
Adjoint methods in computational finance

Mike Giles

Mathematical and Computational Finance Group,

Mathematical Institute, University of Oxford

Oxford-Man Institute of Quantitative Finance

12th Winter School on Mathematical Finance

Jan 21-23, 2013

Mike Giles (Oxford) Adjoints in finance Jan 21-23, 2013 1 / 29

Lecture outline

Mathematical foundations
I generic black-box approach
I algorithmic differentiation
I automatic differentiation software
I adjoints for higher-level linear algebra
I fixed-point iteration

PDEs and finite difference methods:
I adjoint PDEs and finite difference methods
I vanilla pricing calculation
I sensitivities for linear explicit discretisations
I nonlinear implicit discretisations
I what can go wrong?
I calibration using Fokker-Planck discretisation
I Greeks using Black-Scholes discretisation
I local volatility example

Mike Giles (Oxford) Adjoints in finance Jan 21-23, 2013 2 / 29

Lecture outline

SDEs and Monte Carlo methods:
I Monte Carlo simulation
I LRM and pathwise sensitivity approaches
I adjoint pathwise approach
I use of automatic differentiation software
I multiple payoffs
I binning and correlation Greeks
I local volatility example, revisited
I discontinuous payoffs

Mike Giles (Oxford) Adjoints in finance Jan 21-23, 2013 3 / 29

A question!

Given compatible matrices A,B,C does it matter how one computes the
product AB C? (i.e. (AB)C or A (B C) ?)

Answer 1: no, in theory, and also in practice if A,B,C are square

Answer 2: yes, in practice, if A,B,C have dimensions 1×105, 105×105,
105×105.

(
· · · · ·

)

· · · · ·
· · · · ·
· · · · ·
· · · · ·
· · · · ·

· · · · ·
· · · · ·
· · · · ·
· · · · ·
· · · · ·

Point: this is all about computational efficiency

Mike Giles (Oxford) Adjoints in finance Jan 21-23, 2013 4 / 29

A question!

Given compatible matrices A,B,C does it matter how one computes the
product AB C? (i.e. (AB)C or A (B C) ?)

Answer 1: no, in theory, and also in practice if A,B,C are square

Answer 2: yes, in practice, if A,B,C have dimensions 1×105, 105×105,
105×105.

(
· · · · ·

)

· · · · ·
· · · · ·
· · · · ·
· · · · ·
· · · · ·

· · · · ·
· · · · ·
· · · · ·
· · · · ·
· · · · ·

Point: this is all about computational efficiency

Mike Giles (Oxford) Adjoints in finance Jan 21-23, 2013 4 / 29

A question!

Given compatible matrices A,B,C does it matter how one computes the
product AB C? (i.e. (AB)C or A (B C) ?)

Answer 1: no, in theory, and also in practice if A,B,C are square

Answer 2: yes, in practice, if A,B,C have dimensions 1×105, 105×105,
105×105.

(
· · · · ·

)

· · · · ·
· · · · ·
· · · · ·
· · · · ·
· · · · ·

· · · · ·
· · · · ·
· · · · ·
· · · · ·
· · · · ·

Point: this is all about computational efficiency

Mike Giles (Oxford) Adjoints in finance Jan 21-23, 2013 4 / 29

A question!

Given compatible matrices A,B,C does it matter how one computes the
product AB C? (i.e. (AB)C or A (B C) ?)

Answer 1: no, in theory, and also in practice if A,B,C are square

Answer 2: yes, in practice, if A,B,C have dimensions 1×105, 105×105,
105×105.

(
· · · · ·

)

· · · · ·
· · · · ·
· · · · ·
· · · · ·
· · · · ·

· · · · ·
· · · · ·
· · · · ·
· · · · ·
· · · · ·

Point: this is all about computational efficiency

Mike Giles (Oxford) Adjoints in finance Jan 21-23, 2013 4 / 29

Generic black-box problem

An input vector u0 leads to a scalar output uN :

u0 - - - - �
��������

�- - - - uN

Each box could be a mathematical step (calibration, spline, pricing) or a
computer code, or one computer instruction

Key assumption: each step is (locally) differentiable

Mike Giles (Oxford) Adjoints in finance Jan 21-23, 2013 5 / 29

Generic black-box problem

Let u̇n represent the derivative of un with respect to one particular element
of input u0. Differentiating black-box processes gives

u̇n+1 = Dn u̇n, Dn ≡
∂un+1

∂un

and hence

u̇N = DN−1 DN−2 . . . D1 D0 u̇0

standard “forward mode” approach multiplies matrices from right to
left – very natural

each element of u0 requires its own sensitivity calculation – cost
proportional to number of inputs

Mike Giles (Oxford) Adjoints in finance Jan 21-23, 2013 6 / 29

Generic black-box problem

Let un be the derivative of output uN with respect to un.

un ≡
(
∂uN
∂un

)T

=

(
∂uN
∂un+1

∂un+1

∂un

)T

= DT
n un+1

and hence

u0 = DT
0 DT

1 . . . DT
N−2 DT

N−1 uN

and uN = 1.

u0 gives sensitivity of uN to all elements of un at a fixed cost, not
proportional to the size of u0

a different output would require a separate adjoint calculation; cost
proportional to number of outputs

Mike Giles (Oxford) Adjoints in finance Jan 21-23, 2013 7 / 29

Generic black-box problem

It looks easy (?) – what’s the catch?

need to do original nonlinear calculation to compute and store Dn

(or at least enough data to compute DT
n un+1) before doing adjoint

reverse pass – storage requirements can be significant for PDEs

practical implementation can be tedious if hand-coded
– use automatic differentiation tools

need care in treating black-boxes which involve a fixed point iteration

derivative may not be as accurate as original approximation

Mike Giles (Oxford) Adjoints in finance Jan 21-23, 2013 8 / 29

Automatic differentiation

We now consider a single black-box component, which is actually the
outcome of a computer program.

A computer instruction creates an additional new value:

un+1 = fn(un) ≡

(
un

fn(un)

)

A computer program is the composition of N such steps:

uN = fN−1 ◦ fN−2 ◦ . . . ◦ f1 ◦ f0(u0)

and the final output of interest is the last element of uN .

Mike Giles (Oxford) Adjoints in finance Jan 21-23, 2013 9 / 29

Automatic differentiation

In forward mode, differentiation gives

u̇n+1 = Dn u̇n, Dn ≡

(
In

∂fn/∂un

)
,

and hence
u̇N = DN−1 DN−2 . . . D1 D0 u̇0.

This is relatively intuitive – but the next step is not.

Mike Giles (Oxford) Adjoints in finance Jan 21-23, 2013 10 / 29

Automatic differentiation

In reverse mode, we have

un =
(
Dn

)T
un+1.

and hence

u0 = (D0)T (D1)T . . . (DN−2)T (DN−1)T uN

where the last element of uN is 1, and the rest are zero.

Note: need to go forward through original calculation to compute/store
the Dn, then go in reverse to compute un

Mike Giles (Oxford) Adjoints in finance Jan 21-23, 2013 11 / 29

Automatic differentiation

At the level of a single instruction

c = f (a, b)

the forward mode is ȧ

ḃ
ċ

n+1

=

 1 0
0 1
∂f
∂a

∂f
∂b

(ȧ

ḃ

)
n

and so the reverse mode is(
a

b

)
n

=

(
1 0 ∂f

∂a

0 1 ∂f
∂b

) a

b
c

n+1

Mike Giles (Oxford) Adjoints in finance Jan 21-23, 2013 12 / 29

Automatic differentiation

This gives a prescriptive algorithm for reverse mode differentiation.

an = an+1 +
∂f

∂a
cn+1 −→ a +=

∂f

∂a
c

bn = bn+1 +
∂f

∂b
cn+1 −→ b +=

∂f

∂b
c

mathematics computer program

Key observation: 1 multiply in original nonlinear calculation turns into
2 multiply-add operations in reverse mode, so at most the reverse mode
costs only a factor 4 more than the original calculation.

(This ignores the cost of memory references.)

Mike Giles (Oxford) Adjoints in finance Jan 21-23, 2013 13 / 29

Automatic differentiation

A simple example with inputs a, b, c

and ȧ, ḃ, ċ

ḋ := ȧ + ḃ

d := a + b

ė := ċ d + c ḋ

e := c d

ḟ := exp(a) ȧ

f := exp(a)

ġ := ė + ḟ

g := e + f

Mike Giles (Oxford) Adjoints in finance Jan 21-23, 2013 14 / 29

Automatic differentiation

A simple example with inputs a, b, c and ȧ, ḃ, ċ

ḋ := ȧ + ḃ

d := a + b

ė := ċ d + c ḋ

e := c d

ḟ := exp(a) ȧ

f := exp(a)

ġ := ė + ḟ

g := e + f

Mike Giles (Oxford) Adjoints in finance Jan 21-23, 2013 14 / 29

Automatic differentiation
In reverse mode, we get

d := a + b

e := c d

f := exp(a)

g := e + f

e += g

f += g

a += exp(a) f

c += d e

d += c e

a += d

b += d

Mike Giles (Oxford) Adjoints in finance Jan 21-23, 2013 15 / 29

Automatic differentiation tools

Manual implementation is possible but can be very tedious,
so automated tools have been developed, following two approaches:

operator overloading (ADOL-C, FADBAD++)

source code transformation (Tapenade, TAF/TAC++, CompAD)

Mike Giles (Oxford) Adjoints in finance Jan 21-23, 2013 16 / 29

Operator overloading
In forward mode, define a new datatype for value x and sensitivity ẋ .

Then define operators accordingly:(
x
ẋ

)
+

(
y
ẏ

)
=

(
x + y
ẋ + ẏ

)
(

x
ẋ

)
∗
(

y
ẏ

)
=

(
x y

y ẋ + x ẏ

)
(

x
ẋ

)
/

(
y
ẏ

)
=

(
x/y

(1/y) ẋ − (x/y2) ẏ

)

exp

(
x
ẋ

)
=

(
exp(x)

exp(x) ẋ

)

Note: this works as well if the sensitivity ẋ is a vector so we compute
several different sensitivities at the same time.

Mike Giles (Oxford) Adjoints in finance Jan 21-23, 2013 17 / 29

Operator overloading

Operator overloading doesn’t seem to extend naturally to reverse mode.

What is does is to make a record (referred to as a “tape”) of all
operations performed in the original calculation, and their input operands.

Then, it is possible to work backwards through the tape performing the
necessary adjoint calculations.

Typically, the performance is not great (too much data being stored and
then brought back) but it can be very useful for code validation.

Mike Giles (Oxford) Adjoints in finance Jan 21-23, 2013 18 / 29

Source code transformation

programmer supplies black-box code which takes u as input and
produces v = f (u) as output

in forward mode, AD tool generates new code which takes u and u̇ as
input, and produces v and v̇ as output

v̇ =

(
∂f

∂u

)
u̇

in reverse mode, AD tool generates new code which takes u and v as
input, and produces v and u as output

u =

(
∂f

∂u

)T

v

Mike Giles (Oxford) Adjoints in finance Jan 21-23, 2013 19 / 29

Source code transformation

Note that for any choice of u̇ and v ,

vT v̇ = vT
(
∂f

∂u

)
u̇ = uT u̇

The left hand side comes from the forward mode code which computes v̇ ;
the right hand side comes from the reverse mode code which computes u.

Checking this equality is an important validation step when developing
forward and reverse mode sensitivity code, especially when it is done by
hand, not through automatic differentation.

Mike Giles (Oxford) Adjoints in finance Jan 21-23, 2013 20 / 29

Linear algebra sensitivities

Low-level automatic differentiation is very helpful, but a high-level
approach is sometimes better (e.g. when using libraries)

Won’t go through derivation – just present results.

Notation: Ċij ≡
∂Cij

∂ input
, C ij ≡

∂ output

∂Cij

(Note: some literature defines C as the transpose)

Mike Giles (Oxford) Adjoints in finance Jan 21-23, 2013 21 / 29

Linear algebra sensitivities

For matrices/vectors A and B of compatible dimensions,

C = A + B C = AB

Ċ = Ȧ + Ḃ Ċ = Ȧ B + A Ḃ

A = C , A = C BT

B = C B = AT C

C = A−1 C = A−1B

Ċ = −C ȦC Ċ = A−1(Ḃ − Ȧ C)

A = −CT C CT B = (AT)−1 C

A = −B CT

Mike Giles (Oxford) Adjoints in finance Jan 21-23, 2013 22 / 29

Linear algebra sensitivities

One important little catch relevant to finite difference applications:
when A is a tri-diagonal matrix, and B and C are both vectors,

C = A−1B

Ċ = A−1(Ḃ − Ȧ C)

B = (AT)−1 C , A = −B CT

this gives a dense matrix A, at O(n2) cost – since A is tri-diagonal then
only the tri-diagonal elements of A need to be computed, at O(n) cost

Mike Giles (Oxford) Adjoints in finance Jan 21-23, 2013 23 / 29

Linear algebra sensitivities

Others:

matrix determinant

matrix polynomial pn(A) and exponential exp(A)

eigenvalues and eigenvectors of A,
assuming no repeated eigenvalues

SVD (singular value decomposition) of A,
assuming no repeated singular values

Cholesky factorisation of symmetric A

Most of the results are 30-40 years old, but some not widely known.

Mike Giles (Oxford) Adjoints in finance Jan 21-23, 2013 24 / 29

Fixed point iteration

Suppose a black-box computes output v from input u by solving the
nonlinear equations

f (u, v) = 0

using the fixed-point iteration

vn+1 = vn − P(u, vn) f (u, vn)

For a Newton iteration, P is the inverse Jacobian, but P could also
correspond to a multigrid cycle in an iterative solver – this is relevant
to multi-dimensional finite difference methods.

Mike Giles (Oxford) Adjoints in finance Jan 21-23, 2013 25 / 29

Fixed point iteration

A naive forward mode differentiation uses the fixed-point iteration

v̇n+1 = v̇n −
(
∂P

∂u
u̇ +

∂P

∂v
v̇n

)
f (u, vn)− P(u, vn)

(
∂f

∂u
u̇ +

∂f

∂v
v̇n

)
but it is more efficient to use

v̇n+1 = v̇n − P(u, v)

(
∂f

∂u
u̇ +

∂f

∂v
v̇n

)
to iteratively solve

∂f

∂u
u̇ +

∂f

∂v
v̇ = 0

Mike Giles (Oxford) Adjoints in finance Jan 21-23, 2013 26 / 29

Fixed point iteration

Since

v̇ = −
(
∂f

∂v

)−1 ∂f

∂u
u̇

the adjoint is

u = −
(
∂f

∂u

)T
((

∂f

∂v

)T
)−1

v =

(
∂f

∂u

)T

w

where (
∂f

∂v

)T

w + v = 0

Mike Giles (Oxford) Adjoints in finance Jan 21-23, 2013 27 / 29

Fixed point iteration

This can be solved iteratively using

wn+1 = wn − PT (u, v)

((
∂f

∂v

)T

wn + v

)

and this is guaranteed to converge (well!) since

PT (u, v)

(
∂f

∂v

)T

has the same eigenvalues as

P(u, v)
∂f

∂v

Mike Giles (Oxford) Adjoints in finance Jan 21-23, 2013 28 / 29

Final comments

forward mode sensitivity analysis is just classic linear sensitivity
analysis – very intuitive

reverse mode adjoint sensitivity analysis computes exactly
the same value, but does so much more efficiently when you
want the sensitivity of one output to many inputs

the adjoint approach is not intuitive, so don’t worry if it seems
strange – trust the mathematics, and proceed slowly

Mike Giles (Oxford) Adjoints in finance Jan 21-23, 2013 29 / 29

