Option Pricing and the Cost of Risk, via capital reserve and convex risk measures

Ove Göttsche

Department of Applied Mathematics University of Twente

10th Winter School on Mathematical Finance, Lunteren, 2011

(ロ)、<()、<()、<()、<()、<()、<()</p>

Outline

2 Convex Duality

Ove Göttsche Option Pricing and the Cost of Risk

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○

The market model

Let the filtered probability space $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \in [0,T]}, \mu)$ be given where T > 0 denotes a fixed time horizon. The discounted price process is described as a \mathbb{R} -valued semimartingale $S = (S_t)_{t \in [0,T]}$ additional we have a set of trading strategies given by $\Pi(x)$ and a derivative $F \in \mathcal{F}_T$ which we want to price and hedge. Pricing and hedging (x, π) :

- Initial capital *x*.
- Trading strategy π ∈ Π(x), such that the value of our portfolio at time *T* is

$$X_T^{\pi,x} := x + \int_0^T \pi_t dS_t.$$

イロト 不得 とくほ とくほ とう

Different pricing methods in incomplete markets

Some methods are:

- Superhedging: $\mathbb{P}(X_T^{\pi,x} \ge F) = 1$
- Mean-variance optimal: $\mathbb{E}_{\mathbb{P}}|X_T^{\pi,x} F|^2$
- Utility indifference pricing: u(x, F) := sup_{π∈Π(x)} E_P[U(X_T^{π,x} + F)] Buyers indifferent price: p: u(x, 0) = u(x - p, F) Sellers indifferent price: s: u(x, 0) = u(x + s, -F)

Sellers indifferent price: s: u(x, 0) = u(x + s)

Minimization of risk:

Buyer:
$$\inf_{\pi \in \Pi(x)} \rho(F - X_T^{\pi,x})$$

Seller: $\inf_{\pi \in \Pi(x)} \rho(X_T^{\pi,x} - F)$

• . . .

イロト 不得 とくほ とくほとう

Trader and regulator

Model pricing and hedging of a derivative as a trade-off between trader and regulator.

- The regulator requires the traders to cover the *residual risk* via a fraction (ε < 1) of a risk measure. This serves as a *capital reserve* and contains the minimal amount of money needed, depending on the risk of the trader's portfolio.
- The trader tries to maximize her utility but has to put money aside to cover the riskiness of her position.

From the point of view of the trader: max (utility – capital reserve)

$$\sup_{\mathbf{r}\in\Pi(\mathbf{x})} \big\{ \mathbb{E}[U(X_T^{\pi,\mathbf{x}}-F)] - \varepsilon \cdot \rho(X_T^{\pi,\mathbf{x}}-F) \big\}.$$

Duality

- E topological vector space and E' its dual space.
- The conjugate F* and biconjugate F** of a convex function
 F: E → ℝ ∪ {+∞} is given by

$$F^*: E' \to \mathbb{R} \cup \{+\infty\}, \ F^*(Z) := \sup_{X \in E} \{\langle X, Z \rangle - F(X)\},$$

$$F^{**}: E \to \mathbb{R} \cup \{+\infty\}, \ F^{**}(X) := \sup_{Z \in E'} \{\langle X, Z \rangle - F^*(Z)\}.$$

• If F is convex, lower semicontinuous and proper, then

Fenchel-Moreau Theorem

$$F(X) = \sup_{Z \in E'} \{ \langle X, Z \rangle - F^*(Z) \}.$$

Ove Göttsche Option Pricing and the Cost of Risk

ч Ш Р

Dual operations

For functions $F_1, F_2 : E \to \mathbb{R} \cup \{+\infty\}$ we define the inf-convolution $F_1 \Box F_2 : E \to \mathbb{R} \cup \{+\infty\}$ by

Inf-convolution

$$F_1 \Box F_2(X) := \inf_{\substack{X_1 + X_2 = X \\ X_1, X_2 \in E}} \{F_1(X_1) + F_2(X_2)\}.$$

•
$$(\lambda F(X))^* = \lambda F^*(\lambda^{-1}X)$$
 and $(\lambda F(\lambda^{-1}X))^* = \lambda F^*(X)$.

•
$$(F_1 \Box F_2(X))^* = F_1^*(X) + F_2^*(X).$$

(F₁(X) + F₂(X))^{*} = F₁^{*}□F₂^{*}(X). This duality just holds for proper, convex and lower semicontinuous functions F₁, F₂.

ヘロト 不得 とくほ とくほとう

Convex risk measures on L^p -spaces

Föllmer, Schied (2002) for L^{∞} , *Biagini, Frittelli* (2009) for L^{p}

Definition

A L^p -convex risk measure $p \in [0, \infty]$ is a mapping

 $\rho: L^p \to \mathbb{R} \cup \{+\infty\}$ satisfying the following properties:

- Monotonicity: If $X \leq Y$, then $\rho(X) \geq \rho(Y)$.
- Translation invariance: If $m \in \mathbb{R}$, then $\rho(X + m) = \rho(X) m$.
- Convexity: $\rho(\lambda X + (1 \lambda)Y) \le \lambda \rho(X) + (1 \lambda)\rho(Y)$, for $0 \le \lambda \le 1$.
- Lower semicontinuity w.r.t $\|\cdot\|_p$.
- Normality: $\rho(0) = 0$.

イロト イ理ト イヨト イヨト

Convex risk measures on *L^p*-spaces

Dual representation

Suppose $\rho: L^p \to \mathbb{R} \cup \{+\infty\}$ is a convex risk measure. Then ρ admits the following dual representation

$$\rho(X) = \sup_{\mathbb{P}\in\mathcal{P}} \big\{ \mathbb{E}_{\mathbb{P}}[-X] - \alpha_{\rho}(\mathbb{P}) \big\}.$$

イロト イポト イヨト イヨト

Inf-convolution of risk measures

Barrieu, El Karoui (2005) for L^{∞} , *Toussaint, Sircar (2009)* for L^2 , *Arai (2010)* for L^{Φ} .

Definition

Let ρ_1, ρ_2 be L^p -convex risk measure. We define the inf-convolution of ρ_1 and ρ_2 as

$$\rho_1 \Box \rho_2(X) := \inf_{\substack{X_1, X_2 \in L^p \\ X_1 + X_2 = X}} \{ \rho_1(X_1) + \rho_2(X_2) \}.$$

イロト 不得 とくほ とくほ とう

Inf-convolution of risk measures

Dual representation

Suppose that ρ_1 and ρ_2 are L^p -convex risk measure. Then the inf-convolution $\rho_1 \Box \rho_2$ is a (proper) convex risk measure and admits the dual representation

$$\rho_1 \Box \rho_2(X) = \sup_{\mathbb{P} \in \mathcal{P}} \left\{ \mathbb{E}_{\mathbb{P}}[-X] - \alpha_{\rho_1 \Box \rho_2}(\mathbb{P}) \right\}$$

with penalty function

$$\alpha_{\rho_1 \square \rho_2}(\mathbb{P}) = \alpha_{\rho_1}(\mathbb{P}) + \alpha_{\rho_2}(\mathbb{P}).$$

イロト イポト イヨト イヨト

э

Dilated risk measures

Barrieu, El Karoui (2005)

Definition

Let ρ be a convex risk measure with penalty function α_{ρ} . The associated dilated risk measure ρ_{β} is defined by

$$ho_eta(X):=rac{1}{eta}
ho(eta X) \quad ext{ with } \quad lpha_{
ho_eta}(\mathbb{P})=rac{1}{eta}lpha_
ho(\mathbb{P}),$$

where $\beta > 0$ is the risk aversion coefficient.

Example: entropic risk measure.

ヘロト 不得 とくほ とくほとう

Trader and regulator

Assume that U is a monetary concave utility. Then we can reformulate our problem using the one-to-one correspondence between risk measures and monetary concave utilities and basic duality.

$$\sup_{\pi \in \Pi(x)} \left\{ \mathbb{E}[U(X_T^{\pi,x} - F)] - \varepsilon \cdot \rho(X_T^{\pi,x} - F) \right\}$$
$$= -\inf_{\pi \in \Pi(x)} \left\{ \rho_1(X_T^{\pi,x} - F) + \varepsilon \cdot \rho_2(X_T^{\pi,x} - F) \right\}$$

Ove Göttsche Option Pricing and the Cost of Risk

(1日) (日) (日)

Sum of risk measures

This leads to the problem

$$(\lambda_1 + \lambda_2) \cdot \phi(X) := \lambda_1 \rho_1(X) + \lambda_2 \rho_2(X),$$

for $\lambda_1, \lambda_2 > 0$ and ρ_1, ρ_2 are risk measures.

- Is ϕ a risk measure?
- If yes, how can we characterize α_{ϕ} ?

・ロト ・四ト ・ヨト ・ヨト

э

Sum of risk measures

Dual representation

Let ρ_1 and ρ_2 be two convex risk measures from $L^p \to \mathbb{R} \cup \{\infty\}$. And

$$(\lambda_1 + \lambda_2) \cdot \phi(X) := \lambda_1 \rho_1(X) + \lambda_2 \rho_2(X).$$

Then ϕ is a convex risk measure and

$$\phi(X) = \sup_{\mathbb{P} \in \mathcal{P}} \left\{ \mathbb{E}_{\mathbb{P}}[-X] - \alpha_{\phi}(\mathbb{P}) \right\}$$

with the penalty function

$$\alpha_{\phi}(\mathbb{P}) := \inf_{\substack{\mathbb{P}_{1}, \mathbb{P}_{2} \in \mathcal{P} \\ \frac{\lambda_{1}}{\lambda_{1} + \lambda_{2}} \mathbb{P}_{1} + \frac{\lambda_{2}}{\lambda_{1} + \lambda_{2}} \mathbb{P}_{2} = \mathbb{P}}} \left\{ \frac{\lambda_{1}}{\lambda_{1} + \lambda_{2}} \alpha_{\rho_{1}}(\mathbb{P}_{1}) + \frac{\lambda_{2}}{\lambda_{1} + \lambda_{2}} \alpha_{\rho_{2}}(\mathbb{P}_{2}) \right\}.$$

Proof

The sum of risk measures multiplied with positive scalars is

- monotone,
- convex,
- lower semi continuous,
- normal.

Translation invariance follows from scaling.

Dual representation

$$\phi(X) = \sup_{\mathbb{P} \in \mathcal{P}} \big\{ \mathbb{E}_{\mathbb{P}}[-X] - \alpha_{\phi}(\mathbb{P}) \big\}.$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Proof

Use dual operations to derive the penalty function.

$$\begin{split} \phi^*(X) &= \left(\lambda_1 \rho_1(X) + \lambda_2 \rho_2(X)\right)^* \\ &= \inf_{X_1 + X_2 = X} \left\{ \left(\lambda_1 \rho_1(X_1)\right)^* + \left(\lambda_2 \rho_2(X_2)\right)^* \right\} \\ &= \inf_{X_1 + X_2 = X} \left\{ \lambda_1 \rho_1^*(\lambda_1^{-1}X_1) + \lambda_2 \rho_2^*(\lambda_2^{-1}X_2) \right\} \\ &= \inf_{\lambda_1 X_1 + \lambda_2 X_2 = X} \left\{ \lambda_1 \rho_1^*(X_1) + \lambda_2 \rho_2^*(X_2) \right\}. \end{split}$$

Ove Göttsche Option Pricing and the Cost of Risk

ヘロト 人間 とくほ とくほとう

Sum of entropic risk measures

Problem 1

$$\rho_{\beta_1}(X - F) + \varepsilon \cdot \rho_{\beta_2}(X - F) = (1 + \varepsilon) \cdot \phi(X - F)$$

•
$$u(x) = -e^{-\beta_1 x}$$
,
• $\mathbb{E}[U(X)] = u^{-1}(\mathbb{E}[u(X)]) = -\frac{1}{\beta_1} \log \mathbb{E}[e^{-\beta_1 X}] = -\rho_{\beta_1}$,
• $\rho_{\beta_1}, \rho_{\beta_2}$ entropic risk measure with $\lambda_1 = 1, \lambda_2 = \varepsilon$.
 $\phi(X - F) = \sup_{\mathbb{P} \in \mathcal{P}} \left\{ \mathbb{E}_{\mathbb{P}}[F - X] - \alpha_{\phi}(\mathbb{P}) \right\}$
with optimum $\frac{d\mathbb{P}^1}{d\mu} = \left(\frac{d\mathbb{P}_2}{d\mu}\right)^{\beta_1/\beta_2} / \mathbb{E}\left[\left(\frac{d\mathbb{P}_2}{d\mu}\right)^{\beta_1/\beta_2}\right]$ for the penalty
function. Use indifference pricing.

Optimal design for entropic risk measures

Problem 2

$$\rho_{\beta_1}(X-F) + \varepsilon \cdot \phi(X-F) = (1+\varepsilon) \cdot \rho_{\beta_2}(X-F)$$

• $\rho_{\beta_1}, \rho_{\beta_2}$ entropic risk measure with $\beta_2 > \beta_1$.

$$\phi(X - F) = \sup_{\mathbb{P} \in \mathcal{P}} \left\{ \mathbb{E}_{\mathbb{P}}[F - X] - \alpha_{\phi}(\mathbb{P}) \right\}$$

with penalty function $\alpha_{\phi}(\mathbb{P}) = ?$

イロト 不得 とくほ とくほとう

Concluding remarks

Next steps:

- Optimal design.
- Numerical results.
- Dynamic formulation.
- Closure property. Find a parametric family of risk measures
 ρ_β ∈ *S* for all *β* > 0 such that

$$\frac{\lambda_1}{\lambda_1+\lambda_2}\rho_{\beta_1}+\frac{\lambda_2}{\lambda_1+\lambda_2}\rho_{\beta_2}\in S.$$

ヘロト 不同 とくほ とくほとう

э