, . . . , sn)h(s1, . . . , sn)ds1 · · · dsn = (g, h)L2(Sn)

(1.8)

We summarize these results as follows.



10 1 The Wiener–Itô Chaos Expansion

Proposition 1.4. The following relations hold true:

E[Jm(g)Jn(h)] =
{

0 , n 	= m
(g, h)L2(Sn) , n = m

(m,n = 1, 2, ...), (1.9)

where
(g, h)L2(Sn) :=

∫

Sn

g(t1, . . . , tn)h(t1, . . . , tn)dt1 · · · dtn

is the inner product of L2(Sn). In particular, we have

‖Jn(h)‖L2(P ) = ‖h‖L2(Sn). (1.10)

Remark 1.5. Note that (1.9) also holds for n = 0 or m = 0 if we define
J0(g) = g, when g is a constant, and (g, h)L2(S0) = gh, when g, h are constants.

Remark 1.6. It is straightforward to see that the n-fold iterated Itô integral

L2(Sn) 
 f =⇒ Jn(f) ∈ L2(P )

is a linear operator, that is, Jn(af + bg) = aJn(f) + bJn(g), for f, g ∈ L2(Sn)
and a, b ∈ R.

Definition 1.7. If g ∈ L̃2([0, T ]n) we define

In(g) :=
∫

[0,T ]n

g(t1, . . . , tn)dW (t1) . . . dW (tn) := n!Jn(g). (1.11)

We also call n-fold iterated Itô integrals the In(g) here above.

Note that from (1.9) and (1.11) we have

‖In(g)‖2L2(P ) = E[I2
n(g)] = E[(n!)2J2

n(g)]

= (n!)2‖g‖2L2(Sn) = n!‖g‖2L2([0,T ]n) (1.12)

for all g ∈ L̃2([0, T ]n). Moreover, if g ∈ L̃2([0, T ]m) and h ∈ L̃2([0, T ]n), we
have

E[Im(g)In(h)] =
{

0 , n 	= m
(g, h)L2([0,T ]n) , n = m

(m,n = 1, 2, ...),

with (g, h)L2([0,T ]n) = n!(g, h)L2(Sn).
There is a useful formula due to Itô [120] for the computation of the

iterated Itô integral. This formula relies on the relationship between Hermite
polynomials and the Gaussian distribution density. Recall that the Hermite
polynomials hn(x), x ∈ R, n = 0, 1, 2, . . . are defined by

hn(x) = (−1)ne
1
2x

2 dn

dxn
(e−

1
2x

2

), n = 0, 1, 2, . . . , (1.13)
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Thus, the first Hermite polynomials are

h0(x) = 1, h1(x) = x, h2(x) = x2 − 1, h3(x) = x3 − 3x,
h4(x) = x4 − 6x2 + 3, h5(x) = x5 − 10x3 + 15x, . . . .

We also recall that the family of Hermite polynomials constitute an orthogonal
basis for L2(R, μ(dx)) if μ(dx) = 1√

2π
e

x2
2 dx (see, e.g., [215]).

Proposition 1.8. If ξ1, ξ2, ... are orthonormal functions in L2([0, T ]), we
have that

In
(
ξ⊗α1
1 ⊗̂ · · · ⊗̂ξ⊗αm

m

)
=

m∏
k=1

hαk

( ∫ T

0

ξk(t)W (t)
)
, (1.14)

with α1+ · · ·+αm = n. Here ⊗ denotes the tensor power and αk ∈ {0, 1, 2, ...}
for all k.

See [120]. In general, the tensor product f⊗g of two functions f, g is defined by

(f ⊗ g)(x1, x2) = f(x1)g(x2)

and the symmetrized tensor product f⊗̂g is the symmetrization of f ⊗ g. In
particular, from (1.14), we have

n!

T∫

0

tn∫

0

· · ·
t2∫

0

g(t1)g(t2) · · · g(tn)dW (t1) · · ·dW (tn) = ‖g‖nhn
( θ

‖g‖
)
, (1.15)

for the tensor power of g ∈ L2([0, T ]). Here above we have used ‖g‖ =

‖g‖L2([0,T ]) and θ =
T∫
0

g(t)dW (t).

Example 1.9. Let g ≡ 1 and n = 3, then we get

6

T∫

0

t3∫

0

t2∫

0

1 dW (t1)dW (t2)dW (t3) = T 3/2h3

(W (T )
T 1/2

)
= W 3(T )− 3T W (T ).

1.2 The Wiener–Itô Chaos Expansion

Theorem 1.10. The Wiener–Itô chaos expansion. Let ξ be an FT -
measurable random variable in L2(P ). Then there exists a unique sequence
{fn}∞n=0 of functions fn ∈ L̃2([0, T ]n) such that

ξ =
∞∑
n=0

In(fn), (1.16)
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where the convergence is in L2(P ). Moreover, we have the isometry

‖ξ‖2L2(P ) =
∞∑
n=0

n!‖fn‖2L2([0,T ]n). (1.17)

Proof By the Itô representation theorem there exists an F-adapted process
ϕ1(s1), 0 ≤ s1 ≤ T, such that

E
[ T∫

0

ϕ2
1(s1)ds1

]
≤ E

[
ξ2
]

(1.18)

and

ξ = E[ξ] +

T∫

0

ϕ1(s1)dW (s1). (1.19)

Define
g0 = E[ξ].

For almost all s1 ≤ T we can apply the Itô representation theorem to ϕ1(s1)
to conclude that there exists an F-adapted process ϕ2(s2, s1), 0 ≤ s2 ≤ s1,
such that

E
[ s1∫

0

ϕ2
2(s2, s1)ds2

]
≤ E[ϕ2

1(s1)] <∞ (1.20)

and

ϕ1(s1) = E[ϕ1(s1)] +

s1∫

0

ϕ2(s2, s1)dW (s2). (1.21)

Substituting (1.21) in (1.19) we get

ξ = g0 +

T∫

0

g1(s1)dW (s1) +

T∫

0

s1∫

0

ϕ2(s2, s1)dW (s2)dW (s1), (1.22)

where
g1(s1) = E[ϕ1(s1)].

Note that by (1.18), (1.20), and the Itô isometry we have

E
[( T∫

0

s1∫

0

ϕ2(s2, s1)dW (s2)dW (s1)
)2]

=

T∫

0

s1∫

0

E[ϕ2
2(s2, s1)]ds2ds1 ≤ E[ξ2].

Similarly, for almost all s2 ≤ s1 ≤ T , we apply the Itô representation theorem
to ϕ2(s2, s1) and we get an F-adapted process ϕ3(s3, s2, s1), 0 ≤ s3 ≤ s2, such
that
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E
[ s2∫

0

ϕ2
3(s3, s2, s1)ds3

]
≤ E[ϕ2

2(s2, s1)] <∞ (1.23)

and

ϕ2(s2, s1) = E[ϕ2(s2, s1)] +

s2∫

0

ϕ3(s3, s2, s1)dW (s3). (1.24)

Substituting (1.24) in (1.22) we get

ξ = g0 +

T∫

0

g1(s1)dW (s1) +

T∫

0

s1∫

0

g2(s2, s1)dW (s2)dW (s1)

+

T∫

0

s1∫

0

s2∫

0

ϕ3(s3, s2, s1)dW (s3)dW (s2)dW (s1),

where
g2(s2, s1) = E[ϕ2(s2, s1)], 0 ≤ s2 ≤ s1 ≤ T.

By (1.18), (1.20), (1.23), and the Itô isometry we have

E
[( T∫

0

s1∫

0

s2∫

0

ϕ3(s3, s2, s1)dW (s3)dW (s2)dW (s1)
)2]

≤ E
[
ξ2
]
.

By iterating this procedure we obtain after n steps a process ϕn+1(t1, t2, . . .,
tn+1), 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn+1 ≤ T, and n + 1 deterministic functions
g0, g1, . . . , gn, with g0 constant and gk defined on Sk for 1 ≤ k ≤ n, such that

ξ =
n∑
k=0

Jk(gk) +
∫

Sn+1

ϕn+1dW
⊗(n+1),

where

∫

Sn+1

ϕn+1dW
⊗(n+1) :=

T∫

0

tn+1∫

0

· · ·
t2∫

0

ϕn+1(t1, . . . , tn+1)dW (t1) · · · dW (tn+1)

is the (n+ 1)-fold iterated integral of ϕn+1. Moreover,

E
[( ∫

Sn+1

ϕn+1dW
⊗(n+1)

)2]
≤ E

[
ξ2
]
.
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In particular, the family

ψn+1 :=
∫

Sn+1

ϕn+1dW
⊗(n+1), n = 1, 2, . . .

is bounded in L2(P ) and, from the Itô isometry,

(ψn+1, Jk(fk))L2(P ) = 0 (1.25)

for k ≤ n, fk ∈ L2([0, T ]k). Hence we have

‖ξ‖2L2(P ) =
n∑
k=0

‖Jk(gk)‖2L2(P ) + ‖ψn+1‖2L2(P ).

In particular,
n∑
k=0

‖Jk(gk)‖2L2(P ) <∞, n = 1, 2, ...

and therefore
∞∑
k=0

Jk(gk) is convergent in L2(P ). Hence

lim
n→∞ψn+1 =: ψ

exists in L2(P ). But by (1.25) we have

(Jk(fk), ψ)L2(P ) = 0

for all k and for all fk ∈ L2([0, T ]k). In particular, by (1.15) this implies that

E
[
hk
( θ

‖g‖
) · ψ] = 0

for all g ∈ L2([0, T ]) and for all k ≥ 0, where θ =
T∫
0

g(t)dW (t). But then, from

the definition of the Hermite polynomials,

E[θk · ψ] = 0

for all k ≥ 0, which again implies that

E[exp θ · ψ] =
∞∑
k=0

1
k!
E[θk · ψ] = 0.

Since the family
{exp θ : g ∈ L2([0, T ])}

is total in L2(P ) (see [179, Lemma 4.3.2]), we conclude that ψ = 0. Hence,
we conclude
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ξ =
∞∑
k=0

Jk(gk) (1.26)

and

‖ξ‖2L2(P ) =
∞∑
k=0

‖Jk(gk)‖2L2(P ). (1.27)

Finally, to obtain (1.16)–(1.17) we proceed as follows. The function gn is
defined only on Sn, but we can extend gn to [0, T ]n by putting

gn(t1, . . . , tn) = 0, (t1, . . . , tn) ∈ [0, T ]n \ Sn.

Now define fn := g̃n to be the symmetrization of gn - cf. (1.5). Then

In(fn) = n!Jn(fn) = n!Jn(g̃n) = Jn(gn)

and (1.16) and (1.17) follow from (1.26) and (1.27), respectively. ��
Example 1.11. What is the Wiener–Itô expansion of ξ = W 2(T )? From (1.15)
we get

2

T∫

0

t2∫

0

1 dW (t1)dW (t2) = Th2

(W (T )
T 1/2

)
= W 2(T )− T,

and therefore
ξ = W 2(T ) = T + I2(1).

Example 1.12. Note that for a fixed t ∈ (0, T ) we have
∫ T

0

∫ t2

0

χ{t1<t<t2}(t1, t2)dW (t1)dW (t2)=

∫ T

t

W (t)dW (t2) = W (t)
(
W (T )−W (t)

)
.

Hence, if we put

ξ = W (t)(W (T )−W (t)), g(t1, t2) = χ{t1<t<t2}

we can see that
ξ = J2(g) = 2J2(g̃ ) = I2(f2),

where
f2(t1, t2) = g̃(t1, t2) =

1
2
(
χ{t1<t<t2} + χ{t2<t<t1}

)
.

Here and in the sequel we denote the indicator function by

χ = χA(x) = χ{x∈A} :=

{
1, x ∈ A,
0, x /∈ A.
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1.3 Exercises

Problem 1.1. (*) Let hn(x), n = 0, 1, 2, . . . , be the Hermite polynomials
defined in (1.13).

(a) Prove that

exp
{
tx− t2

2
}

=
∞∑
n=0

tn

n!
hn(x).

[Hint. Write exp{tx − t2

2 } = exp{ 1
2x

2} · exp{− 1
2 (x − t)2} and apply the

Taylor formula on the last factor.]
(b) Show that if λ > 0 then

exp
{
tx− t2λ

2
}

=
∞∑
n=0

tnλ
n
2

n!
hn
( x√

λ

)
.

(c) Let g ∈ L2([0, T ]). Put

θ =

T∫

0

g(s)dW (s).

Show that

exp
{ T∫

0

g(s)dW (s)− 1
2
‖g‖2

}
=

∞∑
n=0

‖g‖n
n!

hn
( θ

‖g‖
)
,

where ‖g‖ = ‖g‖L2([0,T ]).

(d) Let t ∈ [0, T ]. Show that exp{W (t)− 1
2 t} =

∑∞
n=0

tn/2

n! hn(
W (t)√

t
).

Problem 1.2. Let ξ and ζ be FT -measurable random variables in L2(P ) with
Wiener–Itô chaos expansions ξ =

∑∞
n=0 In(fn) and ζ =

∑∞
n=0 In(gn), respec-

tively. Prove that the chaos expansion of the sum ξ+ζ =
∑∞

n=0 In(hn) is such
that hn = fn + gn for all n = 1, 2, ...

Problem 1.3. (*) Find the Wiener–Itô chaos expansion of the following ran-
dom variables:

(a) ξ = W (t), where t ∈ [0, T ] is fixed,

(b) ξ =
T∫
0

g(s)dW (s), where g ∈ L2([0, T ]),

(c) ξ = W 2(t), where t ∈ [0, T ] is fixed,

(d) ξ = exp{
T∫
0

g(s)dW (s)}, where g ∈ L2([0, T ]) [Hint. Use (1.15).],

(e) ξ =
∫ T
0
g(s)W (s)ds, where g ∈ L2([0, T ]).



1.3 Exercises 17

Problem 1.4. (*) The Itô representation theorem states that if F ∈ L2(P )
is FT -measurable, then there exists a unique F-adapted process ϕ = ϕ(t), 0 ≤
t ≤ T, such that

F = E[F ] +

T∫

0

ϕ(t)dW (t).

This result only provides the existence of the integrand ϕ, but from the point
of view of applications it is important also to be able to find the integrand
ϕ more explicitly. This can be achieved, for example, by the Clark–Ocone
formula (see Chap. 4), which says that, under some suitable conditions,

ϕ(t) = E[DtF |Ft], 0 ≤ t ≤ T,

where DtF is the Malliavin derivative of F . We discuss this topic later in the
book. However, for certain random variables F it is possible to find ϕ directly,
by using the Itô formula. For example, find ϕ when

(a) F = W 2(T )
(b) F = exp{W (T )}
(c) F =

T∫
0

W (t)dt

(d) F = W 3(T )
(e) F = cosW (T ) [Hint. Check that N(t) := e

1
2 t cosW (t), t ∈ [0, T ], is a

martingale.]

Problem 1.5. (*) This exercise is based on [108]. Suppose the function F of
Problem 1.4 has the form

F = f(X(T )),

where X = X(t), t ∈ [0, T ], is an Itô diffusion given by

dX(t) = b(X(t))dt+ σ(X(t))dW (t); X(0) = x ∈ R.

Here b : R → R and σ : R → R are given Lipschitz continuous functions of at
most linear growth, so there exists a unique strong solution X(t) = Xx(t), t ∈
[0, T ]. Then there is a useful formula for the process ϕ in the Itô representation
theorem. This formula is achieved as follows. If g is a real function such that

E[|g(Xx(t))|] <∞,

then we define

u(t, x) := Ptg(x) := E[g(Xx(t))], t ∈ [0, T ], x ∈ R.

Suppose that there exists δ > 0 such that

|σ(x)| ≥ δ for all x ∈ R. (1.28)
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Then u(t, x) ∈ C1,2(R+ × R) and

∂u

∂t
= b(x)

∂u

∂x
+

1
2
σ2(x)

∂2u

∂x2

(this is the Kolmogorov backward equation, see, for example, [74, Volume 1,
Theorem 5.11, p. 162 and Volume 2, Theorem 13.18, p. 53], [177, Theorem
8.1] for details on this issue).

(a) Use the Itô formula for the process

Y (t) = g(t,X(t)), t ∈ [0, T ], with g(t, x) = PT−tf(x)

to show that

f(X(T )) = PT f(x) +

T∫

0

[
σ(ξ)

∂

∂ξ
PT−tf(ξ)

]
|ξ=X(t)

dW (t), (1.29)

for all f ∈ C2(R). In other words, with the notation of Problem 1.4, we
have shown that if F = f(X(T )), then

E[F ] = PT f(x) and ϕ(t) =
[
σ(ξ)

∂

∂ξ
PT−tf(ξ)

]
|ξ=X(t)

. (1.30)

(b)Use (1.30) to compute E[F ] and find ϕ in the Itô representation of the
following random variables:
(b.1) F = W 2(T )
(b.2) F = W 3(T )
(b.3) F = X(T ), whereX(t), t ∈ [0, T ], is the geometric Brownian motion,

that is,

dX(t) = ρX(t)dt+αX(t)dW (t); X(0) = x ∈ R (ρ, α constants).

(c) Extend formula (1.30) to the case when X(t) ∈ R
n, t ∈ [0, T ], and f :

R
n → R. In this case, condition (1.28) must be replaced by the uniform

ellipticity condition

ηTσT (x)σ(x)η ≥ δ|η|2 for all x ∈ R
n, η ∈ R

n, (1.31)

where σT (x) denotes the transposed of the m× n-matrix σ(x).




