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Overall Summary

Definitions and Notation

For any N ≥ 1:
� The collection of directed graphs on N nodes is denoted
G(N).

� The set of nodes or vertices N = {1, . . . , N} is numbered
by integers.

� The set of possible edges or links is N ×N .
� A graph E ∈ G(N) is an arbitrary subset E ⊂ N ×N .
� We write v, w, v

�,etc for vertices, �, �
� etc for links.

We also write G∞ = ∪∞N=1G(N) and B for its Borel
sigma-algebra.

Adjacency, Degrees and Types

� E ⊂ N ×N can be represented by its adjacency matrix
M(E)

Mvw(E) =

�
1 if (v, w) ∈ CE

0 if (v, w) ∈ N ×N \ E

� The in-degree deg−(v) and out-degree deg+(v) of a node v

are

deg−(v) =
�

w

Mwv(E), deg+(v) =
�

w

Mvw(E)

� deg−(�) = j if � is an in-edge of a node with in-degree j.
� deg+(�) = k if � is an out-edge of a node with out-degree k.
� v ∈ N has type (j, k) if deg−(v) = j and deg+(v) = k.
� � ∈ g has type (k, j) if deg−(�) = j and deg+(�) = k.
� j, j

�
, j
��
, . . . refer to in-degrees;

� k, k
�
, k
��
, . . . refer to out-degrees.



More Notation

For any graph E :
� Decomposition by type: nodes N = ∪jkNjk and edges
E = ∪kjEkj ;

� If v ∈ Njk write kv = k, jv = j; if � ∈ Ekj write
k� = k, j� = j.

� E+
v is the set of out-edges of a given node v.

� Also v
+
� is the node for which � is an out-edge.

� Similarly for E−v and v
−
� .

� In-neighbourhood of v: N−
v := {w ∈ N|Mwv(E) = 1}.

� Out-neighbourhood of v: N+
v := {w ∈ N|Mvw(E) = 1}.

2 Nodes and 1 Edge

Systemic Interpretations

For any systemic graph E :
� Nodes v ∈ N are “banks” or financial institutions;
� v

� ∈ N+
v means “v

� is exposed to v”;
� v

� ∈ N−
v means “v

� owes to v”;
� v

� ∈ N−
v ∩N+

v means v, v
� are mutually exposed and may

want to “net” their exposures.

Graph Functions

For any graph E of size N :
� Average degree: z = 1

N

�
v deg−(v) = 1

N

�
v deg+(v)

� Local clustering coefficient:

κ(v) =
#{� ∈ E|v+

� ∈ N+
v , v

−
� ∈ N−

v }
kvjv

� Average clustering coefficient: κ̄ = 1
N

�
v κ(v).



Random Graphs

Let (Ω,F , P) be a probability space.
� A random graph of size N is a random variable
E : Ω → G(N).

� We can also draw uniformly from the nodes and edges of
the random graph E .

� Node-type distribution: Pjk = P[v ∈ Njk].
� Edge-type distribution: Qkj = P[� ∈ Ekj ].
� Node-degree distributions: P

+
k =

�
j Pjk, P

−
j =

�
k Pjk.

� Edge-degree distributions: Q
+
k =

�
j Qkj , Q

−
j =

�
k Qkj .

� Mean degree: z =
�

jk kPjk =
�

jk jPjk.
� Complete specification of the random graph ensemble

involves choosing {Pjk, Qkj} and a full dependence
structure.

Erdös-Renyi Graphs GN,p

� This classic model of random undirected graphs of size N

arises by adding each edge independently with probability
p.

� Large N asymptotics, taking p = c/N with c fixed:
1. Poisson degrees Pk ∼ cke−c

k! .
2. Average clustering goes to zero: κ̄ ∼ o(N).
3. All average higher clustering coefficients go to zero.

� Results easily extend to the directed graph case.

Configuration Graph Construction

Let P = {Pjk} be any node-type distribution.
1. Draw N independent samples (jn, kn), n = 1, 2, . . . , N from

the P distribution.
2. To “wire” the network with nodes v1, . . . , vN with these

types, do the following loop for n = 1, 2, . . . , N :
� Take the kvn out-stubs of vn one-at-a-time, and pair each

with an in-stub chosen uniformly from the remaining
un-paired in-stubs.

This gives a generalized Erdös-Renyi random graph in the large
N limit. The edge-type distribution Q is “uncorrelated”:

Qkj = kjP
+
k P

−
j /z

2
.

Watts’ Small World Graphs

Somehow “complex adapted networks” seem to evolve into the
class of random graphs known as “Small World Networks”. In
some sense, the financial networks we see appear to have this
structure. Are they random (directed) networks with the
desired characteristics?

� Power law degree distribution “Scaling”;
� Small average “path length” or degree of separation;
� High clustering coefficient.



Barabasi-Albert Scale-free Graphs

� Power law degree distribution “Scaling”;
� Small average “path length” or degree of separation;
� High clustering coefficient.

Watts’ 2002 Cascade Model

This is a model of a social network (network of “friendships”):
the problem is to study if/how a newly introduced technology
“percolates” through the network. The basic setup is as follows

� infinite (undirected) random graph E ;
� random threshold φv ∈ [0, 1] for each node v ∈ E drawn

from distribution with CDF F (φ);
� Early adopters: initial states πv ∈ {0, 1}, where πv = 1

means v has “adopted” the technology (or else, the bank
has “defaulted”).

� The cascade proceeds through a sequence of steps, in which
each node v “adopts” (πv changes from 0 to 1) if at least
kvφv of its neighbours were in state 1 in the previous step;

Watts Main Result

Watts derives a “cascade condition” for global cascades (i.e ones
containing a positive fraction of nodes) to occur with positive
probability, starting with a randomly selected single early
adopter.

Watts Model: Details

� The random graph model is the undirected configuration
model with degree distribution Pk = P[deg(v) = k].

� Conditional degree distribution:

Qk = P[kv = k|v ∈ Nv� for some v
�] =

kPk

z
.

� Recall the conditional probability formula:
P[A|B] = P[A∩B]

P[B] .

� Initially adopting (defaulted) nodes: M = {v|πv = 1}.
� Initial probabilities: for each possible degree k,

bk := P[v ∈M|kv = k].



Watts Model: the Cascade

� We want to construct probabilities for the increasing
sequence of node-sets :

M→M1 ∪M→ · · ·→Mn ∪M→ · · ·

� Let a
n
k = P[v ∈ Dn|kv = k] for n = 1, 2, . . . , and all k.

� Note: we assume disjointness Mn ∩M = ∅ for all n ≥ 1.
� In the limit n →∞ we obtain the collection a

∞
k , and the

probabilities

P[v eventually adopts | kv = k] = bk + a
∞
k

Watts Model: Cascade Analysis

� Define “property P holds for v without regard to (WORT)
v
� ∈ Nv” means P holds in the equivalent graph with v

�

removed.
� Now define

cn := P[v ∈M ∪Mn WORT v
�|v� ∈ Nv], n = 0, 1, . . .

� Note that c0 =
�

k bkQk.
� “v ∈M ∪Mn WORT v

�” means either v ∈M or a
sufficient number of the remaining k − 1 neighbours of v

have adopted at level n− 1. By an IID condition, this
number is Binomial(k − 1, p) with p = cn−1, and using
intermediate conditioning on the RV φv we obtain:

cn =
�

k



bk + (1− bk)
k−1�

j=1

�
k − 1

j

�
c
j
n−1(1− cn−1)

k−1−j
F (j/k)



Qk

Basic Theorem on Watts’ Cascade

Theorem
For any initial “seed probabilities” b = {bk ∈ [0, 1]}k=0,1,...

1. The probability c = limn→∞ cn exists and solves the fixed

point equation c = G(c; b)

G(x; b) =
�

k



bk + (1− bk)
�

j≤k−1

�
k − 1

j

�
x

j(1− x)k−1−j
F (j/k)



Qk

2. The fraction of adopting nodes at the completion of the

Watts cascade is

ak := P[v eventually adopts | kv = k]

= bk + (1− bk)
�

j≤k

�
k

j

�
c
j(1− c)k−j

F (j/k)

Watts’ 2002 Cascade Condition

Theorem
In the infinite Watts network:

1. The probability for a single random seed (an “infinitesimal

seed”) to grow to a finite fraction of the network is positive

provided G
�(0; 0) > 1.

2. This probability is zero if G
�(0; 0) < 1.

3. Here G
�(0; 0) =

�
k k(k − 1)F (1/k)Pk/z.



Percolation

� F (1/k) = P[kvφv ≤ 1|kv = k] is the probability that a node
of degree k will adopt if only one neighbour adopts: we call
such a node “vulnerable”.

� Let V = ∪kVk be the set of vulnerable nodes and note that
P[v ∈ V] =

�
k F (1/k)Pk.

� Let S be the “giant vulnerable cluster”, i.e. the largest
connected component of V.

� Let π := P[v /∈ S WORT v
�|v� ∈ Nv]].

� Note that v /∈ S WORT v
� iff either v /∈ V or none of its

remaining k − 1 neighbours are in S.
� Then we deduce π is a fixed point of

H(x) =
�

k

�
(1− F (1/k)) + F (1/k)xk−1

�
Qk

Watts’ 2002 Percolation Condition

Theorem
In the infinite Watts network:

1. The fixed point π = 1 is stable and the giant vulnerable

cluster is finite almost surely if H
�(1) < 1

2. If H
�(1) > 1 there is a stable fixed point π

∗
< 1 , and the

fractional size of the giant vulnerable cluster is 1− π
∗
.

Moreover, the frequency that a random single seed will

trigger a global cascade is

f∗ = 1−
�

k

(π∗)k
Pk

3. Here H
�(1) = G

�(0; 0) =
�

k k(k − 1)F (1/k)Pk/z.

Gai-Kapadia 2010: “Contagion in Financial Networks”

This is a very basic model of contagion through shocks to the
asset side of the balance sheet. It is designed to mimic the
general features of the Watts 2002 Cascade Model. The
specification will consist of three levels.

� The random directed graph model for the “skeleton” of the
network;

� a specification of balance sheet values for all nodes and
edges;

� a specification of the type of initial shocks that will be
considered.

Extended GK Skeleton Graph

In Hurd-Gleeson 2011, we developed the following extended
framework.

� Directed Assortative Configuration Graph E on N ≤ ∞
nodes;

� Type and degree distributions:
� Pjk = P[v ∈ Njk];
� Qkj = P[� ∈ Ekj ];
� P

+
k = P[kv = k]; P

−
j = P[jv = j];

� Consistency Condition:

Q
+
k = P[k� = k] =

kP
+
k

z
; Q

−
j = P[j� = j] =

jP
−
j

z
.

� GK 2010 assumed Independent edge condition
Qkj = Q

+
k Q

−
j .



Balance Sheets

� For each node v:
� the external assets Yv;
� and external liabilities Zv.

� For each edge � of the network, an exposure size or weight
w�.

� The net worth or buffer of a node v is

γv = Yv +
�

�∈N−
v

w� − Zv −
�

�∈N+
v

w� .

� The GK 2010 framework only depends on partial
information:

{γv, v ∈ N} ∪ {w�, � ∈ E}.

� γv may depend on the node type (j, k) (GK 2010:
γv = 0.035);

� w� depend only on deg−(�) (GK 2010: w� = 1/(5j�))

Cascade Equilibrium

� Initially, all banks are solvent;
� meaning γv > 0 at every node v.
� γv is a buffer against balance sheet shocks.
� Equilibrium system is hit by an external shock that

“removes” a number of nodes.
� Suppose an initial set M ⊂ N of nodes become insolvent;
� M is drawn randomly, with the fraction of type (j, k)

nodes that are defaulted denoted by

ρ
0
jk := P[v ∈M|v ∈ Njk] .

The Solvency Condition

� GK “zero recovery” assumption: an insolvent bank can pay
none of its interbank credit obligations, and each insolvent
node v ∈M triggers all its out-edges � ∈ E+

v to have zero
value.

� Write D = ∪v∈ME+
v ;

� Each defaulted out-edge � ∈ D supplies an asset shock to
the creditor bank v

−
� .

� The new solvency condition on a bank v is now:

γv >

�

�∈E−v

1{�∈D}w� .

Default Cascade Steps

1. We analyze the sequence of “updates”:
�
M
D

�
→

�
M ∪M1

D ∪D1

�
→

�
M ∪M2

D ∪D2

�
· · ·→

�
M ∪Mn

D ∪Dn

�
→ . . .

where set unions are assumed to be disjoint.
2. Increasing sequences of sets:

Mn := defaulted nodes not in M “triggered” by edges in D ∪Dn−1

Dn := defaulted edges not in D “triggered” by nodes in M ∪Mn.

3. We keep track of the following sets of probabilities:

ρ
n
jk := P[v ∈Mn|v ∈ Njk]

σ
n
kj := P[� ∈ Dn|� ∈ Ekj ]

a
(n)
j := P[� ∈ Dn|j� = j]



First Result on Default Cascades

Proposition
In the infinite N extended GK model specified by (P,Q, γ, w, ρ)
the quantities ρ

n
,σ

n
, a

(n)
obey the recursion formulas:

ρ
n
jk = (1− ρ

0
jk)

j�

m=�γjk/wj�

�
j

m

�
(a(n−1)

j )m(1− a
(n−1)
j )j−m

σ
n
kj =

�
j�(ρ

n
j�kPj�k)

P
+
k

a
(n)
j =

�
k(Qkj(σ0

kj + σ
n
kj))

Q
−
j

.

Inductive Proof

To derive ρ
n given the set a(n−1) = {a(n−1)

k }k=0,1,...:
� Note

P[v ∈Mn|v ∈ Njk] = (1− ρ
0
jk)P[v ∈Mn|v ∈ Njk \M] ,

(1)
� Also that a node v ∈ Njk \M will be in default if and only

if at least Mjk in-edges to v are in Dn−1.
� By an IID property the number #{E−v ∪Dn−1} is

Bin(j, a(n−1)
j ).

� Putting these facts together gives

P[v ∈Mn|v ∈ Njk\M] =
j�

m=Mjk

�
j

m

�
(a(n−1)

j )m(1−a
(n−1)
j )j−m

Showing the steps ρ → σ and σ → a are easier.

Default Cascade Mapping

1. The sequence {a(n)}n=0,1,... satisfies a recursion

a(n+1) = G(a(n)), n = 0, 1, . . .

2. Here mapping G : (R+)Z+ → (R+)Z+ depends explicitly on
the structure of the network and the initial shock
distribution.

3. The sequence converges to a fixed point a(∞).

GK Cascade Condition

Proposition
In the infinite GK network, let the Jacobian matrix of the

mapping G be

Djj� = ∂Gj/∂aj� |�a=0,ρ0=0

=
�

k

j
�
QkjPj�k1{γj�k≤wj�}

Q
−
j P

+
k

.

and let �D� denote its spectral radius.

1. The probability that a single random seed will grow to a

finite cascade is positive provided �D� > 1

2. If �D� < 1, then the network will not exhibit large scale

cascades for almost all single random seeds.

We say the network satisfies the cascade condition if �D� > 1.



Percolation on Directed Graphs

it is well-known that the frequency of global cascades in infinite
random graphs is given by the fractional size of the so-called
in-component associated to the giant vulnerable cluster.
Define:

� A node vjk is vulnerable if γjk ≤ wj ;
� Γjk = 1{γjk≤wj}.
� N(v) is the set of vulnerable nodes, .
� Ss is the giant strongly connected set of vulnerable nodes

(the “giant vulnerable cluster”);
� Si is the set of (possibly not vulnerable) nodes that are

forward connected to Ss by a path of vulnerable nodes (the
“in-component” of the giant vulnerable cluster);

Percolation Analysis
Let π = {πk} denote the sequence of probabilities
P[v ∈ Sc

i |kv = k]
� v ∈ Sc

i and kv = k ⇐⇒ v
� ∈ Vc ∪ (Sc ∩ V) and kv = k for

all v
� ∈ N+

v ;
� Thus πk = (π̃k)k where

π̃k = P[v� ∈ Vc ∪ (Sc ∩ V)|kv = k, v
� ∈ N+

v ]

=
�

j�,k�

�
Γj�k�πk� + (1− Γj�k�)

�
P[v� ∈ Nj�k� |kv = k, v

� ∈ N+
v ]

=
�

j�,k�

�
Γj�k�πk� + (1− Γj�k�)

� Pj�k�Qkj�

P
−
j� Q

+
k

� i.e. π̃ is the fixed point of the sequence-valued function
H : [0, 1]∞ → [0, 1]∞ where

Hk(x) =
�

j�,k�

�
Γj�k�(xk�)

k� + (1− Γj�k�)
�

Pj�k�Qkj�

P
−
j� Q

+
k

GK: Theorem on Percolation

Proposition
Frequency of global cascades f is determined by the size of the

in-component of the giant strongly connected vulnerable cluster.

1. f will be positive if and only if there is a nontrivial solution

π̃ = {π̃k} of the fixed point equation x = H(x).

2. This occurs if and only if the cascade condition holds.

3. The frequency is given by f =
�

k(1− (π̃k)k)P+
k .

A Simple Random Network Model

1. We simulated networks with nodes of types
(3, 3), (3, 12), (12, 3), (12, 12) and edges of the same types.

2. For parameters a ∈ [0, 1/2] and b ∈ [0, 1/5] the following P

and Q probabilities are consistent:
�

P3,3 P3,12

P12,3 P12,12

�
=

�
1/2− a a

a 1/2− a

�
;

�
Q3,3 Q3,12

Q12,3 Q12,12

�
=

�
1/5− b b

b 4/5− b

�
.

3. We compared simulations with 500 runs to theory.
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Assortativity: Is it Important?

Haldane observes that “diversity” should be positively related
to systemic stability. Other people claim networks with
homogeneous nodes are more stable. Can we test who is right?

� Edge-assortativity: Pearson correlation of matrix Qkj ;
� Node-assortativity: Pearson correlation of matrix Pjk;
� Graph-assortativity r: Pearson correlation of matrix

Bjj� =
�

k

PjkQkj�

P
+
k

= P[jv = j, jv� = j
�|v, v

�are connected]

� How do these skeleton graph quantities relate to systemic
risk?

Model 1: More Results
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Assortativity: Test on Another Family of Networks

Networks with node types (2, 2), (4, 4), (8, 8), (16, 16) and
various Q matrices:

P =
1

15
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 , Q(q1, q2, q3, q4) =
1

4
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 ,

restricted to q1 + q2 + q3 + q4 = 1.
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Gai-Haldane-Kapadia 2011: “Complexity,
Concentration and Contagion”

This adapts the GK 2010 framework to a new cascade problem:
the hoarding of assets undertaken by stressed banks, and the
transmission of liquidity shocks to the liabilities of its
counterparties.
The basic setup is:

� A skeleton network of banks as in GK 2010;
� A refined breakdown of the banks’ balance sheets;
� Initial shocks.

Interbank Links: Repos

Overnight “collateralized” loans:
� Fully liquid assets can always be used as repo collateral

without a haircut;
� Certain other assets can be collateral with a haircut

h ∈ (0, 1);
� “Fixed assets” and unsecured interbank assets can never be

used as repo collateral.
� “Reverse repo” assets, may be “rehypothecated” to create

further repos with the same haircut.
� Repos command interest at the “repo rate”;
� Haircuts are just high enough that there is negligible

counterparty risk.

Interbank Links: Unsecured Loans

Overnight unsecured loans:
� Draw a higher interest rate (the LIBOR rate);
� Have full counterparty risk.



GHK 2011: Bank Assets

Five asset classes are considered:
� Fixed assets A

F : commercial loans and mortgages;
� Collateral assets A

C : liquid market securities;
� Reverse repo assets A

RR;
� Unsecured interbank assets A

IB;
� Liquid assets A

L: cash or treasuries.

GHK 2011: Bank Liabilities

Four liability classes are considered:
� Retail deposits L

D;
� Repos L

R;
� Unsecured interbank liabilities L

IB;
� Capital or net worth or buffer γ.

Balance Sheet (from GHK 2011) Gai-Haldane-Kapadia 2011

This paper introduces the idea that a stressed bank will begin
hoarding liquidity, thereby transmitted a liability shock to its
debtor banks. This mechanism can create liability cascades.
A liquid or unstressed bank is such that:

1. total collateral available exceeds existing repo funding...
2. plus any possible IB shock...
3. plus any balance sheet shock �.

The “liquid” condition is thus

K := A
L +(1−h)[AC +A

RR
/(1−h)]−L

R−λL
IB − � > 0. (2)



Liquidity Hoarding

A stressed bank is one with K ≤ 0. Such a bank reacts
defensively to restore liquidity in order as follows:

1. it withdraws a fraction λ ∈ (0, 1] of its IB lending;
2. it will sell fixed assets as needed.

λ (taken as a constant) is a key amplification parameter.
Pessimistically, one can take λ = 1.

GHK 2011: Network Specifications

� A directed network of N = 250 banks (statistically
homogeneous);

� Degree distribution P : either Poisson or Geometric with
variable mean z;

� λ = 1;

GHK 2011: Balance Sheet Structure

Liabilities:
� γ = 0.04A (where A = L is the total balance sheet);
� L

IB = 0.15A and IB lending links are equidistributed,
hence w� = 0.15A/k�;

� L
R = 0.2A = (1− h)[AC + A

RR
/(1− h)] (i.e. full repo

funding);
� L

D = 0.61A.
Assets:

� A
L = 0.02A;

� A
RR = 0.11A;

� A
C = 0.10A (hence h = 0.1);

� A
IB =

�
�∈E+ w� and A

F are endogenous.

GHK 2011: Computer Simulations

� Generate 1000 MC simulations of the network
� Generate several types of shocks, eg. a single random bank

gets stressed;
� Evaluate the liquidity cascade.
� Reported results: a “systemic event” leads to ≥ 25 stressed

banks.
� GHK plot frequency and impact conditioned on a systemic

event having occurred.



GHK 2011: Typical Results GHK 2011: Conclusions

� Their simulations reproduce several systemic effects that
were observed during the 07/08 crisis.

� They draw many conclusions about policy and regulation
based on their model.

� Although GHK 2011 is mathematically identical to GK
2010, they present no analytical results. (Why not?)

Open Problems: Mathematical

This graph theoretical approach has just begun. Many
accessible mathematical problems remain to be addressed:

� Stochastic Balance Sheets;
� Mixed liquidity/default cascades (i.e. combine GK +

GHK);
� Non-zero recovery at default;
� The systemic effect of asset “firesales”;
� The impact of derivatives, counterparty risk, and CDS;
� Graph theoretical measures of systemic risk.

Open Problems: Financial

The financial implications also need development:
� What systemic databases are available or will become

available?
� How can one use such data?
� How can one identify “systemically important” banks?
� What are some policy and regulatory implications of such

models?



Overall Summary

� We are beginning to understand something about how
systemic stability is related to the structure of the network;

� We might be able to learn a lot from “Deliberately
Simplified Models”.

�
� Open problems abound.

Proposition

Thanks for Attending!


