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Model Primitives

Present date t = 0 and a future date t = 1

Randomness described by (Ω,F ,P) at t = 1

An atomless pricing kernel (or state-price density or stochastic
discount factor) ρ̃ so that any future payoff X̃ is evaluated as
E[ρ̃X̃] at present

An agent with

initial endowment x0 > 0 at t = 0
preference specified by RDUT pair (u,w)

... wants to choose future consumption (wealth) c̃
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Portfolio/Consumption Choice Model under RDUT

The model

Max
c̃

V (c̃) =
∫∞

0 w (P (u(c̃) > x)) dx

subject to E[ρ̃c̃] ≤ x0, c̃ ≥ 0
(RDUT)
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problem is called well-posed) or +∞ (ill-posed)
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Formulation of RDUT Portfolio Choice Model

Issues Related to the Model

Feasibility: whether there is at least one solution satisfying all
the constraints

Well-posedness: whether the supremum value of the problem
with a non-empty feasible set is finite (in which case the
problem is called well-posed) or +∞ (ill-posed)

Attainability: whether a well-posed problem admits an optimal
solution

Uniqueness: whether an attainable problem has a unique
optimal solution
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EUT Model Revisited

Let w(p) = p

The model

Max
c̃

V (c̃) =
∫∞

0 P (u(c̃) > x) dx ≡ E[u(c̃)]

subject to E[ρ̃c̃] ≤ x0, c̃ ≥ 0
(EUT)
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Lagrange: Maxc̃ E[u(c̃)− λρ̃c̃]
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EUT Model Revisited

Let w(p) = p

The model

Max
c̃

V (c̃) =
∫∞

0 P (u(c̃) > x) dx ≡ E[u(c̃)]

subject to E[ρ̃c̃] ≤ x0, c̃ ≥ 0
(EUT)

Lagrange: Maxc̃ E[u(c̃)− λρ̃c̃]

First-order condition: c̃∗ = (u′)−1 (λρ̃)

Determine λ: E[ρ̃(u′)−1 (λρ̃)] = x0

Karatzas and Shreve (1998), Jin, Xu and Zhou (2008)
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Properties of EUT Solution

c̃∗ = (u′)−1 (λρ̃)

Assume Inada condition: u′(0+) = ∞, u′(∞) = 0

c̃∗ ∈ (0,+∞)
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Properties of EUT Solution

c̃∗ = (u′)−1 (λρ̃)

Assume Inada condition: u′(0+) = ∞, u′(∞) = 0

c̃∗ ∈ (0,+∞)

c̃∗ is a non-increasing function of ρ̃ – anti-comonotonic with ρ̃
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Challenges under RDUT

The model

Max
c̃

V (c̃) =
∫∞

0 w (P (u(c̃) > x)) dx

subject to E[ρ̃c̃] ≤ x0, c̃ ≥ 0
(RDUT)
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Formulation of RDUT Portfolio Choice Model

Challenges under RDUT

The model

Max
c̃

V (c̃) =
∫∞

0 w (P (u(c̃) > x)) dx

subject to E[ρ̃c̃] ≤ x0, c̃ ≥ 0
(RDUT)

u is assumed to be concave

w is in general non-convex/non-concave

Difficulty: due to nonlinear weighting function w, (RDUT) is
not a concave maximisation problem even though u is
concave!
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Formulation of RDUT Portfolio Choice Model

Literature

Very little ...

Shefrin (2008): finite probability space; informal and
preliminary

Carlier and Dana (2008): necessary conditions; no explicit
solution
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Standing Assumptions

ρ̃ > 0 a.s., atomless, with E[ρ̃] < +∞.

u : [0,∞) → R is strictly increasing, strictly concave,
continuously differentiable on (0,∞), and satisfies the Inada
condition: u′(0+) = ∞, u′(∞) = 0.

w : [0, 1] → [0, 1] is strictly increasing and continuously
differentiable, and satisfies w(0) = 0, w(1) = 1.



Mathematical Behavioural Finance A Mini Course

Quantile Formulation

Section 2

Quantile Formulation
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Quantile Formulation

Quantile (Function)

Given random variable X̃ and its CDF FX̃ : (−∞,∞) → [0, 1]

The (upper) quantile GX̃ : [0, 1) → [−∞,∞] is defined as

GX̃(p) := inf{x ∈ R : FX̃(x) > p}, p ∈ [0, 1)

GX̃ is non-decreasing and right-continuous
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Quantile Formulation

The Model Again

Max
c̃

∫∞

0 w (P (u(c̃) > x)) dx

subject to E[ρ̃c̃] ≤ x0, c̃ ≥ 0
(RDUT)
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Quantile Formulation

Preference and Cost

Preference measure V (c̃) =
∫∞

0 w (P (u(c̃) > x)) dx is
increasing in c̃
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Quantile Formulation

Preference and Cost

Preference measure V (c̃) =
∫∞

0 w (P (u(c̃) > x)) dx is
increasing in c̃

V is law-invariant: V (c̃) = V (c̃′) whenever c̃ ∼ c̃′

One may substitute c̃ in V by any r.v. c̃′ without changing its
value – so long as the distribution remains unchanged

... which c̃′ is the cheapest?

Consider minc̃′∼c̃E [ρ̃c̃′]
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Quantile Formulation

Hardy–Littlewood Inequality

Lemma

(Jin and Zhou 2008) We have that c̃∗ := G(1− Fρ̃(ρ̃)) solves
minc̃′∼c̃E [ρ̃c̃′], where G is quantile of c̃. If in addition
−∞ < E[ρ̃c̃∗] < +∞, then c̃∗ is the unique optimal solution.

Hardy, Littlewood and Pòlya (1952), Dybvig (1988)
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Changing Decision Variable

We only need to consider consumption class of the form
c̃ = G(Z̃) where G is quantile of c̃ and
Z̃ := 1− Fρ̃(ρ̃) ∼ U(0, 1)



Mathematical Behavioural Finance A Mini Course

Quantile Formulation
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We only need to consider consumption class of the form
c̃ = G(Z̃) where G is quantile of c̃ and
Z̃ := 1− Fρ̃(ρ̃) ∼ U(0, 1)

Budget constraint rewritten

E[ρ̃c̃] ≤ x0 ⇔ E
[

F−1

ρ̃ (1− Z̃)G(Z̃)
]

≤ x0 ⇔

∫

1

0

F−1

ρ̃ (1−z)G(z)dz ≤ x0
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Changing Decision Variable
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Budget constraint rewritten

E[ρ̃c̃] ≤ x0 ⇔ E
[

F−1

ρ̃ (1− Z̃)G(Z̃)
]

≤ x0 ⇔

∫

1

0

F−1

ρ̃ (1−z)G(z)dz ≤ x0

Preference measure rewritten
∫

∞

0

w (P (u(c̃) > x)) dx =

∫

∞

0

u(x)dw̄(Fc̃(x))dx =

∫ 1

0

u(G(z))dw̄(z),

where w̄(p) = 1− w(1 − p) (dual of w)
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Quantile Formulation

Changing Decision Variable

We only need to consider consumption class of the form
c̃ = G(Z̃) where G is quantile of c̃ and
Z̃ := 1− Fρ̃(ρ̃) ∼ U(0, 1)

Budget constraint rewritten

E[ρ̃c̃] ≤ x0 ⇔ E
[

F−1

ρ̃ (1− Z̃)G(Z̃)
]

≤ x0 ⇔

∫

1

0

F−1

ρ̃ (1−z)G(z)dz ≤ x0

Preference measure rewritten
∫

∞

0

w (P (u(c̃) > x)) dx =

∫

∞

0

u(x)dw̄(Fc̃(x))dx =

∫ 1

0

u(G(z))dw̄(z),

where w̄(p) = 1− w(1 − p) (dual of w)

Decision variable is now changed from c̃ to its quantile G!
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Quantile Formulation

Original RDUT Model

Max
c̃

∫∞

0 w (P (u(c̃) > x)) dx

subject to E[ρ̃c̃] ≤ x0, c̃ ≥ 0
(RDUT)
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Quantile Formulation

The quantile formulation of (RDUT) is:

Max
G∈G

U(G(·)) :=
∫ 1
0 u(G(z))w′(1− z)dz

subject to
∫ 1
0 F−1

ρ̃ (1− z)G(z)dz ≤ x0
(Q)

where

G = {G : [0, 1) → [0,∞] non-decreasing and right-continuous},

is the set of quantile functions of nonnegative random variables

A concave maximisation problem!
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the optimal solution G∗

λ

Find λ∗ such that G∗
λ∗ binds the initial budget constraint, i.e.,

∫ 1

0
F−1
ρ̃ (1− z)G∗

λ∗(z)dz = x0.

Then G∗
λ∗ is optimal to (Q)
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Solutions

Lagrange Method

Apply a multiplier λ to the initial budget constraint

For each λ, we solve the unconstrained problem and derive
the optimal solution G∗

λ

Find λ∗ such that G∗
λ∗ binds the initial budget constraint, i.e.,

∫ 1

0
F−1
ρ̃ (1− z)G∗

λ∗(z)dz = x0.

Then G∗
λ∗ is optimal to (Q)

c̃∗ := G∗
λ∗(1− Fρ̃(ρ̃)) is optimal to (RDUT)
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Anti-Comonotonicty

c̃∗ = G∗
λ∗(1− Fρ̃(ρ̃))

c̃∗ is a non-increasing function of ρ̃

c̃∗ is anti-comonotonic with ρ̃
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Solutions

Unconstrained Problem

The quantile problem is to solve

Max
G∈G

U(G) =
∫ 1
0 u(G(z))w′(1− z)dz

subject to
∫ 1
0 F−1

ρ̃ (1− z)G(z)dz ≤ x0
(Q)
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Solutions

Unconstrained Problem

The quantile problem is to solve

Max
G∈G

U(G) =
∫ 1
0 u(G(z))w′(1− z)dz

subject to
∫ 1
0 F−1

ρ̃ (1− z)G(z)dz ≤ x0
(Q)

Given λ, consider

Max
G∈G

Uλ(G) =
∫ 1

0

[

u(G(z))w′(1 − z)− λF−1

ρ̃ (1− z)G(z)
]

dz

(Qλ)
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Maximise the integrand over G(z) pointwisely

First-order condition: u′(G(z))w′(1− z)− λF−1
ρ̃ (1− z) = 0

Ḡ(z) = (u′)−1

(

λF−1
ρ̃

(1−z)

w′(1−z)

)

would solve the quantile

formulation ...
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Solutions

“Brute Force” Solution

Maximise the integrand over G(z) pointwisely

First-order condition: u′(G(z))w′(1− z)− λF−1
ρ̃ (1− z) = 0

Ḡ(z) = (u′)−1

(

λF−1
ρ̃

(1−z)

w′(1−z)

)

would solve the quantile

formulation ...

... provided that
F−1
ρ̃

(1−z)

w′(1−z) is non-increasing, or

M(z) := w′(1−z)

F−1
ρ̃

(1−z)
is non-decreasing!
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Integrability Condition

We impose the following condition as in classical EUT model
to ensure that the optimal value is finite and the optimal
solution exists

E

[

u

(

(u′)−1

(

λρ̃

w′(Fρ̃(ρ̃))

))]

< +∞, for any λ > 0
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Solutions

Integrability Condition

We impose the following condition as in classical EUT model
to ensure that the optimal value is finite and the optimal
solution exists

E

[

u

(

(u′)−1

(

λρ̃

w′(Fρ̃(ρ̃))

))]

< +∞, for any λ > 0

In the following, we always assume the integrability condition
holds
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Solutions

Solution under Monotonicity Condition

Theorem

(Jin and Zhou 2008) If M(z) is non-decreasing on z ∈ (0, 1),
then the unique optimal solution to (RDUT) is given as

c̃∗ = (u′)−1

(

λ∗ρ̃

w′(Fρ̃(ρ̃))

)

where λ∗ is determined by E(ρ̃c̃∗) = x0.

Remark

When there is no probability weighting, it reduces to the
classical EUT result.
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F−1
ρ̃

(1−z)
is automatically non-decreasing if w is

concave (risk-seeking)
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The Monotonicity Condition

M(z) = w′(1−z)

F−1
ρ̃

(1−z)
is automatically non-decreasing if w is

concave (risk-seeking)

If w ∈ C2 and Gρ̃ ∈ C1, then M is non-decreasing iff

w′′(z)

w′(z)
≤

G′
ρ̃(z)

Gρ̃(z)
, 0 < z < 1

where Gρ̃ is the quantile of ρ̃
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Solutions

The Monotonicity Condition

M(z) = w′(1−z)

F−1
ρ̃

(1−z)
is automatically non-decreasing if w is

concave (risk-seeking)

If w ∈ C2 and Gρ̃ ∈ C1, then M is non-decreasing iff

w′′(z)

w′(z)
≤

G′
ρ̃(z)

Gρ̃(z)
, 0 < z < 1

where Gρ̃ is the quantile of ρ̃

However: The condition is violated for many known
weighting functions and a lognormal pricing kernel
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Solutions

Violation of Monotonicity Condition

Proposition

(He and Zhou 2012) Suppose ρ̃ is lognormally distributed, i.e.,

Fρ̃(x) = Φ

(

lnx− µ

σ

)

for some µ and σ > 0, where Φ(·) is the CDF of standard Normal.
For any weighting function in K-T, T-F, P with 0 < γ < 1, there
exists ε > 0 such that

w′′(z)

w′(z)
>

G′
ρ̃(z)

Gρ̃(z)
, 1− ε < z < 1.
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Solutions

Probability Weighting Functions

Kahneman and Tversky (1992) weighting

w(p) =
pγ

(pγ + (1− p)γ)1/γ
,

Tversky and Fox (1995) weighting

w(p) =
δpγ

δpγ + (1− p)γ
,

Prelec (1998) weighting

w(p) = e−δ(− ln p)γ

Jin and Zhou (2008) weighting

w(z) =







yb−a
0 keaµ+

(aσ)2

2 Φ
(

Φ−1(z)− aσ
)

z ≤ 1− z0,

C + kebµ+
(bσ)2

2 Φ
(

Φ−1(z)− bσ
)

z ≥ 1− z0
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Solutions

Endogenous Portfolio Insurance

Theorem

(He and Zhou 2012) If there exists ε > 0 such that

w′′(z)

w′(z)
>

G′
ρ̃(z)

Gρ̃(z)
, 1− ε < z < 1,

then for any optimal solution c̃∗ to (RDUT), we have
essinf c̃∗ > 0.

Remark

Agent will set a positive floor (portfolio/consumption

insurance) endogenously if w′′(z)
w′(z) is sufficiently large when

z is near 1

Fear index: w′′(z)
w′(z) when z is near 1
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Solutions

Tversky and Fox 1995
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Solutions

Prelec 1998
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Solutions

Monotonicity Condition

Assumption

M(·) is continuously differentiable on (0, 1) and there exists
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Monotonicity Condition

Assumption

M(·) is continuously differentiable on (0, 1) and there exists
0 < z0 < 1 such that M(·) is strictly decreasing on (0, z0) and
strictly increasing on (z0, 1). Furthermore, limz↑1M(z) = +∞.

Under this assumption,

Ḡ(z) = (u′)−1

(

λF−1
ρ̃

(1−z)

w′(1−z)

)

≡ (u′)−1(λ/M(z)) is no longer

non-decreasing, so the brutal force (point-wise maximization)
fails
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Solutions

One Dimensional Optimisation

We only need to consider quantiles in the form of

G(z) := Ḡ(y)10<z≤y + Ḡ(z)1y<z<1

for z0 ≤ y < 1

Substitute above G into

Uλ(G) =

∫ 1

0

[

u(G(z))w′(1− z)− λF−1
ρ̃ (1− z)G(z)

]

dz

and find optimal y!

Optimal y exists and is unique, and independent of λ

Denote optimal y by z∗, which is shown to be the unique root
of

ϕ(y) =

∫ y

0
w′(1− z)dz −M(y)

∫ y

0
F−1
ρ̃ (1 − z)dz, z0 ≤ y < 1
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Solutions

Solution under Two-Piece Monotonicity Condition

Theorem

(He and Zhou 2012) Under the specified condition on M ,
(RDUT) has a unique optimal solution

c̃∗ = (u′)−1

(

λ∗ρ̃

w′(Fρ̃(ρ̃))

)

1(ρ̃≤a∗) + (u′)−1

(

λ∗a∗

w′(Fρ̃(a∗))

)

1(ρ̃>a∗)

where a∗ > 0 is the root of

ϕ(x) := x(1− w(Fρ̃(x)))− w′(Fρ̃(x))

∫ ∞

x
sdFρ̃(x)

on (F−1
ρ̃ (z0),+∞), and λ∗ > 0 is such that E(ρ̃c̃∗) = x0.
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Quantile Formulation as a General Approach
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Quantile Formulation as a General Approach

A Generic Model

Max
c̃

V (c̃)

subject to E[ρ̃c̃] ≤ x0, c̃ ≥ 0
(P)
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Quantile Formulation as a General Approach

Basic Assumptions

V is law invariant

“The more money the better”: v(x0) > v(x′0) whenever
x0 > x′0, where v(x0) is the supremum of (P)

ρ̃ is atomless
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Quantile Formulation

Quantile formulation

Max
G∈G

V (G(Z̃))

subject to E[F−1
ρ̃ (1− Z̃)G(Z̃)] ≤ x0

(Q)

where Z̃ ∼ U(0, 1)
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Quantile Formulation as a General Approach

Quantile Formulation

Quantile formulation

Max
G∈G

V (G(Z̃))

subject to E[F−1
ρ̃ (1− Z̃)G(Z̃)] ≤ x0

(Q)

where Z̃ ∼ U(0, 1)

If G∗ is optimal to (Q) then c̃∗ := G∗(1−Fρ̃(ρ̃)) is optimal to
(P)

So c̃∗ is always anti-comonotonic with ρ̃
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Quantile Formulation as a General Approach

Goal Achieving

Max
c̃

P(c̃ ≥ b)

subject to E[ρ̃c̃] ≤ x0, c̃ ≥ 0

where b: the goal

Kulldorff (1993), Heath (1993), Browne (1999), Föllmer and
Leukert (1999), Spivak and Cvitanić (1999), etc.
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Quantile Formulation

P(c̃ ≥ b) =
∫∞

0 1(x≥b)dFc̃(x) =
∫ 1
0 1(F−1

c̃
(z)≥b)dz
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Quantile Formulation as a General Approach

Quantile Formulation

P(c̃ ≥ b) =
∫∞

0 1(x≥b)dFc̃(x) =
∫ 1
0 1(F−1

c̃
(z)≥b)dz

Quantile formulation

Max
G∈G

U(G) =
∫ 1
0 1(G(z)≥b)dz

Subject to
∫ 1
0 F−1

ρ̃ (1− z)G(z)dz ≤ x0
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Quantile Formulation as a General Approach

Solution

Theorem

(He and Zhou 2009) The unique optimal solution to
goal-achieving problem is c̃∗ = b1(ρ̃≤a) where a > 0 is such that
E[1(ρ̃≤a)ρ̃] = x0/b. The optimal value is Fρ̃(a).

Proof.

Lagrange – pointwise maximisation – binding budget constraint
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Quantile Formulation as a General Approach

SP/A Portfolio Choice Model

Max
c̃

V (c̃) =
∫∞

0 w (P (u(c̃) > x)) dx

subject to E[ρ̃c̃] ≤ x0, c̃ ≥ 0,
P(c̃ ≥ A) ≥ α

(SPA)

where

A ≥ 0: aspiration level

α: confidence level

Lopes and Oden (1999)
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Quantile Formulation as a General Approach

Quantile Formulation

Max
G∈G

U(G) :=
∫ 1
0 u(G(z))w′(1− z)dz

Subject to
∫ 1
0 F−1

ρ̃ (1− z)G(z)dz ≤ x0, G(1− α) ≥ A
(Q)
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Quantile Formulation as a General Approach

Solution

Theorem

(He and Zhou 2012) Assume that x0 ≥ AE
[

ρ̃1(ρ̃≤F−1
ρ̃

(α))

]

, and

M is non-decreasing on (0, 1). Then the unique optimal solution
to (SPA) is given as

c̃∗ = (u′)−1
(

λ∗ρ̃
w′(Fρ̃(ρ̃))

)

1(ρ̃≥F−1
ρ̃

(α))

+
[

(u′)−1
(

λ∗ρ̃
w′(Fρ̃(ρ̃))

)

∨A
]

1(ρ̃<F−1
ρ̃

(α))

where λ∗ is the one binding the initial budget constraint, i.e.,
E(ρ̃c̃∗) = x0.
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Summary

Portfolio choice under RDUT - probability weighting

Technical challenge arising from probability weighting:
non-convex optimisation in infinite dimension

Approach – quantile formulation

Think of distribution/quantile of future consumption!

A monotonicity condition - its economic interpretation

Quantile formulation can treat a much broader class of
problems
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