Rainbow options	2D-COS	European options	Bermudan options	Heston	Concl.

Two-dimensional COS method

Marjon Ruijter

Winterschool Lunteren

22 January 2013

Rainbo	w options	2D-COS	European options	Bermudan options	Heston	Concl. ∘
Intro	duction					

- PhD student since October 2010 (Prof.dr.ir. C.W. Oosterlee).
- CWI national research center for mathematics and computer science.
- CPB Netherlands Bureau for Economic Policy Analysis.
- Impact of climate change on investments and policy decisions.
- Financial mathematics.

Centraal Planbureau

Rainbow options	2D-COS	European options	Bermudan options	Heston 0000	Concl. ○
Stochastic c	optimiza	tion - 2D			

Climate-economics problem

Two stochastic processes: temperature and capital. Goal: maximize expected utility

$$v(t, x_1, x_2) = \max_{\{a_s, C_s\}} \mathbb{E}\left[\int_t^T e^{-\rho(s-t)} U(C_s) ds \middle| \mathcal{F}_t\right].$$
(1)

 Rainbow options
 2D-COS
 European options
 Bermudan options
 Heston
 Concl.

 0000
 000
 000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 00000
 0000
 00000

Climate-economics problem

Two stochastic processes: temperature and capital. Goal: maximize expected utility

$$v(t, x_1, x_2) = \max_{\{a_s, C_s\}} \mathbb{E}\left[\int_t^T e^{-\rho(s-t)} U(C_s) ds \middle| \mathcal{F}_t\right].$$
(1)

Rainbow option pricing problem

Two stochastic processes: asset price 1 and asset price 2. Goal: maximize expected profit

$$v(t, x_1, x_2) = \max_{\tau \in [t, T]} \mathbb{E}\left[e^{-r(\tau - t)} g(X_{\tau}^1, X_{\tau}^2) \middle| \mathcal{F}_t \right].$$
(2)

 Rainbow options
 2D-COS
 European options
 Bermudan options
 Heston
 Concl.

 0000
 000
 000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 00000
 0000
 00000

Climate-economics problem

Two stochastic processes: temperature and capital. Goal: maximize expected utility

$$v(t, x_1, x_2) = \max_{\{a_s, C_s\}} \mathbb{E}\left[\int_t^T e^{-\rho(s-t)} U(C_s) ds \middle| \mathcal{F}_t\right].$$
(1)

Rainbow option pricing problem

Two stochastic processes: asset price 1 and asset price 2. Goal: maximize expected profit

$$v(t, x_1, x_2) = \max_{\tau \in [t, T]} \mathbb{E}\left[e^{-r(\tau - t)} g(X_{\tau}^1, X_{\tau}^2) \middle| \mathcal{F}_t \right].$$
(2)

The math is (almost) the same

Rainbow options	2D-COS	European options	Bermudan options	Heston 0000	Concl. ○
Table of Co	ntents				

- 1 Rainbow options
- 2 2D-COS formula
- 3 European options
- 4 Bermudan options
- 5 Heston stochastic volatility model

6 Conclusion

Rainbow options •000	2D-COS	European options	Bermudan options	Heston	Concl. ○

Financial mathematics

In financial markets, traders deal in assets and options. The payoff of an option depends on the value of the underlying asset price(s). Asset price X_t is stochastic.

Rainbow options	2D-COS	European options	Bermudan options	Heston	Concl.
0000					

Financial mathematics

In financial markets, traders deal in assets and options. The payoff of an option depends on the value of the underlying asset price(s). Asset price X_t is stochastic.

Payoff call:
$$g^{call}(x) = \max(x - K, 0)$$
 (3)

Payoff put:
$$g^{put}(x) = \max(K - x, 0)$$
 (4)

Figure 1: Payoff call and put option, strike price K = 100 (1D).

Rainbow options	2D-COS 0000000	European options	Bermudan options	Heston	Concl. ○

2 correlated asset prices

Two stochastic asset price processes, X_t^1 and X_t^2 .

Rainbow options	2D-COS	European options	Bermudan options	Heston	Concl.
0000					

2 correlated asset prices

Two stochastic asset price processes, X_t^1 and X_t^2 . For example, correlated geometric Brownian motions:

$$dX_t^1 = \mu_1 X_t^1 dt + \sigma_1 X_t^1 dW_t^1,$$
(5)

$$dX_t^2 = \mu_2 X_t^2 dt + \sigma_2 X_t^2 dW_t^2,$$
 (6)

with $dW_t^1 dW_t^2 = \rho dt$.

Rainbow options	2D-COS	European options	Bermudan options	Heston	Concl.
0000					

Payoff rainbow options

Basket option: weighted sum or average of different assets, e.g.,

$$g(x_1, x_2) = \max\left(\frac{1}{2}(x_1 + x_2) - K, 0\right).$$
(7)

Figure 2: Basket option.

Rainbow options	2D-COS	European options	Bermudan options	Heston	Concl.
0000					

Payoff rainbow options

Basket option: weighted sum or average of different assets, e.g.,

$$g(x_1, x_2) = \max\left(\frac{1}{2}(x_1 + x_2) - K, 0\right).$$
 (7)

Figure 2: Basket option. Call on maximum option:

Figure 3: Call on max. option.

$$g(x_1, x_2) = \max(\max(x_1, x_2) - K, 0).$$
(8)

European, American, and Bermudan-style

European-style: you buy the option now, wait until terminal time T, then the option may be exercised.

American-style: may be exercised at any time before the terminal time T.

Bermudan-style: fixed exercise dates t_m (m = 1, ..., M) at which you can exercise the option.

Financial mathematics: efficient computation of option price.

$$v(t_0, \mathbf{x_0}) = e^{-r\Delta t} \mathbb{E}\left[v(\mathcal{T}, \mathbf{X_T})\right].$$
(9)

Rainbow options	2D-COS ●○○○○○○	European options	Bermudan options	Heston	Concl. ○
COS metho	d				

Based on Fourier cosine series expansions.

Rainbow options	2D-COS ●○○○○○○	European options	Bermudan options	Heston 0000	Concl. ∘
COS metho	d				

Based on Fourier cosine series expansions.

Pricing financial and real options:

- European options (F. Fang, C.W. Oosterlee, 2008),
- Bermudan and American options (F. Fang, C.W. Oosterlee, 2009),
- Swing options, which are frequently used in energy markets (B. Zhang, C.W. Oosterlee, 2010),
- Asian-style options (B. Zhang, C.W. Oosterlee, 2011),
- Optimal dike height, (M.J. Ruijter, master thesis, 2010),

...

Fourier-cosine series expansion of function h(x) on [a, b]:

$$h(x) = \sum_{k=0}^{\infty} H_k \cos\left(k\pi \frac{x-a}{b-a}\right), \quad x \in [a,b], \quad (10)$$

with coefficients

$$H_k = \frac{2}{b-a} \int_a^b h(y) \cos\left(k\pi \frac{y-a}{b-a}\right) dy.$$
(11)

Fourier-cosine series expansion of function h(x) on [a, b]:

$$\hat{h}(x) = \sum_{k=0}^{N-1} H_k \cos\left(k\pi \frac{x-a}{b-a}\right), \quad x \in [a,b], \quad (10)$$

with coefficients

$$H_k = \frac{2}{b-a} \int_a^b h(y) \cos\left(k\pi \frac{y-a}{b-a}\right) dy.$$
(11)

Fourier-cosine series expansion of function h(x) on [a, b]:

$$\hat{h}(x) = \sum_{k=0}^{N-1} H_k \cos\left(k\pi \frac{x-a}{b-a}\right), \quad x \in [a,b], \quad (10)$$

with coefficients

$$H_k = \frac{2}{b-a} \int_a^b h(y) \cos\left(k\pi \frac{y-a}{b-a}\right) dy.$$
(11)

Fourier-cosine series expansion of function h(x) on [a, b]:

$$\hat{h}(x) = \sum_{k=0}^{N-1} H_k \cos\left(k\pi \frac{x-a}{b-a}\right), \quad x \in [a,b], \quad (10)$$

with coefficients

$$H_k = \frac{2}{b-a} \int_a^b h(y) \cos\left(k\pi \frac{y-a}{b-a}\right) dy.$$
(11)

Fourier-cosine series expansion of function h(x) on [a, b]:

$$\hat{h}(x) = \sum_{k=0}^{N-1} H_k \cos\left(k\pi \frac{x-a}{b-a}\right), \quad x \in [a,b], \quad (10)$$

with coefficients

$$H_k = \frac{2}{b-a} \int_a^b h(y) \cos\left(k\pi \frac{y-a}{b-a}\right) dy.$$
(11)

Fourier-cosine series expansion of function h(x) on [a, b]:

$$\hat{h}(x) = \sum_{k=0}^{N-1} H_k \cos\left(k\pi \frac{x-a}{b-a}\right), \quad x \in [a,b], \quad (10)$$

with coefficients

$$H_k = \frac{2}{b-a} \int_a^b h(y) \cos\left(k\pi \frac{y-a}{b-a}\right) dy.$$
(11)

Fourier-cosine series expansion of function h(x) on [a, b]:

$$\hat{h}(x) = \sum_{k=0}^{N-1} H_k \cos\left(k\pi \frac{x-a}{b-a}\right), \quad x \in [a,b], \quad (10)$$

with coefficients

$$H_k = \frac{2}{b-a} \int_a^b h(y) \cos\left(k\pi \frac{y-a}{b-a}\right) dy.$$
(11)

Fourier-cosine series expansion of function h(x) on [a, b]:

$$\hat{h}(x) = \sum_{k=0}^{N-1} H_k \cos\left(k\pi \frac{x-a}{b-a}\right), \quad x \in [a,b], \quad (10)$$

with coefficients

$$H_k = \frac{2}{b-a} \int_a^b h(y) \cos\left(k\pi \frac{y-a}{b-a}\right) dy.$$
(11)

Rainbow options	2D-COS ○○●○○○○	European options	Bermudan options	Heston	Concl. ○
10 000 0					

ID-COS formula

We use the COS formula to approximate expectations.

$$v(t,x) = \mathbb{E}\left[v(T,X_T)\right] = \int_{\mathbb{R}} v(T,y)f(y|x)dy$$

Rainbow options	2D-COS ○○●○○○○	European options	Bermudan options	Heston 0000	Concl. ○
1D-COS for	mula				

We use the COS formula to approximate expectations.

$$v(t,x) = \mathbb{E}\left[v(T,X_T)\right] = \int_{\mathbb{R}} v(T,y)f(y|x)dy$$
$$\approx \int_{a}^{b} v(T,y)f(y|x)dy$$

Rainbow options	2D-COS ○○●○○○○	European options	Bermudan options	Heston	Concl. ○
10 0000					

1D-COS formula

We use the COS formula to approximate expectations.

$$v(t,x) = \mathbb{E}\left[v(T,X_T)\right] = \int_{\mathbb{R}} v(T,y)f(y|x)dy$$
$$\approx \int_a^b v(T,y)f(y|x)dy$$
$$= \frac{b-a}{2}\sum_{k=0}^{\infty} V_k(T)F_k(x),$$

with coefficients

$$V_k(T) := \frac{2}{b-a} \int_a^b v(T, y) \cos\left(k\pi \frac{y-a}{b-a}\right) dy, \qquad (12)$$
$$F_k(x) := \frac{2}{b-a} \int_a^b f(y|x) \cos\left(k\pi \frac{y-a}{b-a}\right) dy. \qquad (13)$$

Exponential convergence in N for smooth density f(y|x).

11 / 29

Rainbow options	2D-COS ○○●○○○○	European options	Bermudan options	Heston	Concl. ∘
1D-COS for	mula				

We use the COS formula to approximate expectations.

$$v(t,x) = \mathbb{E}\left[v(T,X_T)\right] = \int_{\mathbb{R}} v(T,y)f(y|x)dy$$
$$\approx \int_{a}^{b} v(T,y)f(y|x)dy$$
$$\approx \frac{b-a}{2} \sum_{k=0}^{N-1} V_k(T)F_k(x),$$

with coefficients

$$V_k(T) := \frac{2}{b-a} \int_a^b v(T, y) \cos\left(k\pi \frac{y-a}{b-a}\right) dy, \qquad (12)$$
$$F_k(x) := \frac{2}{b-a} \int_a^b f(y|x) \cos\left(k\pi \frac{y-a}{b-a}\right) dy. \qquad (13)$$

Exponential convergence in N for smooth density f(y|x).

11/29

2D-COS E

European options

Bermudan options

Heston Concl.

Fourier coefficients F_k :

$$F_k(x) = \frac{2}{b-a} \int_a^b f(y|x) \cos\left(k\pi \frac{y-a}{b-a}\right) dy$$

$$\approx \frac{2}{b-a} \int_{\mathbb{R}} f(y|x) \cos\left(k\pi \frac{y-a}{b-a}\right) dy$$

(14)

2D-COS EI

European options

Bermudan options

Heston C

Concl.

Fourier coefficients F_k :

$$F_k(x) = \frac{2}{b-a} \int_a^b f(y|x) \cos\left(k\pi \frac{y-a}{b-a}\right) dy$$

$$\approx \frac{2}{b-a} \int_{\mathbb{R}} f(y|x) \cos\left(k\pi \frac{y-a}{b-a}\right) dy$$

$$= \frac{2}{b-a} \operatorname{Re}\left(\int_{\mathbb{R}} f(y|x) \exp\left(ik\pi \frac{y-a}{b-a}\right) dy\right)$$

(14)

2D-COS EI

European options

Bermudan options

Heston Concl. 0000 0

Fourier coefficients F_k :

$$F_{k}(x) = \frac{2}{b-a} \int_{a}^{b} f(y|x) \cos\left(k\pi \frac{y-a}{b-a}\right) dy$$

$$\approx \frac{2}{b-a} \int_{\mathbb{R}} f(y|x) \cos\left(k\pi \frac{y-a}{b-a}\right) dy$$

$$= \frac{2}{b-a} \operatorname{Re}\left(\int_{\mathbb{R}} f(y|x) \exp\left(ik\pi \frac{y-a}{b-a}\right) dy\right)$$

$$= \frac{2}{b-a} \operatorname{Re}\left(\varphi\left(\frac{k\pi}{b-a}\Big|x\right) e^{-ik\pi \frac{a}{b-a}}\right)$$
(14)

Characteristic function of random variable Y:

$$\varphi(u) = \mathbb{E}\left[\exp\left(iuY\right)\right] = \int_{\mathbb{R}} \exp(iuy)f(y)dy.$$
(15)

For many asset price processes the characteristic function is available.

2D-COS EI

European options

Bermudan options

 Heston
 Concl.

 0000
 0

Fourier coefficients F_k :

$$F_{k}(x) = \frac{2}{b-a} \int_{a}^{b} f(y|x) \cos\left(k\pi \frac{y-a}{b-a}\right) dy$$

$$\approx \frac{2}{b-a} \int_{\mathbb{R}} f(y|x) \cos\left(k\pi \frac{y-a}{b-a}\right) dy$$

$$= \frac{2}{b-a} \operatorname{Re}\left(\int_{\mathbb{R}} f(y|x) \exp\left(ik\pi \frac{y-a}{b-a}\right) dy\right)$$

$$= \frac{2}{b-a} \operatorname{Re}\left(\varphi\left(\frac{k\pi}{b-a}\Big|x\right) e^{-ik\pi \frac{a}{b-a}}\right)$$

$$= \frac{2}{b-a} \operatorname{Re}\left(\varphi_{levy}\left(\frac{k\pi}{b-a}\right) e^{ik\pi \frac{x-a}{b-a}}\right). \quad (14)$$

Characteristic function of random variable Y:

$$\varphi(u) = \mathbb{E}\left[\exp\left(iuY\right)\right] = \int_{\mathbb{R}} \exp(iuy)f(y)dy.$$
(15)

For many asset price processes the characteristic function is available.

Rainbow options	2D-COS ○○○○●○○	European options	Bermudan options	Heston 0000	Concl. ○
2D-COS for	mula				

In 1D:

$$v(t,x) = e^{-r\Delta t} \mathbb{E} \left[v(T, X_T) \right]$$
$$\approx \frac{b-a}{2} e^{-r\Delta t} \sum_{k=0}^{N-1} V_k(T) F_k(x).$$
(16)

In 2D:

 $v(t,\mathbf{x}) = e^{-r\Delta t} \mathbb{E}\left[v(T,\mathbf{X}_T)\right]$

Rainbow options	2D-COS ○○○○●○○	European options	Bermudan options	Heston 0000	Concl. ○
2D-COS for	mula				

In 1D:

$$v(t,x) = e^{-r\Delta t} \mathbb{E} \left[v(T, X_T) \right]$$
$$\approx \frac{b-a}{2} e^{-r\Delta t} \sum_{k=0}^{N-1} V_k(T) F_k(x).$$
(16)

In 2D:

 $v(t,\mathbf{x}) = e^{-r\Delta t} \mathbb{E}\left[v(T,\mathbf{X}_T)\right]$

Rainbow options	2D-COS ○○○○●○○	European options	Bermudan options	Heston 0000	Concl. ○
2D-COS for	mula				

In 1D:

$$v(t,x) = e^{-r\Delta t} \mathbb{E} \left[v(T, X_T) \right]$$
$$\approx \frac{b-a}{2} e^{-r\Delta t} \sum_{k=0}^{N-1} V_k(T) F_k(x).$$
(16)

In 2D:

$$v(t, \mathbf{x}) = e^{-r\Delta t} \mathbb{E} \left[v(T, \mathbf{X}_T) \right]$$

= $e^{-r\Delta t} \int_{\mathbb{R}} v(T, \mathbf{y}) f(\mathbf{y} | \mathbf{x}) d\mathbf{y}$
 $\approx \frac{b_1 - a_1}{2} \frac{b_2 - a_2}{2} e^{-r\Delta t} \sum_{k_1 = 0}^{N_1 - 1} \sum_{k_2 = 0}^{N_2 - 1} V_{k_1, k_2}(T) F_{k_1, k_2}(\mathbf{x}).$ (17)

This can be extended to higher dimensions.

$$F_{k_1,k_2}(\mathbf{x}) \approx \frac{2}{b_1 - a_1} \frac{2}{b_2 - a_2} \iint_{\mathbb{R}^2} f(\mathbf{y}|\mathbf{x}) \cos\left(k_1 \pi \frac{y_1 - a_1}{b_1 - a_1}\right) \cos\left(k_2 \pi \frac{y_2 - a_2}{b_2 - a_2}\right) dy_1 dy_2.$$
(18)

$$F_{k_1,k_2}(\mathbf{x}) \approx \frac{2}{b_1 - a_1} \frac{2}{b_2 - a_2} \iint_{\mathbb{R}^2} f(\mathbf{y}|\mathbf{x}) \cos\left(k_1 \pi \frac{y_1 - a_1}{b_1 - a_1}\right) \cos\left(k_2 \pi \frac{y_2 - a_2}{b_2 - a_2}\right) dy_1 dy_2.$$
(18)

We use the following goniometric relation:

$$2\cos(\alpha)\cos(\beta) = \cos(\alpha + \beta) + \cos(\alpha - \beta).$$
(19)

$$F_{k_1,k_2}(\mathbf{x}) \approx \frac{2}{b_1 - a_1} \frac{2}{b_2 - a_2} \iint_{\mathbb{R}^2} f(\mathbf{y}|\mathbf{x}) \cos\left(k_1 \pi \frac{y_1 - a_1}{b_1 - a_1}\right) \cos\left(k_2 \pi \frac{y_2 - a_2}{b_2 - a_2}\right) dy_1 dy_2.$$
(18)

We use the following goniometric relation:

$$2\cos(\alpha)\cos(\beta) = \cos(\alpha + \beta) + \cos(\alpha - \beta).$$
(19)

Then

$$2F_{k_1,k_2}(\mathbf{x}) = F_{k_1,k_2}^+(\mathbf{x}) + F_{k_1,k_2}^-(\mathbf{x}), \tag{20}$$

where

$$F_{k_1,k_2}^{\pm}(\mathbf{x}) := \frac{2}{b_1 - a_1} \frac{2}{b_2 - a_2} \iint_{\mathbb{R}^2} f(\mathbf{y}|\mathbf{x}) \cos\left(k_1 \pi \frac{y_1 - a_1}{b_1 - a_1} \pm k_2 \pi \frac{y_2 - a_2}{b_2 - a_2}\right) dy_1 dy_2$$

$$F_{k_1,k_2}(\mathbf{x}) \approx \frac{2}{b_1 - a_1} \frac{2}{b_2 - a_2} \iint_{\mathbb{R}^2} f(\mathbf{y}|\mathbf{x}) \cos\left(k_1 \pi \frac{y_1 - a_1}{b_1 - a_1}\right) \cos\left(k_2 \pi \frac{y_2 - a_2}{b_2 - a_2}\right) dy_1 dy_2.$$
(18)

We use the following goniometric relation:

$$2\cos(\alpha)\cos(\beta) = \cos(\alpha + \beta) + \cos(\alpha - \beta).$$
(19)

Then

$$2F_{k_1,k_2}(\mathbf{x}) = F_{k_1,k_2}^+(\mathbf{x}) + F_{k_1,k_2}^-(\mathbf{x}),$$
(20)

where

$$\begin{aligned} F_{k_1,k_2}^{\pm}(\mathbf{x}) &:= \frac{2}{b_1 - a_1} \frac{2}{b_2 - a_2} \iint_{\mathbb{R}^2} f(\mathbf{y}|\mathbf{x}) \cos\left(k_1 \pi \frac{y_1 - a_1}{b_1 - a_1} \pm k_2 \pi \frac{y_2 - a_2}{b_2 - a_2}\right) dy_1 dy_2 \\ &= \frac{2}{b_1 - a_1} \frac{2}{b_2 - a_2} \operatorname{Re}\left(\iint_{\mathbb{R}^2} f(\mathbf{y}|\mathbf{x}) \exp\left(ik_1 \pi \frac{y_1 - a_1}{b_1 - a_1} \pm ik_2 \pi \frac{y_2 - \pm a_2}{b_2 - a_2}\right) dy_1 dy_2 \right) \end{aligned}$$

(21)

$$F_{k_1,k_2}(\mathbf{x}) \approx \frac{2}{b_1 - a_1} \frac{2}{b_2 - a_2} \iint_{\mathbb{R}^2} f(\mathbf{y}|\mathbf{x}) \cos\left(k_1 \pi \frac{y_1 - a_1}{b_1 - a_1}\right) \cos\left(k_2 \pi \frac{y_2 - a_2}{b_2 - a_2}\right) dy_1 dy_2.$$
(18)

We use the following goniometric relation:

$$2\cos(\alpha)\cos(\beta) = \cos(\alpha + \beta) + \cos(\alpha - \beta).$$
(19)

Then

$$2F_{k_1,k_2}(\mathbf{x}) = F_{k_1,k_2}^+(\mathbf{x}) + F_{k_1,k_2}^-(\mathbf{x}),$$
(20)

where

$$\begin{aligned} F_{k_{1},k_{2}}^{\pm}(\mathbf{x}) &:= \frac{2}{b_{1}-a_{1}} \frac{2}{b_{2}-a_{2}} \iint_{\mathbb{R}^{2}} f(\mathbf{y}|\mathbf{x}) \cos\left(k_{1}\pi \frac{y_{1}-a_{1}}{b_{1}-a_{1}} \pm k_{2}\pi \frac{y_{2}-a_{2}}{b_{2}-a_{2}}\right) dy_{1} dy_{2} \\ &= \frac{2}{b_{1}-a_{1}} \frac{2}{b_{2}-a_{2}} \operatorname{Re}\left(\iint_{\mathbb{R}^{2}} f(\mathbf{y}|\mathbf{x}) \exp\left(ik_{1}\pi \frac{y_{1}-a_{1}}{b_{1}-a_{1}} \pm ik_{2}\pi \frac{y_{2}-\pm a_{2}}{b_{2}-a_{2}}\right) dy_{1} dy_{2}\right) \\ &= \frac{2}{b_{1}-a_{1}} \frac{2}{b_{2}-a_{2}} \operatorname{Re}\left(\varphi\left(\frac{k_{1}\pi}{b_{1}-a_{1}}, \pm \frac{k_{2}\pi}{b_{2}-a_{2}}\right|\mathbf{x}\right) \exp\left(-ik_{1}\pi \frac{a_{1}}{b_{1}-a_{1}} \mp ik_{2}\pi \frac{a_{2}}{b_{2}-a_{2}}\right)\right) \end{aligned}$$

 Rainbow options
 2D-COS
 European options
 Bermudan options
 Heston
 Concl.

 0000
 0000000
 000
 000000
 00000
 00000
 0

Approximate the terminal coefficients $V_{k_1,k_2}(T)$ with DCTs. Take $Q \ge \max[N_1, N_2]$ grid-points and

$$y_i^{n_i} := a_i + (n_i + \frac{1}{2}) \frac{b_i - a_i}{Q}$$
 and $\Delta y_i := \frac{b_i - a_i}{Q}$, $i = 1, 2.$ (22)

 Rainbow options
 2D-COS
 European options
 Bermudan options
 Heston
 Concl.

 0000
 000000
 000
 000000
 000000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Approximate the terminal coefficients $V_{k_1,k_2}(T)$ with DCTs. Take $Q \ge \max[N_1, N_2]$ grid-points and

$$y_i^{n_i} := a_i + (n_i + \frac{1}{2}) \frac{b_i - a_i}{Q}$$
 and $\Delta y_i := \frac{b_i - a_i}{Q}$, $i = 1, 2.$ (22)

The midpoint-rule integration gives us

$$\begin{aligned} V_{k_1,k_2}(T) \\ &= \frac{2}{b_1 - a_1} \frac{2}{b_2 - a_2} \int_{a_2}^{b_2} \int_{a_1}^{b_1} g(\mathbf{y}) \cos\left(k_1 \pi \frac{y_1 - a_1}{b_1 - a_1}\right) \cos\left(k_2 \pi \frac{y_2 - a_2}{b_2 - a_2}\right) dy_1 dy_2 \\ &\approx \sum_{n_1 = 0}^{Q-1} \sum_{n_2 = 0}^{Q-1} g(y_1^{n_1}, y_2^{n_2}) \cos\left(k_1 \pi \frac{2n_1 + 1}{2Q}\right) \cos\left(k_2 \pi \frac{2n_2 + 1}{2Q}\right) \frac{b_1 - a_1}{Q} \frac{b_2 - a_2}{Q}. \end{aligned}$$

The above 2D-DCT can be calculated efficiently by, for example, MATLAB's function dct2.

Results - European options

Results geometric basket call under correlated geometric Brownian motion, $v(t_0, \mathbf{x}_0) = 8.8808$.

Rainbow options	2D-COS 0000000	European options ○●○	Bermudan options	Heston 0000	Concl. ∘
1 1100					

Jump-diffusion process

The log-jump-diffusion process

$$dS_t^i = (r - \lambda \mathbb{E}[e^{J_i} - 1])S_t^i dt + \sigma_i S_t^i dW_t^i + S_t^i (e^{J_i} - 1)dq_t, \quad (23)$$

with q_t a Poisson process with intensity λ , and $\mathbf{J} = (J_1, J_2)$ bivariate normally distributed jumps.

Figure 4: Density recovery $\hat{f}(\mathbf{X}_T | \mathbf{x}_0)$.

Rainbow options	2D-COS 0000000	European options	Bermudan options	Heston	Concl. ○

Jump-diffusion process

The log-jump-diffusion process

$$dS_t^i = (r - \lambda \mathbb{E}[e^{J_i} - 1])S_t^i dt + \sigma_i S_t^i dW_t^i + S_t^i (e^{J_i} - 1)dq_t, \quad (23)$$

with q_t a Poisson process with intensity λ , and $\mathbf{J} = (J_1, J_2)$ bivariate normally distributed jumps.

Table 2: Put-on-min option values $\hat{v}(t_0, \mathbf{x}_0)$ ($N_1 = N_2 = 125$), they correspond to value in (Clift, 2008).

S_0^1	90	100	110
90	15.6916	13.4073	12.1305
100	12.1918	9.1360	7.5175
110	10.3853	6.7274	4.8337

Rainbow options	2D-COS	European options	Bermudan options	Heston	Concl.
		000			

Spark spread option - 3D

3-dimensional GBM $\mathbf{S}_t = [S_t^{power}, S_t^{gas}, S_t^{CO_2}]$. Spark spread: net revenue from selling power. Payoff :

$$g(\mathbf{S}_{T}) = \Omega \max \left(S_{T}^{power} - \alpha^{g} S_{T}^{gas} - \alpha^{CO_{2}} S_{T}^{CO_{2}} - K, \mathbf{0} \right).$$

Rainbow options	2D-COS	European options	Bermudan options	Heston	Concl.
		000			

Spark spread option - 3D

3-dimensional GBM $\mathbf{S}_t = [S_t^{power}, S_t^{gas}, S_t^{CO_2}]$. Spark spread: net revenue from selling power. Payoff :

$$g(\mathbf{S}_{T}) = \Omega \max \left(S_{T}^{power} - \alpha^{g} S_{T}^{gas} - \alpha^{CO_{2}} S_{T}^{CO_{2}} - K, 0 \right).$$

Rainbow options	2D-COS	European options	Bermudan options	Heston	Concl.
		000			

Spark spread option - 3D

3-dimensional GBM $\mathbf{S}_t = [S_t^{power}, S_t^{gas}, S_t^{CO_2}]$. Spark spread: net revenue from selling power. Payoff :

$$g(\mathbf{S}_{T}) = \Omega \max \left(S_{T}^{power} - \alpha^{g} S_{T}^{gas} - \alpha^{CO_{2}} S_{T}^{CO_{2}} - K, 0 \right).$$

		$v(t_0, \mathbf{S}_0)$					(s)
		N				Ν	
Q	20	40	60		20	40	60
50	294830.89	294893.01	n/a		0.02	0.07	n/a
100	294818.38	294883.93	294883.93		0.16	0.20	0.32
150	294816.68	294882.82	294882.82		0.58	0.60	0.78
200	294816.30	294882.65	294882.65		1.72	1.74	1.87
250	294816.45	294882.88	294882.88		3.88	3.87	3.98

Calculation of the option's Greeks is straightforward.

Rainbow options	2D-COS	European options	Bermudan options	Heston	Concl.
			000000		

Bermudan options

Bermudan option: fixed exercise dates t_m (m = 1, ..., M) at which you can either exercise the option or continue. Option value in 1D:

$$v(t_m, x) = \max[g(x), c(t_m, x)].$$
 (24)

Rainbow options	2D-COS	European options	Bermudan options	Heston	Concl.
			000000		

Bermudan options

Bermudan option: fixed exercise dates t_m (m = 1, ..., M) at which you can either exercise the option or continue. Option value in 1D:

$$v(t_m, x) = \max[g(x), c(t_m, x)].$$
 (24)

Coefficients V_k at time t_m :

$$V_k(t_m) := \frac{2}{b-a} \int_a^b v(t_m, y) \cos\left(k\pi \frac{y-a}{b-a}\right) dy.$$
 (25)

Rainbow options	2D-COS	European options	Bermudan options	Heston	Concl.
			00000		

Bermudan options

Bermudan option: fixed exercise dates t_m (m = 1, ..., M) at which you can either exercise the option or continue. Option value in 1D:

$$v(t_m, x) = \max[g(x), c(t_m, x)].$$
 (24)

Coefficients V_k at time t_m :

$$V_k(t_m) := \frac{2}{b-a} \int_a^b v(t_m, y) \cos\left(k\pi \frac{y-a}{b-a}\right) dy.$$
 (25)

Rainbow opt	tions	2D-COS 0000000	European options	Bermudan options ○●○○○○	Heston	oncl. ⊳

Bermudan option - 2D

Coefficients V_{k_1,k_2} at time t_m :

$$V_{k_1,k_2}(t_m) := \int_{a_2}^{b_2} \int_{a_1}^{b_1} v(t_m,\mathbf{y}) \cos\left(k_1 \pi \frac{y_1 - a_1}{b_1 - a_1}\right) \cos\left(k_2 \pi \frac{y_2 - a_2}{b_2 - a_2}\right) dy_1 dy_2$$

with

$$v(t_m, \mathbf{x}) = \max[g(\mathbf{x}), c(t_m, \mathbf{x})].$$
(26)

Rainbow options	2D-COS 0000000	European options	Bermudan options ○●○○○○	Heston 0000	Concl. ∘

Bermudan option - 2D

Coefficients V_{k_1,k_2} at time t_m :

$$V_{k_1,k_2}(t_m) := \int_{a_2}^{b_2} \int_{a_1}^{b_1} v(t_m,\mathbf{y}) \cos\left(k_1 \pi \frac{y_1 - a_1}{b_1 - a_1}\right) \cos\left(k_2 \pi \frac{y_2 - a_2}{b_2 - a_2}\right) dy_1 dy_2$$

with

$$v(t_m, \mathbf{x}) = \max[g(\mathbf{x}), c(t_m, \mathbf{x})].$$
(26)

Left: Optimal exercise domains (blue) and continuation domains (green) at initial time t_0 .

J rectangular sub-domains.

Figure 5: Equidistant grid.

Rainbow options	2D-COS	European options	Bermudan options	Heston	Concl. ○
F 10 C			1.1		

Equidistant vs. non-equidistant grid

Figure 5: Equidistant grid.

Figure 6: Non-equidistant grid.

Rainbow options	2D-COS	European options	Bermudan options	Heston	Concl. ○

Recursive recovery

$$\begin{aligned} V_{k_1,k_2}(t_m) &= \int_{a_2}^{b_2} \int_{a_1}^{b_1} v(t_m,\mathbf{y}) \cos\left(k_1 \pi \frac{y_1 - a_1}{b_1 - a_1}\right) \cos\left(k_2 \pi \frac{y_2 - a_2}{b_2 - a_2}\right) dy_1 dy_2 \\ &= \sum_p \iint_{\mathcal{G}^p} g(\mathbf{y}) \cos\left(k_1 \pi \frac{y_1 - a_1}{b_1 - a_1}\right) \cos\left(k_2 \pi \frac{y_2 - a_2}{b_2 - a_2}\right) d\mathbf{y} \\ &+ \sum_q \iint_{\mathcal{C}^q} c(t_m,\mathbf{y}) \cos\left(k_1 \pi \frac{y_1 - a_1}{b_1 - a_1}\right) \cos\left(k_2 \pi \frac{y_2 - a_2}{b_2 - a_2}\right) d\mathbf{y} \end{aligned}$$

Rainbow options	2D-COS	European options	Bermudan options	Heston	Concl. ○

Recursive recovery

$$\begin{split} V_{k_1,k_2}(t_m) &= \int_{a_2}^{b_2} \int_{a_1}^{b_1} v(t_m,\mathbf{y}) \cos\left(k_1 \pi \frac{y_1 - a_1}{b_1 - a_1}\right) \cos\left(k_2 \pi \frac{y_2 - a_2}{b_2 - a_2}\right) dy_1 dy_2 \\ &= \sum_p \iint_{\mathcal{G}^p} g(\mathbf{y}) \cos\left(k_1 \pi \frac{y_1 - a_1}{b_1 - a_1}\right) \cos\left(k_2 \pi \frac{y_2 - a_2}{b_2 - a_2}\right) d\mathbf{y} \\ &+ \sum_q \iint_{\mathcal{C}^q} \hat{c}(t_m,\mathbf{y}) \cos\left(k_1 \pi \frac{y_1 - a_1}{b_1 - a_1}\right) \cos\left(k_2 \pi \frac{y_2 - a_2}{b_2 - a_2}\right) d\mathbf{y} \end{split}$$

Rainbow options	2D-COS	European options	Bermudan options	Heston	Concl. ○

Recursive recovery

$$\begin{split} V_{k_1,k_2}(t_m) &= \int_{a_2}^{b_2} \int_{a_1}^{b_1} v(t_m,\mathbf{y}) \cos\left(k_1 \pi \frac{y_1 - a_1}{b_1 - a_1}\right) \cos\left(k_2 \pi \frac{y_2 - a_2}{b_2 - a_2}\right) dy_1 dy_2 \\ &= \sum_p \iint_{\mathcal{G}^p} g(\mathbf{y}) \cos\left(k_1 \pi \frac{y_1 - a_1}{b_1 - a_1}\right) \cos\left(k_2 \pi \frac{y_2 - a_2}{b_2 - a_2}\right) d\mathbf{y} \\ &+ \sum_q \iint_{\mathcal{C}^q} \hat{c}(t_m,\mathbf{y}) \cos\left(k_1 \pi \frac{y_1 - a_1}{b_1 - a_1}\right) \cos\left(k_2 \pi \frac{y_2 - a_2}{b_2 - a_2}\right) d\mathbf{y} \end{split}$$

The resulting matrix-vector products $M\mathbf{u}$ can be computed efficiently by a Fourier-based algorithm. The computation time achieved is $O(N \log_2 N)$.

Rainbow options	2D-COS 0000000	European options	Bermudan options ००००●०	Heston 0000	Concl. ○	
Algorithm						

2D-COS method for pricing Bermudan rainbow options **Initialisation:** Calculate coefficients $V_{k_1,k_2}(t_M)$. **Main loop to recover** $\hat{V}(t_m)$: For m = M - 1 to 1:

 Determine the optimal continuation regions C^q and early-exercise regions G^p.

• Compute $\hat{V}(t_m)$ with the help of the FFT algorithm.

Final step: Compute $\hat{v}(t_0, \mathbf{x}_0)$ by inserting $\hat{V}_{k_1,k_2}(t_1)$ into COS formula.

Rainbow options	2D-COS	European options	Bermudan options	Heston	Concl. ○
Results Ber	mudan c	option			

Error geometric basket option under GBM. N_1 is number of terms in series expansion ($N_2 = N_1$). J is number of sub-domains.

Rainbov 0000	w opt	ions	2D-COS	5	European option	ns	Bermudan options	Heston 0000	Concl. ∘	
_		_								

Results Bermudan option

Error geometric basket option under GBM.

 N_1 is number of terms in series expansion ($N_2 = N_1$).

J is number of sub-domains.

Rainbo 0000	ow op	tions	2D-COS 0000000	European options	Bermudan options ○○○○○●	Heston 0000	Concl. ○	
		_						

Results Bermudan option

Error geometric basket option under GBM. N_1 is number of terms in series expansion ($N_2 = N_1$). J is number of sub-domains.

Call on maximum option

		Andersen (2004)	Shashi
\mathbf{S}_0	2D-COS	Binomial	SGM Direct
90	8.073	8.075	8.079 (0.005)
100	13.902	13.902	13.907(0.007)
110	21.344	21.345	21.356(0.011)

Table 3: Results call-on-max (GBM).

Rainbow options	2D-COS	European options	Bermudan options	Heston ●०००	Concl. ∘

Heston model

 X_t represents the asset price process and ν_t is the variance process, with $(dW_t^1 dW_t^2 = \rho dt)$

$$dX_t = (r - \frac{1}{2}\nu_t)X_t dt + \sqrt{\nu_t}X_t dW_t^1,$$

$$d\nu_t = \kappa(\bar{\nu} - \nu_t)dt + \eta\sqrt{\nu_t}dW_t^2.$$
(27)

Rainbow options	2D-COS	European options	Bermudan options	Heston ●०००	Concl. ○

Heston model

 X_t represents the asset price process and ν_t is the variance process, with $(dW_t^1 dW_t^2 = \rho dt)$

$$dX_t = (r - \frac{1}{2}\nu_t)X_t dt + \sqrt{\nu_t}X_t dW_t^1,$$

$$d\nu_t = \kappa(\bar{\nu} - \nu_t)dt + \eta\sqrt{\nu_t}dW_t^2.$$
(27)

Rainbow options	2D-COS	European options	Bermudan options	Heston ●०००	Concl. ○	

Heston model

 X_t represents the asset price process and ν_t is the variance process, with $(dW_t^1 dW_t^2 = \rho dt)$

$$dX_t = (r - \frac{1}{2}\nu_t)X_t dt + \sqrt{\nu_t}X_t dW_t^1,$$

$$d\nu_t = \kappa(\bar{\nu} - \nu_t)dt + \eta\sqrt{\nu_t}dW_t^2.$$
(27)

The variance process remains strictly positive if the Feller condition is satisfied, $2\kappa \bar{u}/\eta^2 - 1 := q_{Feller} \ge 0$, otherwise it may reach zero.
 Rainbow options
 2D-COS
 European options
 Bermudan options
 Heston
 Concl.

 0000
 000000
 000
 000000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

European option, with Bermudan framework

 $\mathcal{M}=12$ time steps.

 Rainbow options
 2D-COS
 European options
 Bermudan options
 Heston
 Concl.

 0000
 0000000
 000
 0000000
 000000
 0
 0
 0

European option, with Bermudan framework

 $\mathcal{M}=12$ time steps.

	Feller satisfied $(q_{Feller} = 0.98)$, $v = 0.50147$.							
			N ₂					
		50	100	150	200			
	50	-1.01e-4	-1.03e-5	-1.20e-6	1.02e-6			
Λ/	100	-1.07e-4	-1.63e-5	-7.13e-6	-4.90e-6			
111	150	-1.07e-4	-1.62e-5	-7.09e-6	-4.86е-б			

European option, with Bermudan framework

 $\mathcal{M} = 12$ time steps.

	Feller satisfied $(q_{Feller} = 0.98)$, $v = 0.50147$.								
		<i>N</i> ₂							
		50	100	150	200				
	50	-1.01e-4	-1.03e-5	-1.20e-6	1.02e-6				
Λ/	100	-1.07e-4	-1.63e-5	-7.13e-6	-4.90e-6				
<i>N</i> ₁	150	-1.07e-4	-1.62e-5	-7.09e-6	-4.86e-6				
		I							
	Felle	r not satisfi	ed (<i>q_{Feller} =</i>	= -0.47), v	y = 3.1325.				
				N ₂					
		50	100	150	200				
	50	3.83e-4	2.05e-4	1.27e-4	8.94e-5				
Λ/	100	3.75e-4	1.95e-4	1.17e-4	7.90e-5				
/V ₁	150	27501	105.4	1 17~ /	7 00 ° E				

150 3.75e-4 1.95e-4 1.17e-4 7.90e-5

Rainbow options	2D-COS	European options	Bermudan options	Heston	Concl.
				0000	

	Feller not satisfied ($q_{Feller} = -0.84$), $v = 6.271$.						
		N ₂					
		400	600	800	1000		
	50	5.53e-2	3.35e-2	2.29e-2	1.67e-2		
N	100	5.56e-2	3.45e-2	2.44e-2	1.84e-2		
/1/1	150	5.61e-2	3.51e-2	2.49e-2	1.90e-2		

Rainbow options	2D-COS	European options	Bermudan options	Heston ○○○●	Concl. ∘		

Bermudan put option

	Feller satisfied $(q_{Feller} = 0.98)$							
			Λ	I_2				
		40	60	80	100			
	40	0.517765	0.517868	0.517893	0.517902			
N	60	0.517175	0.517284	0.517311	0.517320			
111	80	0.517020	0.517129	0.517155	0.517165			
	100	0.517007	0.517116	0.517142	0.517152			

Rainbow options	2D-COS	European options	Bermudan options	Heston ○○○●	Concl. ○		

Bermudan put option

	Feller satisfied $(q_{Feller} = 0.98)$							
		N ₂						
		40	60	80	100			
	40	0.517765	0.517868	0.517893	0.517902			
N	60	0.517175	0.517284	0.517311	0.517320			
/1/1	80	0.517020	0.517129	0.517155	0.517165			
	100	0.517007	0.517116	0.517142	0.517152			
		Feller not	satisfied (q	$F_{eller} = -0.4$	47)			
		N ₂						
		40	60	80	100			
	40	3.200829	3.200768	3.200705	3.200660			
Λ/	60	3.199089	3.199032	3.198971	3.198929			
/v ₁	80	3.199124	3.199068	3.199008	3.198966			

Rainbow options	2D-COS	European options	Bermudan options	Heston	Concl. ●		
Summary and conclusion							

- COS method is based on Fourier-cosine series expansion.
- Exponential convergence for $f \in C^{\infty}$.
- Can be extended to higher dimensions for pricing rainbow options.
- Experiments with financial and spark options.
- Heston stochastic volatility model.

Future research

- Higher dimensions,
- Gibbs phenomenon and filters,
- Asian options.

Contact: m.j.ruijter@cwi.nl