Mathematical Behavioural Finance A Mini Course

Xunyu Zhou

January 2013 Winter School @ Lunteren

Chapter 3:

Market Equilibrium and Asset Pricing under RDUT

1 An Arrow-Debreu Economy

2 Individual Optimality

3 Representative RDUT Agent

4 Asset Pricing

5 CCAPM and Interest Rate

6 Equity Premium and Risk-Free Rate Puzzles

7 Summary and Further Readings

Section 1

An Arrow-Debreu Economy

The Economy

■ Present date $t=0$ (today) and a future date $t=1$ (tomorrow)

The Economy

■ Present date $t=0$ (today) and a future date $t=1$ (tomorrow)
■ $(\Omega, \mathcal{F}, \mathrm{P})$ at $t=1$

The Economy

■ Present date $t=0$ (today) and a future date $t=1$ (tomorrow)
■ $(\Omega, \mathcal{F}, \mathrm{P})$ at $t=1$

- A single consumption good

The Economy

■ Present date $t=0$ (today) and a future date $t=1$ (tomorrow)
■ $(\Omega, \mathcal{F}, \mathrm{P})$ at $t=1$

- A single consumption good

■ A finite number of agents indexed by $i=1, \ldots, I$

The Economy

■ Present date $t=0$ (today) and a future date $t=1$ (tomorrow)
■ $(\Omega, \mathcal{F}, \mathrm{P})$ at $t=1$

- A single consumption good

■ A finite number of agents indexed by $i=1, \ldots, I$
■ Agent i has an endowment $\left(e_{0 i}, \tilde{e}_{1 i}\right)$, where $e_{0 i}$ is wealth today and \mathcal{F}-measurable random variable $\tilde{e}_{1 i}$ is random endowment tomorrow

The Economy

■ Present date $t=0$ (today) and a future date $t=1$ (tomorrow)
■ $(\Omega, \mathcal{F}, \mathrm{P})$ at $t=1$

- A single consumption good

■ A finite number of agents indexed by $i=1, \ldots, I$
■ Agent i has an endowment $\left(e_{0 i}, \tilde{e}_{1 i}\right)$, where $e_{0 i}$ is wealth today and \mathcal{F}-measurable random variable $\tilde{e}_{1 i}$ is random endowment tomorrow
$■$ Aggregate endowment is $\left(e_{0}, \tilde{e}_{1}\right):=\left(\sum_{i=1}^{I} e_{0 i}, \sum_{i=1}^{I} \tilde{e}_{1 i}\right)$

Consumption Plans

■ Agents choose consumption for $t=0$, and claims on consumption for $t=1$

Consumption Plans

■ Agents choose consumption for $t=0$, and claims on consumption for $t=1$

- A feasible consumption plan of agent i is a pair $\left(c_{0 i}, \tilde{c}_{1 i}\right)$, where $c_{0 i} \geq 0$ is wealth consumed today and \mathcal{F}-measurable random variable $\tilde{c}_{1 i} \geq 0$ that consumed tomorrow

Consumption Plans

■ Agents choose consumption for $t=0$, and claims on consumption for $t=1$

- A feasible consumption plan of agent i is a pair $\left(c_{0 i}, \tilde{c}_{1 i}\right)$, where $c_{0 i} \geq 0$ is wealth consumed today and \mathcal{F}-measurable random variable $\tilde{c}_{1 i} \geq 0$ that consumed tomorrow
■ The preference of agent i over $\left(c_{0 i}, \tilde{c}_{0 i}\right)$ is represented by

$$
V_{i}\left(c_{0 i}, \tilde{c}_{1 i}\right)=u_{0 i}\left(c_{0 i}\right)+\beta_{i} \int u_{1 i}\left(\tilde{c}_{1 i}\right) d\left(w_{i} \circ \mathrm{P}\right)
$$

where

- $u_{0 i}$ is utility function for $t=0$;
- $\left(u_{1 i}, w_{i}\right)$ is the RDUT pair for $t=1$;
- $\beta_{i} \in(0,1]$ is time discount factor

Consumption Plans

■ Agents choose consumption for $t=0$, and claims on consumption for $t=1$

- A feasible consumption plan of agent i is a pair $\left(c_{0 i}, \tilde{c}_{1 i}\right)$, where $c_{0 i} \geq 0$ is wealth consumed today and \mathcal{F}-measurable random variable $\tilde{c}_{1 i} \geq 0$ that consumed tomorrow
■ The preference of agent i over $\left(c_{0 i}, \tilde{c}_{0 i}\right)$ is represented by

$$
V_{i}\left(c_{0 i}, \tilde{c}_{1 i}\right)=u_{0 i}\left(c_{0 i}\right)+\beta_{i} \int u_{1 i}\left(\tilde{c}_{1 i}\right) d\left(w_{i} \circ \mathrm{P}\right)
$$

where

- $u_{0 i}$ is utility function for $t=0$;
- $\left(u_{1 i}, w_{i}\right)$ is the RDUT pair for $t=1$;
- $\beta_{i} \in(0,1]$ is time discount factor

■ The set of all feasible consumption plans is denoted by

Pricing Kernel

■ The above economy is denoted by

$$
\mathscr{E}:=\left\{(\Omega, \mathcal{F}, \mathrm{P}),\left(e_{0 i}, \tilde{e}_{1 i}\right)_{i=1}^{I}, \mathscr{C},\left(V_{i}\left(c_{0 i}, \tilde{c}_{1 i}\right)\right)_{i=1}^{I}\right\}
$$

Pricing Kernel

■ The above economy is denoted by

$$
\mathscr{E}:=\left\{(\Omega, \mathcal{F}, \mathrm{P}),\left(e_{0 i}, \tilde{e}_{1 i}\right)_{i=1}^{I}, \mathscr{C},\left(V_{i}\left(c_{0 i}, \tilde{c}_{1 i}\right)\right)_{i=1}^{I}\right\}
$$

- A pricing kernel (or state-price density, stochastic discount factor) is an \mathcal{F}-measurable random variable $\tilde{\rho}$, with $\mathrm{P}(\tilde{\rho}>0)=1, \mathrm{E}[\tilde{\rho}]<\infty$ and $\mathrm{E}\left[\tilde{\rho} \tilde{e}_{1}\right]<\infty$, such that any claim \tilde{x} tomorrow is priced at $\mathrm{E}[\tilde{\rho} \tilde{x}]$ today

Arrow-Debreu Equilibrium

An Arrow-Debreu equilibrium of \mathscr{E} is a collection $\left\{\tilde{\rho},\left(c_{0 i}^{*}, \tilde{c}_{1 i}^{*}\right)_{i=1}^{I}\right\}$ consisting of a pricing kernel $\tilde{\rho}$ and a collection $\left(c_{0 i}^{*}, \tilde{c}_{1 i}^{*}\right)_{i=1}^{I}$ of feasible consumption plans, that satisfies the following conditions:
Individual optimality : For every $i,\left(c_{0 i}^{*}, \tilde{c}_{1 i}^{*}\right)$ maximises the preference of agent i subject to the budget constraint, that is,

$$
\begin{aligned}
& V_{i}\left(c_{0 i}^{*}, \tilde{c}_{1 i}^{*}\right)=\max _{\left(c_{0 i}, \tilde{c}_{1 i}\right) \in \mathscr{C}} V_{i}\left(c_{0 i}, \tilde{c}_{1 i}\right) \\
& \quad \text { subject to } c_{0 i}+\mathrm{E}\left[\tilde{\rho} \tilde{c}_{1 i}\right] \leq e_{0 i}+\mathrm{E}\left[\tilde{\rho} \tilde{\rho}_{1 i}\right]
\end{aligned}
$$

Market clearing : $\sum_{i=1}^{I} c_{0 i}^{*}=e_{0}$ and $\sum_{i=1}^{I} \tilde{c}_{1 i}^{*}=\tilde{e}_{1}$

Literature

■ Mainly on CPT economies, and on existence of equilibria

- Qualitative structures of pricing kernel for both CPT and SP/A economies, assuming existence of equilibrium: Shefrin (2008)
■ Non-existence: De Giorgi, Hens and Riegers (2009), Azevedo and Gottlieb (2010)
■ Under specific asset return distribution: Barberis and Huang (2008)
- One risky asset: He and Zhou (2011)

■ RDUT economy with convex weighting function: Carlier and Dana (2008), Dana (2011) - existence

Standing Assumptions

■ Agents have homogeneous beliefs $\mathrm{P} ;(\Omega, \mathcal{F}, \mathrm{P})$ admits no atom.

■ For every $i, e_{0 i} \geq 0, \mathrm{P}\left(\tilde{e}_{1 i} \geq 0\right)=1$, and $e_{0 i}+\mathrm{P}\left(\tilde{e}_{1 i}>0\right)>0$. Moreover, \tilde{e}_{1} is atomless, $\mathrm{P}\left(\tilde{e}_{1}>0\right)=1$, and $e_{0}>0$.
■ For every $i, u_{0 i}, u_{1 i}:[0, \infty) \rightarrow \mathbb{R}$ are strictly increasing, strictly concave, continuously differentiable on $(0, \infty)$, and satisfy the Inada condition: $u_{0 i}^{\prime}(0+)=u_{1 i}^{\prime}(0+)=\infty$, $u_{0 i}^{\prime}(\infty)=u_{1 i}^{\prime}(\infty)=0$. Moreover, $u_{1 i}(0)=0$.
■ For every $i, w_{i}:[0,1] \rightarrow[0,1]$ is strictly increasing and continuously differentiable, and satisfies $w_{i}(0)=0, w_{i}(1)=1$.

Section 2

Individual Optimality

Individual Consumptions

Consider

$$
\begin{align*}
\underset{\left(c_{0}, \tilde{c}_{1}\right) \in \mathscr{C}}{ } & V\left(c_{0}, \tilde{c}_{1}\right):=u_{0}\left(c_{0}\right)+\beta \int_{0}^{\infty} w\left(\mathrm{P}\left(u_{1}\left(\tilde{c}_{1}\right)>x\right)\right) d x \\
\text { subject to } & c_{0}+\mathrm{E}\left[\tilde{\rho} \tilde{c}_{1}\right] \leq \varepsilon_{0}+\mathrm{E}\left[\tilde{\rho} \tilde{\varepsilon}_{1}\right] \tag{1}
\end{align*}
$$

where $\tilde{\rho}$ is exogenously given, atomless, and ε_{0} and $\tilde{\varepsilon}_{1}$ are endowments at $t=0$ and $t=1$ respectively

Quantile Formulation

■ Recall the set of quantile functions of nonnegative random variables

$$
\mathbb{G}=\{G:[0,1) \rightarrow[0, \infty] \text { non-decreasing and right-continuous }\}
$$

Quantile Formulation

- Recall the set of quantile functions of nonnegative random variables
$\mathbb{G}=\{G:[0,1) \rightarrow[0, \infty]$ non-decreasing and right-continuous $\}$,
■ Problem (1) can be reformulated as

$$
\begin{array}{rl}
\operatorname{Max}_{c_{0} \geq 0, G \in \mathbb{G}} & U\left(c_{0}, G\right):=u_{0}\left(c_{0}\right)+\beta \int_{0}^{1} u_{1}(G(p)) d \bar{w}(p) \\
\text { subject to } & c_{0}+\int_{0}^{1} F_{\tilde{\rho}}^{-1}(1-p) G(p) d p \leq \varepsilon_{0}+\mathrm{E}\left[\tilde{\rho} \tilde{\varepsilon}_{1}\right], \tag{2}
\end{array}
$$

where $\bar{w}(p)=1-w(1-p)$

Quantile Formulation

- Recall the set of quantile functions of nonnegative random variables
$\mathbb{G}=\{G:[0,1) \rightarrow[0, \infty]$ non-decreasing and right-continuous $\}$,
■ Problem (1) can be reformulated as

$$
\begin{equation*}
\operatorname{Max}_{c_{0} \geq 0, G \in \mathbb{G}} U\left(c_{0}, G\right):=u_{0}\left(c_{0}\right)+\beta \int_{0}^{1} u_{1}(G(p)) d \bar{w}(p) \tag{2}
\end{equation*}
$$

subject to $c_{0}+\int_{0}^{1} F_{\tilde{\rho}}^{-1}(1-p) G(p) d p \leq \varepsilon_{0}+\mathrm{E}\left[\tilde{\rho} \tilde{\varepsilon}_{1}\right]$,
where $\bar{w}(p)=1-w(1-p)$
■ If $\left(c_{0}^{*}, G^{*}\right) \in[0, \infty) \times \mathbb{G}$ solves (2), then $\left(c_{0}^{*}, \tilde{c}_{1}^{*}\right)$, where $\tilde{c}_{1}^{*}=G^{*}\left(1-F_{\tilde{\rho}}(\tilde{\rho})\right)$, solves (1)

Lagrange

Step 1. For a fixed Lagrange multiplier $\lambda>0$, solve

$$
\begin{aligned}
\operatorname{Max}_{c_{0} \geq 0, G \in \mathbb{G}} & u_{0}\left(c_{0}\right)+\beta \int_{0}^{1} u_{1}(G(p)) d \bar{w}(p) \\
& -\lambda\left(c_{0}+\int_{0}^{1} F_{\tilde{\rho}}^{-1}(1-p) G(p) d p-\varepsilon_{0}-\mathrm{E}\left[\tilde{\rho} \tilde{\varepsilon}_{1}\right]\right) .
\end{aligned}
$$

The solution $\left(c_{0}^{*}, G^{*}\right)$ implicitly depends on λ
Step 2. Determine λ by

$$
c_{0}^{*}+\int_{0}^{1-} F_{\tilde{\rho}}^{-1}(1-p) G^{*}(p) d p=\varepsilon_{0}+\mathrm{E}\left[\tilde{\rho} \tilde{\varepsilon}_{1}\right]
$$

Step 3. $\tilde{c}_{1}^{*}:=G^{*}\left(1-F_{\tilde{\rho}}(\tilde{\rho})\right)$

Finding Quantile

■ Obviously $c_{0}^{*}=\left(u_{0}^{\prime}\right)^{-1}(\lambda)$

Finding Quantile

■ Obviously $c_{0}^{*}=\left(u_{0}^{\prime}\right)^{-1}(\lambda)$
■ So ultimately we need to solve

$$
\begin{align*}
\operatorname{Max}_{G \in \mathbb{G}} U(G ; \lambda) & :=\int_{0}^{1} u_{1}(G(p)) d \bar{w}(p)-\frac{\lambda}{\beta} \int_{0}^{1} F_{\tilde{\rho}}^{-1}(1-p) G(p) d p \\
& =\int_{0}^{1}\left[u_{1}(G(p)) w^{\prime}(1-p)-\frac{\lambda}{\beta} F_{\tilde{\rho}}^{-1}(1-p) G(p)\right] d p \tag{3}
\end{align*}
$$

Finding Quantile

■ Obviously $c_{0}^{*}=\left(u_{0}^{\prime}\right)^{-1}(\lambda)$
■ So ultimately we need to solve

$$
\begin{align*}
\operatorname{Max}_{G \in \mathbb{G}} U(G ; \lambda) & :=\int_{0}^{1} u_{1}(G(p)) d \bar{w}(p)-\frac{\lambda}{\beta} \int_{0}^{1} F_{\tilde{\rho}}^{-1}(1-p) G(p) d p \\
& =\int_{0}^{1}\left[u_{1}(G(p)) w^{\prime}(1-p)-\frac{\lambda}{\beta} F_{\tilde{\rho}}^{-1}(1-p) G(p)\right] d p \tag{3}
\end{align*}
$$

■ We have solved this problem ... provided that $M(z)=\frac{w^{\prime}(1-z)}{F_{\rho}^{-1}(1-z)}$ satisfies some monotone condition!

Finding Quantile

■ Obviously $c_{0}^{*}=\left(u_{0}^{\prime}\right)^{-1}(\lambda)$
■ So ultimately we need to solve

$$
\begin{align*}
\operatorname{Max}_{G \in \mathbb{G}} U(G ; \lambda) & :=\int_{0}^{1} u_{1}(G(p)) d \bar{w}(p)-\frac{\lambda}{\beta} \int_{0}^{1} F_{\tilde{\rho}}^{-1}(1-p) G(p) d p \\
& =\int_{0}^{1}\left[u_{1}(G(p)) w^{\prime}(1-p)-\frac{\lambda}{\beta} F_{\tilde{\rho}}^{-1}(1-p) G(p)\right] d p \tag{3}
\end{align*}
$$

■ We have solved this problem ... provided that $M(z)=\frac{w^{\prime}(1-z)}{F_{\hat{\rho}}^{-1}(1-z)}$ satisfies some monotone condition!
■ Difficulty: Such a condition (or literally any condition) is not permitted in our equilibrium problem!

Calculus of Variation

■ Set

$$
\mathbb{G}_{0}=\{G:[0,1) \rightarrow[0, \infty] \mid G \in \mathbb{G} \text { and } G(p)>0 \text { for all } p \in(0,1)\}
$$

■ Calculus of variation shows that solving (3) is equivalent to finding $G \in \mathbb{G}_{0}$ satisfying

$$
\left\{\begin{array}{l}
\int_{q}^{1} u_{1}^{\prime}(G(p)) d \bar{w}(p)-\frac{\lambda}{\beta} \int_{q}^{1} F_{\tilde{\rho}}^{-1}(1-p) d p \leq 0 \quad \forall q \in[0,1), \tag{4}\\
\int_{0}^{1}\left(\int_{q}^{1-} u_{1}^{\prime}(G(p)) d \bar{w}(p)-\frac{\lambda}{\beta} \int_{q}^{1} F_{\tilde{\rho}}^{-1}(1-p) d p\right) d G(q)=0
\end{array}\right.
$$

Equivalent Condition

Previous condition is equivalent to

$$
\left\{\begin{array}{l}
K(q) \geq \frac{\lambda}{\beta} N(q) \quad \text { for all } q \in(0,1) \\
K \text { is affine on }\left\{q \in(0,1): K(q)>\frac{\lambda}{\beta} N(q)\right\}, \\
K(0)=\frac{\lambda}{\beta} N(0), K(1-)=N(1-)
\end{array}\right.
$$

where

$$
\left\{\begin{array}{l}
K(q)=-\int_{q}^{1} u_{1}^{\prime}\left(G\left(\bar{w}^{-1}(p)\right)\right) d p \tag{6}\\
N(q)=-\int_{q}^{1} F_{\tilde{\rho}}^{-1}\left(1-\bar{w}^{-1}(p)\right) d \bar{w}^{-1}(p)
\end{array}\right.
$$

for all $q \in[0,1)$

How Concave Envelope is Formed

Concave Envelope

■ $K=\frac{\lambda}{\beta} \hat{N}$ where \hat{N} is concave envelope of N

Concave Envelope

■ $K=\frac{\lambda}{\beta} \hat{N}$ where \hat{N} is concave envelope of N

- Recall $K(q)=-\int_{q}^{1} u_{1}^{\prime}\left(G\left(\bar{w}^{-1}(p)\right)\right) d p$

Concave Envelope

■ $K=\frac{\lambda}{\beta} \hat{N}$ where \hat{N} is concave envelope of N

- Recall $K(q)=-\int_{q}^{1} u_{1}^{\prime}\left(G\left(\bar{w}^{-1}(p)\right)\right) d p$

■ We have $u_{1}^{\prime}\left(G^{*}\left(1-w^{-1}(1-q)\right)\right)=K^{\prime}(q)=\frac{\lambda}{\beta} \hat{N}^{\prime}(q)$ where \hat{N}^{\prime} is right derivative of \hat{N}

Concave Envelope

■ $K=\frac{\lambda}{\beta} \hat{N}$ where \hat{N} is concave envelope of N

- Recall $K(q)=-\int_{q}^{1} u_{1}^{\prime}\left(G\left(\bar{w}^{-1}(p)\right)\right) d p$

■ We have $u_{1}^{\prime}\left(G^{*}\left(1-w^{-1}(1-q)\right)\right)=K^{\prime}(q)=\frac{\lambda}{\beta} \hat{N}^{\prime}(q)$ where \hat{N}^{\prime} is right derivative of \hat{N}

- $G^{*}(q)=\left(u_{1}^{\prime}\right)^{-1}\left(\frac{\lambda}{\beta} \hat{N}^{\prime}(1-w(1-q))\right)$

Concave Envelope

■ $K=\frac{\lambda}{\beta} \hat{N}$ where \hat{N} is concave envelope of N

- Recall $K(q)=-\int_{q}^{1} u_{1}^{\prime}\left(G\left(\bar{w}^{-1}(p)\right)\right) d p$
- We have $u_{1}^{\prime}\left(G^{*}\left(1-w^{-1}(1-q)\right)\right)=K^{\prime}(q)=\frac{\lambda}{\beta} \hat{N}^{\prime}(q)$ where \hat{N}^{\prime} is right derivative of \hat{N}
- $G^{*}(q)=\left(u_{1}^{\prime}\right)^{-1}\left(\frac{\lambda}{\beta} \hat{N}^{\prime}(1-w(1-q))\right)$

■ $\tilde{c}_{1}^{*}=G^{*}\left(1-F_{\tilde{\rho}}(\tilde{\rho})\right)=\left(u_{1}^{\prime}\right)^{-1}\left(\frac{\lambda}{\beta} \hat{N}^{\prime}\left(1-w\left(F_{\tilde{\rho}}(\tilde{\rho})\right)\right)\right)$

Complete/Explicit Solution to Individual Consumption

Theorem

(Xia and Zhou 2012) Assume that $\tilde{\rho}>0$ a.s., atomless, with $E[\tilde{\rho}]<+\infty$. Then the optimal consumption plan is given by

$$
\left\{\begin{array}{l}
c_{0}^{*}=\left(u_{0}^{\prime}\right)^{-1}(\lambda) \\
\tilde{c}_{1}^{*}=\left(u_{1}^{\prime}\right)^{-1}\left(\frac{\lambda}{\beta} \hat{N}^{\prime}\left(1-w\left(F_{\tilde{\rho}}(\tilde{\rho})\right)\right)\right),
\end{array}\right.
$$

where λ is determined by

$$
\left(u_{0}^{\prime}\right)^{-1}(\lambda)+\mathbb{E}\left[\tilde{\rho}\left(u_{1}^{\prime}\right)^{-1}\left(\frac{\lambda}{\beta} \hat{N}^{\prime}\left(1-w\left(F_{\tilde{\rho}}(\tilde{\rho})\right)\right)\right)\right]=\varepsilon_{0}+\mathbb{E}[\tilde{\rho} \tilde{c}] .
$$

Concavity of N

- $N(q)=-\int_{q}^{1} \frac{F_{\rho}^{-1}\left(w^{-1}(1-p)\right)}{w^{\prime}\left(w^{-1}(1-p)\right)} d p$

Concavity of N

■ $N(q)=-\int_{q}^{1} \frac{F_{\tilde{\rho}}^{-1}\left(w^{-1}(1-p)\right)}{w^{\prime}\left(w^{-1}(1-p)\right)} d p$

- N being concave iff $\frac{F_{\rho}^{-1}(p)}{w^{\prime}(p)}$ being non-decreasing, or $M(z)=\frac{w^{\prime}(1-z)}{F_{\tilde{\rho}}^{-1}(1-z)}$ being non-decreasing!

Concavity of N

$\square N(q)=-\int_{q}^{1} \frac{F_{\tilde{\rho}}^{-1}\left(w^{-1}(1-p)\right)}{w^{\prime}\left(w^{-1}(1-p)\right)} d p$
■ N being concave iff $\frac{F_{\tilde{\rho}}^{-1}(p)}{w^{\prime}(p)}$ being non-decreasing, or $M(z)=\frac{w^{\prime}(1-z)}{F_{\tilde{\rho}}^{-1}(1-z)}$ being non-decreasing!
■ When N is concave:

$$
\tilde{c}_{1}^{*}=\left(u_{1}^{\prime}\right)^{-1}\left(\frac{\lambda}{\beta} \frac{\tilde{\rho}}{w^{\prime}\left(F_{\tilde{\rho}}(\tilde{\rho})\right)}\right)
$$

Concavity of N

$\square N(q)=-\int_{q}^{1} \frac{F_{\tilde{\rho}}^{-1}\left(w^{-1}(1-p)\right)}{w^{\prime}\left(w^{-1}(1-p)\right)} d p$
■ N being concave iff $\frac{F_{\tilde{\rho}}^{-1}(p)}{w^{\prime}(p)}$ being non-decreasing, or $M(z)=\frac{w^{\prime}(1-z)}{F_{\tilde{\rho}}^{-1}(1-z)}$ being non-decreasing!
■ When N is concave:

$$
\tilde{c}_{1}^{*}=\left(u_{1}^{\prime}\right)^{-1}\left(\frac{\lambda}{\beta} \frac{\tilde{\rho}}{w^{\prime}\left(F_{\tilde{\rho}}(\tilde{\rho})\right)}\right)
$$

■ It recovers one of the results in Chapter 2!

Convexity of N

■ If N is convex, or M is non-increasing, on an open interval, then \hat{N} is affine and hence $\hat{N}^{\prime}=a$ for some constant a

Convexity of N

■ If N is convex, or M is non-increasing, on an open interval, then \hat{N} is affine and hence $\hat{N}^{\prime}=a$ for some constant a
■ In this case $\tilde{c}_{1}^{*}=\left(u_{1}^{\prime}\right)^{-1}\left(\frac{\lambda}{\beta} a\right)>0$ whenever $1-w\left(F_{\tilde{\rho}}(\tilde{\rho})\right)$ falls in the same interval

Convexity of N

■ If N is convex, or M is non-increasing, on an open interval, then \hat{N} is affine and hence $\hat{N}^{\prime}=a$ for some constant a

- In this case $\tilde{c}_{1}^{*}=\left(u_{1}^{\prime}\right)^{-1}\left(\frac{\lambda}{\beta} a\right)>0$ whenever $1-w\left(F_{\tilde{\rho}}(\tilde{\rho})\right)$ falls in the same interval

■ If there exists $\varepsilon>0$ such that

$$
\frac{w^{\prime \prime}(z)}{w^{\prime}(z)}>\frac{G_{\tilde{\rho}}^{\prime}(z)}{G_{\tilde{\rho}}(z)}, \quad 1-\varepsilon<z<1
$$

then $\hat{N}(q)$ is affine near $q=1$

Convexity of N

■ If N is convex, or M is non-increasing, on an open interval, then \hat{N} is affine and hence $\hat{N}^{\prime}=a$ for some constant a
■ In this case $\tilde{c}_{1}^{*}=\left(u_{1}^{\prime}\right)^{-1}\left(\frac{\lambda}{\beta} a\right)>0$ whenever $1-w\left(F_{\tilde{\rho}}(\tilde{\rho})\right)$
falls in the same interval
■ If there exists $\varepsilon>0$ such that

$$
\frac{w^{\prime \prime}(z)}{w^{\prime}(z)}>\frac{G_{\tilde{\rho}}^{\prime}(z)}{G_{\tilde{\rho}}(z)}, \quad 1-\varepsilon<z<1
$$

then $\hat{N}(q)$ is affine near $q=1$

- In this case \tilde{c}_{1}^{*} is a positive constant when $\tilde{\rho}$ is sufficiently large

Convexity of N

■ If N is convex, or M is non-increasing, on an open interval, then \hat{N} is affine and hence $\hat{N}^{\prime}=a$ for some constant a
■ In this case $\tilde{c}_{1}^{*}=\left(u_{1}^{\prime}\right)^{-1}\left(\frac{\lambda}{\beta} a\right)>0$ whenever $1-w\left(F_{\tilde{\rho}}(\tilde{\rho})\right)$
falls in the same interval
■ If there exists $\varepsilon>0$ such that

$$
\frac{w^{\prime \prime}(z)}{w^{\prime}(z)}>\frac{G_{\tilde{\rho}}^{\prime}(z)}{G_{\tilde{\rho}}(z)}, \quad 1-\varepsilon<z<1
$$

then $\hat{N}(q)$ is affine near $q=1$
■ In this case \tilde{c}_{1}^{*} is a positive constant when $\tilde{\rho}$ is sufficiently large
■ "Fear causes consumption insurance" (see Chapter 2)

Section 3

Representative RDUT Agent

Return to Economy \mathscr{E} : Aggregate Consumption

■ Assumption. Agents have homogeneous probability weighting function w

Return to Economy ©ீ: Aggregate Consumption

■ Assumption. Agents have homogeneous probability weighting function w

- Optimal consumption plan of agent i is

$$
c_{0 i}^{*}=\left(u_{0 i}^{\prime}\right)^{-1}\left(\lambda_{i}^{*}\right), \tilde{c}_{1 i}^{*}=\left(u_{1 i}^{\prime}\right)^{-1}\left(\frac{\lambda_{i}^{*}}{\beta_{i}} \hat{N}^{\prime}\left(1-w\left(F_{\tilde{\rho}}(\tilde{\rho})\right)\right)\right),
$$

where λ_{i}^{*} satisfies

$$
\left(u_{0 i}^{\prime}\right)^{-1}\left(\lambda_{i}^{*}\right)+\mathrm{E}\left[\tilde{\rho}\left(u_{1 i}^{\prime}\right)^{-1}\left(\frac{\lambda_{i}^{*}}{\beta_{i}} \hat{N}^{\prime}\left(1-w\left(F_{\tilde{\rho}}(\tilde{\rho})\right)\right)\right)\right]=e_{0 i}+\mathrm{E}\left[\tilde{\rho} \tilde{e}_{1 i}\right]
$$

Return to Economy ©ீ: Aggregate Consumption

■ Assumption. Agents have homogeneous probability weighting function w

- Optimal consumption plan of agent i is

$$
c_{0 i}^{*}=\left(u_{0 i}^{\prime}\right)^{-1}\left(\lambda_{i}^{*}\right), \tilde{c}_{1 i}^{*}=\left(u_{1 i}^{\prime}\right)^{-1}\left(\frac{\lambda_{i}^{*}}{\beta_{i}} \hat{N}^{\prime}\left(1-w\left(F_{\tilde{\rho}}(\tilde{\rho})\right)\right)\right),
$$

where λ_{i}^{*} satisfies

$$
\left(u_{0 i}^{\prime}\right)^{-1}\left(\lambda_{i}^{*}\right)+\mathrm{E}\left[\tilde{\rho}\left(u_{1 i}^{\prime}\right)^{-1}\left(\frac{\lambda_{i}^{*}}{\beta_{i}} \hat{N}^{\prime}\left(1-w\left(F_{\tilde{\rho}}(\tilde{\rho})\right)\right)\right)\right]=e_{0 i}+\mathrm{E}\left[\tilde{\rho} \tilde{e}_{1 i}\right]
$$

- Aggregate consumption is

$$
c_{0}^{*}=\sum_{i=1}^{I}\left(u_{0 i}^{\prime}\right)^{-1}\left(\lambda_{i}^{*}\right), \tilde{c}_{1}^{*}=\sum_{i=1}^{I}\left(u_{1 i}^{\prime}\right)^{-1}\left(\frac{\lambda_{i}^{*}}{\beta_{i}} \hat{N}^{\prime}\left(1-w\left(F_{\tilde{\rho}}(\tilde{\rho})\right)\right)\right)
$$

A Representative Agent

■ For $\lambda_{1}>0, \ldots, \lambda_{I}>0$, set $\lambda=\left(\lambda_{1}, \ldots, \lambda_{I}\right)$ and

$$
h_{0 \lambda}(y):=\sum_{i=1}^{I}\left(u_{0 i}^{\prime}\right)^{-1}\left(\lambda_{i} y\right), h_{1 \lambda}(y):=\sum_{i=1}^{I}\left(u_{1 i}^{\prime}\right)^{-1}\left(\frac{\lambda_{i} y}{\beta_{i}}\right)
$$

■ Define $u_{t \lambda}(x)=\int_{0}^{x} h_{t \lambda}^{-1}(z) d z, t=0,1$

- Then

$$
c_{0}^{*}=\left(u_{0 \lambda^{*}}^{\prime}\right)^{-1}(1), \tilde{c}_{1}^{*}=\left(u_{1 \lambda^{*}}^{\prime}\right)^{-1}\left(\hat{N}^{\prime}\left(1-w\left(F_{\tilde{\rho}}(\tilde{\rho})\right)\right)\right)
$$

■ Consider an RDUT agent, indexed by λ^{*}, whose preference is

$$
\begin{equation*}
V_{\lambda^{*}}\left(c_{0}, \tilde{c}_{1}\right):=u_{0 \lambda^{*}}\left(c_{0}\right)+\int u_{1 \lambda^{*}}\left(\tilde{c}_{1}\right) d(w \circ \mathrm{P}) \tag{7}
\end{equation*}
$$

and whose endowment is the aggregate endowment (e_{0}, \tilde{e}_{1})

- This representative agent's optimal consumption plan is the aggregate consumption plan

What's Next - Idea

■ Work with the representative agent

What's Next - Idea

■ Work with the representative agent
■ Derive explicit expression of pricing kernel assuming equilibrium exists

What's Next - Idea

■ Work with the representative agent
■ Derive explicit expression of pricing kernel assuming equilibrium exists

■ Turn an RDUT economy into an EUT one by a measure change

What's Next - Idea

■ Work with the representative agent
■ Derive explicit expression of pricing kernel assuming equilibrium exists
■ Turn an RDUT economy into an EUT one by a measure change
■ Use existing results for EUT economy

Section 4

Asset Pricing

Explicit Expression of Pricing Kernel

Theorem

(Xia and Zhou 2012) If there exists an equilibrium of economy \mathscr{E} where the pricing kernel $\tilde{\rho}$ is atomless and λ^{*} is the corresponding Lagrange vector, then

$$
\begin{equation*}
\tilde{\rho}=w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(\tilde{e}_{1}\right)\right) \frac{u_{1 \lambda^{*}}^{\prime}\left(\tilde{e}_{1}\right)}{u_{0 \lambda^{*}}^{\prime}\left(e_{0}\right)} \quad \text { a.s.. } \tag{8}
\end{equation*}
$$

Idea of proof. Market clearing -
$\tilde{e}_{1}=\tilde{c}_{1}^{*}=\left(u_{1 \lambda^{*}}^{\prime}\right)^{-1}\left(\hat{N}^{\prime}\left(1-w\left(F_{\tilde{\rho}}(\tilde{\rho})\right)\right)\right)$ - manipulate quantiles (see also next slide)

Endogenous Monotonicity

- A simple fact: if $\tilde{Y}=f(\tilde{Z})$ for a non-increasing and left-continuous function f and $\tilde{Z} \sim U(0,1)$, then $G_{\tilde{Y}}(p)=f(1-p)$ (prove it!)

Endogenous Monotonicity

- A simple fact: if $\tilde{Y}=f(\tilde{Z})$ for a non-increasing and left-continuous function f and $\tilde{Z} \sim U(0,1)$, then $G_{\tilde{Y}}(p)=f(1-p)$ (prove it!)
■ Now, $\tilde{e}_{1}=\tilde{c}_{1}^{*}=\left(u_{1 \lambda^{*}}^{\prime}\right)^{-1}\left(\hat{N}^{\prime}\left(1-w\left(F_{\tilde{\rho}}(\tilde{\rho})\right)\right)\right)$

Endogenous Monotonicity

- A simple fact: if $\tilde{Y}=f(\tilde{Z})$ for a non-increasing and left-continuous function f and $\tilde{Z} \sim U(0,1)$, then $G_{\tilde{Y}}(p)=f(1-p)$ (prove it!)
■ Now, $\tilde{e}_{1}=\tilde{c}_{1}^{*}=\left(u_{1 \lambda^{*}}^{\prime}\right)^{-1}\left(\hat{N}^{\prime}\left(1-w\left(F_{\tilde{\rho}}(\tilde{\rho})\right)\right)\right)$
■ Hence

$$
G_{\tilde{e}_{1}}(p)=\left(u_{1 \lambda^{*}}^{\prime}\right)^{-1}\left(\hat{N}^{\prime}(1-w(1-p))\right)
$$

Endogenous Monotonicity

- A simple fact: if $\tilde{Y}=f(\tilde{Z})$ for a non-increasing and left-continuous function f and $\tilde{Z} \sim U(0,1)$, then $G_{\tilde{Y}}(p)=f(1-p)$ (prove it!)
■ Now, $\tilde{e}_{1}=\tilde{c}_{1}^{*}=\left(u_{1 \lambda^{*}}^{\prime}\right)^{-1}\left(\hat{N}^{\prime}\left(1-w\left(F_{\tilde{\rho}}(\tilde{\rho})\right)\right)\right)$
■ Hence

$$
G_{\tilde{e}_{1}}(p)=\left(u_{1 \lambda^{*}}^{\prime}\right)^{-1}\left(\hat{N}^{\prime}(1-w(1-p))\right)
$$

■ However, $G_{\tilde{e}_{1}}$ is strictly increasing, hence \hat{N}^{\prime} must be strictly decreasing, and $N=\hat{N}$

Endogenous Monotonicity

- A simple fact: if $\tilde{Y}=f(\tilde{Z})$ for a non-increasing and left-continuous function f and $\tilde{Z} \sim U(0,1)$, then $G_{\tilde{Y}}(p)=f(1-p)$ (prove it!)
■ Now, $\tilde{e}_{1}=\tilde{c}_{1}^{*}=\left(u_{1 \lambda^{*}}^{\prime}\right)^{-1}\left(\hat{N}^{\prime}\left(1-w\left(F_{\tilde{\rho}}(\tilde{\rho})\right)\right)\right)$
■ Hence

$$
G_{\tilde{e}_{1}}(p)=\left(u_{1 \lambda^{*}}^{\prime}\right)^{-1}\left(\hat{N}^{\prime}(1-w(1-p))\right)
$$

■ However, $G_{\tilde{e}_{1}}$ is strictly increasing, hence \hat{N}^{\prime} must be strictly decreasing, and $N=\hat{N}$

- $\hat{N}^{\prime}(p)=\frac{F_{\hat{\rho}}^{-1}\left(w^{-1}(1-p)\right)}{w^{\prime}\left(w^{-1}(1-p)\right)}$

Endogenous Monotonicity

- A simple fact: if $\tilde{Y}=f(\tilde{Z})$ for a non-increasing and left-continuous function f and $\tilde{Z} \sim U(0,1)$, then $G_{\tilde{Y}}(p)=f(1-p)$ (prove it!)
■ Now, $\tilde{e}_{1}=\tilde{c}_{1}^{*}=\left(u_{1 \lambda^{*}}^{\prime}\right)^{-1}\left(\hat{N}^{\prime}\left(1-w\left(F_{\tilde{\rho}}(\tilde{\rho})\right)\right)\right)$
■ Hence

$$
G_{\tilde{e}_{1}}(p)=\left(u_{1 \lambda^{*}}^{\prime}\right)^{-1}\left(\hat{N}^{\prime}(1-w(1-p))\right)
$$

■ However, $G_{\tilde{e}_{1}}$ is strictly increasing, hence \hat{N}^{\prime} must be strictly decreasing, and $N=\hat{N}$

- $\hat{N}^{\prime}(p)=\frac{F_{\hat{\rho}}^{-1}\left(w^{-1}(1-p)\right)}{w^{\prime}\left(w^{-1}(1-p)\right)}$

■ M is non-decreasing!

Interpretations

- $\tilde{\rho}=w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(\tilde{e}_{1}\right)\right) \frac{u_{1_{\lambda} * *}^{\prime}\left(\tilde{e}_{1}\right)}{u_{0 \lambda} *\left(e_{0}\right)}$

Interpretations

■ $\tilde{\rho}=w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(\tilde{e}_{1}\right)\right) \frac{u_{1 \lambda^{*}}^{\prime}\left(\tilde{e}_{1}\right)}{u_{0 \lambda^{*}}^{\prime}\left(e_{0}\right)}$
■ Pricing kernel is a weighted marginal rate of substitution between initial and end-of-period consumption

Interpretations

■ $\tilde{\rho}=w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(\tilde{e}_{1}\right)\right) \frac{u_{1 \lambda^{*}}^{\prime}\left(\tilde{e}_{1}\right)}{u_{0 \lambda^{*}}^{\prime}\left(e_{0}\right)}$
■ Pricing kernel is a weighted marginal rate of substitution between initial and end-of-period consumption
■ The weight is $w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(\tilde{e}_{1}\right)\right)$

Interpretations

■ $\tilde{\rho}=w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(\tilde{e}_{1}\right)\right) \frac{u_{1 \lambda^{*}}^{\prime}\left(\tilde{e}_{1}\right)}{u_{0 \lambda^{*}}^{\prime}\left(e_{0}\right)}$
■ Pricing kernel is a weighted marginal rate of substitution between initial and end-of-period consumption
■ The weight is $w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(\tilde{e}_{1}\right)\right)$

- An inverse-S shaped weighting w leads to a premium when evaluating assets in both very high and very low future consumption states

Implied Utility Function

■ Define u_{w} by

$$
u_{w}^{\prime}(x)=w^{\prime}\left(1-F_{\tilde{e}_{1}}(x)\right) u_{1 \lambda^{*}}^{\prime}(x)
$$

Implied Utility Function

■ Define u_{w} by

$$
u_{w}^{\prime}(x)=w^{\prime}\left(1-F_{\tilde{e}_{1}}(x)\right) u_{1 \lambda^{*}}^{\prime}(x)
$$

■ Pricing formula rewritten

$$
\tilde{\rho}=\frac{u_{w}^{\prime}\left(\tilde{e}_{1}\right)}{u_{0 \lambda^{*}}^{\prime}\left(e_{0}\right)}
$$

Implied Utility Function

■ Define u_{w} by

$$
u_{w}^{\prime}(x)=w^{\prime}\left(1-F_{\tilde{e}_{1}}(x)\right) u_{1 \lambda^{*}}^{\prime}(x)
$$

■ Pricing formula rewritten

$$
\tilde{\rho}=\frac{u_{w}^{\prime}\left(\tilde{e}_{1}\right)}{u_{0 \lambda^{*}}^{\prime}\left(e_{0}\right)}
$$

■ A fictitious EUT economy (under P without weighting), where u_{w} is outcome utility function of a "weighted" representative agent

Implied Utility Function

■ Define u_{w} by

$$
u_{w}^{\prime}(x)=w^{\prime}\left(1-F_{\tilde{e}_{1}}(x)\right) u_{1 \lambda^{*}}^{\prime}(x)
$$

■ Pricing formula rewritten

$$
\tilde{\rho}=\frac{u_{w}^{\prime}\left(\tilde{e}_{1}\right)}{u_{0 \lambda^{*}}^{\prime}\left(e_{0}\right)}
$$

■ A fictitious EUT economy (under P without weighting), where u_{w} is outcome utility function of a "weighted" representative agent

- u_{w} : implied utility function

Implied Relative Risk Aversion

■ Implied relative index of risk aversion

$$
\begin{equation*}
R^{w}(x):=-\frac{x u_{w}^{\prime \prime}(x)}{u_{w}^{\prime}(x)}=-\frac{x u_{1 \lambda^{*}}^{\prime \prime}(x)}{u_{1 \lambda^{*}}^{\prime}(x)}+\frac{x w^{\prime \prime}\left(1-F_{\tilde{e}_{1}}(x)\right)}{w^{\prime}\left(1-F_{\tilde{e}_{1}}(x)\right)} f_{\tilde{e}_{1}}(x) \tag{9}
\end{equation*}
$$

Implied Relative Risk Aversion

- Implied relative index of risk aversion

$$
\begin{equation*}
R^{w}(x):=-\frac{x u_{w}^{\prime \prime}(x)}{u_{w}^{\prime}(x)}=-\frac{x u_{1 \lambda^{*}}^{\prime \prime}(x)}{u_{1 \lambda^{*}}^{\prime}(x)}+\frac{x w^{\prime \prime}\left(1-F_{\tilde{e}_{1}}(x)\right)}{w^{\prime}\left(1-F_{\tilde{e}_{1}}(x)\right)} f_{\tilde{e}_{1}}(x) \tag{9}
\end{equation*}
$$

■ It represents overall degree of risk-aversion (or risk-loving) of RDUT agent, combining outcome utility and probability weighting

A Weighting-Neutral Probability

■ Let

$$
\frac{d \mathrm{P}^{\diamond}}{d \mathrm{P}}=w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(\tilde{e}_{1}\right)\right)
$$

A Weighting-Neutral Probability

■ Let

$$
\frac{d \mathrm{P}^{\diamond}}{d \mathrm{P}}=w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(\tilde{e}_{1}\right)\right)
$$

■ P^{\diamond} : weighting-neutral probability

A Weighting-Neutral Probability

■ Let

$$
\frac{d \mathrm{P}^{\diamond}}{d \mathrm{P}}=w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(\tilde{e}_{1}\right)\right)
$$

■ P^{\diamond} : weighting-neutral probability
■ The preference of agent i is

$$
V_{i}^{\diamond}\left(c_{0 i}, \tilde{c}_{1 i}\right)=u_{0 i}\left(c_{0 i}\right)+\beta_{i} \mathrm{E}^{\diamond}\left[u_{1 i}\left(\tilde{c}_{1 i}\right)\right]
$$

- an EUT agent

A Weighting-Neutral Probability

■ Let

$$
\frac{d \mathrm{P}^{\diamond}}{d \mathrm{P}}=w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(\tilde{e}_{1}\right)\right)
$$

■ P^{\diamond} : weighting-neutral probability
■ The preference of agent i is

$$
V_{i}^{\diamond}\left(c_{0 i}, \tilde{c}_{1 i}\right)=u_{0 i}\left(c_{0 i}\right)+\beta_{i} \mathrm{E}^{\diamond}\left[u_{1 i}\left(\tilde{c}_{1 i}\right)\right]
$$

- an EUT agent

■ $\tilde{\rho}^{\diamond}$ is pricing kernel under the above EUT economy iff $\tilde{\rho}=w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(\tilde{e}_{1}\right)\right) \tilde{\rho}^{\diamond}$ is the pricing kernel under RDUT economy

A Weighting-Neutral Probability

■ Let

$$
\frac{d \mathrm{P}^{\diamond}}{d \mathrm{P}}=w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(\tilde{e}_{1}\right)\right)
$$

■ P^{\diamond} : weighting-neutral probability
■ The preference of agent i is

$$
V_{i}^{\diamond}\left(c_{0 i}, \tilde{c}_{1 i}\right)=u_{0 i}\left(c_{0 i}\right)+\beta_{i} \mathrm{E}^{\diamond}\left[u_{1 i}\left(\tilde{c}_{1 i}\right)\right]
$$

- an EUT agent

■ $\tilde{\rho}^{\diamond}$ is pricing kernel under the above EUT economy iff $\tilde{\rho}=w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(\tilde{e}_{1}\right)\right) \tilde{\rho}^{\diamond}$ is the pricing kernel under RDUT economy

- The two economies have exactly the same pricing formulae and individual consumption plans

Existence of Equilibria

Theorem

(Xia and Zhou 2012) If $\Psi_{\lambda}(p) \equiv w^{\prime}(p) u_{1 \lambda}^{\prime}\left(F_{\tilde{e}_{1}}^{-1}(1-p)\right)$ is strictly increasing for any λ, and

$$
\left\{\begin{array}{l}
\mathrm{E}\left[w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(\tilde{e}_{1}\right)\right) u_{1 i}\left(\tilde{e}_{1}\right)\right]<\infty \\
\mathrm{E}\left[w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(\tilde{e}_{1}\right)\right) u_{1 i}^{\prime}\left(\frac{\tilde{e}_{1}}{I}\right)\right]<\infty
\end{array}\right.
$$

for all $i=1, \ldots, I$, then there exists an Arrow-Debreu equilibrium of economy \mathscr{E} where the pricing kernel is atomless. If in addition

$$
-\frac{c u_{1 i}^{\prime \prime}(c)}{u_{1 i}^{\prime}(c)} \leq 1 \text { for all } i=1, \ldots, I \text { and } c>0
$$

then the equilibrium is unique.

Monotonicity of Ψ_{λ}

■ It is defined through model primitives:

$$
\Psi_{\lambda}(p)=w^{\prime}(p) u_{1 \lambda}^{\prime}\left(F_{\tilde{e}_{1}}^{-1}(1-p)\right)
$$

■ Monotonicity of Ψ_{λ} for any λ requires a concave implied utility function for any initial distribution of the wealth.
■ Automatically satisfied when w is convex
■ Possibly satisfied when w is concave or inverse-S shaped

Monotonicity of Ψ_{λ} : An Example

Example. Take $w(p)=p^{1-\alpha}$ where $\alpha \in(0,1), u_{1 \lambda}(c)=\frac{c^{1-\beta}}{1-\beta}$ where $\beta \in(0,1)$, and \tilde{e}_{1} follows the Parato distribution

$$
F_{\tilde{e}_{1}}(x)= \begin{cases}1-\left(\frac{x_{m}}{x}\right)^{\gamma} & x \geq x_{m} \\ 0 & x<x_{m}\end{cases}
$$

In this case

$$
\Psi_{\lambda}(p)=w^{\prime}(p) u_{1 \lambda}^{\prime}\left(F_{\tilde{e}_{1}}^{-1}(1-p)\right)=(1-\alpha) x_{m}^{-\beta} p^{\frac{\beta}{\gamma}-\alpha}
$$

This is a strictly increasing function if and only if $\alpha<\frac{\beta}{\gamma}$.

Section 5

CCAPM and Interest Rate

Consumption-Based CAPM

■ \tilde{r} : rate of return of a security, and $\bar{r}=\mathrm{E}[\tilde{r}]$

Consumption-Based CAPM

■ \tilde{r} : rate of return of a security, and $\bar{r}=\mathrm{E}[\tilde{r}]$

- r_{f} : risk free rate

Consumption-Based CAPM

■ \tilde{r} : rate of return of a security, and $\bar{r}=\mathrm{E}[\tilde{r}]$

- r_{f} : risk free rate
$\square \tilde{g}:=\frac{\tilde{e}_{1}}{e_{0}}-1$: growth rate of aggregate endowment (assumed to be small)

Consumption-Based CAPM

■ \tilde{r} : rate of return of a security, and $\bar{r}=\mathrm{E}[\tilde{r}]$

- r_{f} : risk free rate

■ $\tilde{g}:=\frac{\tilde{e}_{1}}{e_{0}}-1$: growth rate of aggregate endowment (assumed to be small)
■ A rank-dependent consumption-based CAPM (CCAPM):

$$
\bar{r}-r_{f} \approx\left[\alpha+\frac{w^{\prime \prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)}{w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)} f_{\tilde{e}_{1}}\left(e_{0}\right) e_{0}\right] \operatorname{Cov}(\tilde{g}, \tilde{r})
$$

where $\alpha:=-\frac{e_{0} u_{1 \lambda^{*}}^{\prime \prime}\left(e_{0}\right)}{u_{1 \lambda^{*}}^{\prime}\left(e_{0}\right)}$ and $f_{\tilde{e}_{1}}$ is density function of \tilde{e}_{1}

Consumption-Based CAPM

■ \tilde{r} : rate of return of a security, and $\bar{r}=\mathrm{E}[\tilde{r}]$

- r_{f} : risk free rate

■ $\tilde{g}:=\frac{\tilde{e}_{1}}{e_{0}}-1$: growth rate of aggregate endowment (assumed to be small)
■ A rank-dependent consumption-based CAPM (CCAPM):

$$
\bar{r}-r_{f} \approx\left[\alpha+\frac{w^{\prime \prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)}{w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)} f_{\tilde{e}_{1}}\left(e_{0}\right) e_{0}\right] \operatorname{Cov}(\tilde{g}, \tilde{r})
$$

where $\alpha:=-\frac{e_{0} u_{1 \lambda}^{\prime \prime}\left(e_{0}\right)}{u_{1 \lambda^{*}}^{\prime}\left(e_{0}\right)}$ and $f_{\tilde{e}_{1}}$ is density function of \tilde{e}_{1}
■ Classical EUT based CCAPM: $\bar{r}-r_{f} \approx \alpha \mathbf{C o v}(\tilde{g}, \tilde{r})$

Prices and Expected Consumption Growth

$■$ Again $\bar{r}-r_{f} \approx\left[\alpha+\frac{w^{\prime \prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)}{w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)} f_{\tilde{e}_{1}}\left(e_{0}\right) e_{0}\right] \operatorname{Cov}(\tilde{g}, \tilde{r})$

Prices and Expected Consumption Growth

$■$ Again $\bar{r}-r_{f} \approx\left[\alpha+\frac{w^{\prime \prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)}{w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)} f_{\tilde{e}_{1}}\left(e_{0}\right) e_{0}\right] \operatorname{Cov}(\tilde{g}, \tilde{r})$
$■$ Recall $1-F_{\tilde{e}_{1}}\left(e_{0}\right)=P\left(\tilde{e}_{1}>e_{0}\right)$

Prices and Expected Consumption Growth

$■$ Again $\bar{r}-r_{f} \approx\left[\alpha+\frac{w^{\prime \prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)}{w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)} f_{\tilde{e}_{1}}\left(e_{0}\right) e_{0}\right] \operatorname{Cov}(\tilde{g}, \tilde{r})$
■ Recall $1-F_{\tilde{e}_{1}}\left(e_{0}\right)=P\left(\tilde{e}_{1}>e_{0}\right)$
■ The subjective expectation (or belief) on general consumption growth should be priced in for individual assets

Consumption-Based Real Interest

■ A rank-dependent consumption-based real interest rate formula:

$$
1+r_{f} \approx \frac{1}{\beta w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)}\left[1+\alpha \bar{g}+\frac{w^{\prime \prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)}{w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)} f_{\tilde{e}_{1}}\left(e_{0}\right) e_{0} \bar{g}\right]
$$

Consumption-Based Real Interest

■ A rank-dependent consumption-based real interest rate formula:

$$
1+r_{f} \approx \frac{1}{\beta w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)}\left[1+\alpha \bar{g}+\frac{w^{\prime \prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)}{w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)} f_{\tilde{e}_{1}}\left(e_{0}\right) e_{0} \bar{g}\right]
$$

- Classical EUT based real interest rate theory: $1+r_{f} \approx \frac{1+\alpha \bar{g}}{\beta}$

Section 6

Equity Premium and Risk-Free Rate Puzzles

Equity Premium and Risk-Free Rate Puzzles

■ Equity premium puzzle (Mehra and Prescott 1985): observed equity premium is too high to be explainable by classical CCAPM

Equity Premium and Risk-Free Rate Puzzles

■ Equity premium puzzle (Mehra and Prescott 1985): observed equity premium is too high to be explainable by classical CCAPM

■ Mehra and Prescott found historical equity premium of S\&P 500 for 1889-1978 to be 6.18\%, much higher than could be predicted by EUT-based CCAPM

Equity Premium and Risk-Free Rate Puzzles

■ Equity premium puzzle (Mehra and Prescott 1985): observed equity premium is too high to be explainable by classical CCAPM

■ Mehra and Prescott found historical equity premium of S\&P 500 for 1889-1978 to be 6.18\%, much higher than could be predicted by EUT-based CCAPM
■ Subsequent empirical studies have confirmed that this puzzle is robust across different time periods and different countries

Equity Premium and Risk-Free Rate Puzzles

■ Equity premium puzzle (Mehra and Prescott 1985): observed equity premium is too high to be explainable by classical CCAPM

■ Mehra and Prescott found historical equity premium of S\&P 500 for 1889-1978 to be 6.18\%, much higher than could be predicted by EUT-based CCAPM
■ Subsequent empirical studies have confirmed that this puzzle is robust across different time periods and different countries
■ Risk-free rate puzzle (Weil 1989): observed risk-free rate is too low to be explainable by classical CCAPM

Economic Data 1889-1978 (Mehra and Prescott 1985)

Periods	Consumption growth		riskless return		equity premium		S\&P 500 return	
	Mean	S.D.	Mean	S.D.	Mean	S.D.	Mean	S.D.
1889-1978	1.83	3.57	0.80	5.67	6.18	16.67	6.98	16.54
1889-1898	2.30	4.90	5.80	3.23	1.78	11.57	7.58	10.02
1899-1908	2.55	5.31	2.62	2.59	5.08	16.86	7.71	17.21
1909-1918	0.44	3.07	-1.63	9.02	1.49	9.18	-0.14	12.81
1919-1928	3.00	3.97	4.30	6.61	14.64	15.94	18.94	16.18
1929-1938	-0.25	5.28	2.39	6.50	0.18	31.63	2.56	27.90
1939-1948	2.19	2.52	-5.82	4.05	8.89	14.23	3.07	14.67
1949-1958	1.48	1.00	-0.81	1.89	18.30	13.20	17.49	13.08
1959-1968	2.37	1.00	1.07	0.64	4.50	10.17	5.58	10.59
1969-1978	2.41	1.40	-0.72	2.06	0.75	11.64	0.03	13.11

Equity Premium Puzzle

■ The observed equity premium of 6.18% corresponds to a relative index of risk aversion over 30 (Mankiw and Zeldes 1991)

Equity Premium Puzzle

■ The observed equity premium of 6.18% corresponds to a relative index of risk aversion over 30 (Mankiw and Zeldes 1991)

- A measure of 30 means indifference between a gamble equally likely to pay $\$ 50,000$ or $\$ 100,000$ and a certain payoff of \$51,209

Equity Premium Puzzle

■ The observed equity premium of 6.18% corresponds to a relative index of risk aversion over 30 (Mankiw and Zeldes 1991)

- A measure of 30 means indifference between a gamble equally likely to pay $\$ 50,000$ or $\$ 100,000$ and a certain payoff of \$51,209

■ No human is that risk averse

Our Explanation

■ Probability weighting, in addition to outcome utility, also contributes to this total measure of 30

Our Explanation

■ Probability weighting, in addition to outcome utility, also contributes to this total measure of 30
$■$ Recall $\bar{r}-r_{f} \approx\left[\alpha+\frac{w^{\prime \prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)}{w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)} f_{\tilde{e}_{1}}\left(e_{0}\right) e_{0}\right] \operatorname{Cov}(\tilde{g}, \tilde{r})$

Our Explanation

■ Probability weighting, in addition to outcome utility, also contributes to this total measure of 30
■ Recall $\bar{r}-r_{f} \approx\left[\alpha+\frac{w^{\prime \prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)}{w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)} f_{\tilde{e}_{1}}\left(e_{0}\right) e_{0}\right] \operatorname{Cov}(\tilde{g}, \tilde{r})$
■ w is typically inverse- S shaped

Our Explanation

■ Probability weighting, in addition to outcome utility, also contributes to this total measure of 30
$■$ Recall $\bar{r}-r_{f} \approx\left[\alpha+\frac{w^{\prime \prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)}{w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)} f_{\tilde{e}_{1}}\left(e_{0}\right) e_{0}\right] \operatorname{Cov}(\tilde{g}, \tilde{r})$
■ w is typically inverse- S shaped
■ It is plausible to assume $\mathrm{P}\left(\tilde{e}_{1}>e_{0}\right)$ is large (close to 1)

Our Explanation

■ Probability weighting, in addition to outcome utility, also contributes to this total measure of 30
■ Recall $\bar{r}-r_{f} \approx\left[\alpha+\frac{w^{\prime \prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)}{w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)} f_{\tilde{e}_{1}}\left(e_{0}\right) e_{0}\right] \operatorname{Cov}(\tilde{g}, \tilde{r})$
■ w is typically inverse- S shaped
■ It is plausible to assume $\mathrm{P}\left(\tilde{e}_{1}>e_{0}\right)$ is large (close to 1)
■ Hence $1-F_{\tilde{e}_{1}}\left(e_{0}\right)=\mathrm{P}\left(\tilde{e}_{1}>e_{0}\right)$ lies in the convex domain of w

Our Explanation

■ Probability weighting, in addition to outcome utility, also contributes to this total measure of 30
■ Recall $\bar{r}-r_{f} \approx\left[\alpha+\frac{w^{\prime \prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)}{w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)} f_{\tilde{e}_{1}}\left(e_{0}\right) e_{0}\right] \operatorname{Cov}(\tilde{g}, \tilde{r})$
■ w is typically inverse- S shaped
■ It is plausible to assume $\mathrm{P}\left(\tilde{e}_{1}>e_{0}\right)$ is large (close to 1)
■ Hence $1-F_{\tilde{e}_{1}}\left(e_{0}\right)=\mathrm{P}\left(\tilde{e}_{1}>e_{0}\right)$ lies in the convex domain of w

■ Expected rate of return provided by our model is larger than that by EUT

Our Explanation (Cont'd)

■ Recall
$1+r_{f} \approx \frac{1}{\beta w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)}\left[1+\alpha \bar{g}+\frac{w^{\prime \prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)}{w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)} f_{\tilde{e}_{1}}\left(e_{0}\right) e_{0} \bar{g}\right]$

Our Explanation (Cont'd)

- Recall

$$
1+r_{f} \approx \frac{1}{\beta w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)}\left[1+\alpha \bar{g}+\frac{w^{\prime \prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)}{w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)} f_{\tilde{e}_{1}}\left(e_{0}\right) e_{0} \bar{g}\right]
$$

■ We have argued $1-F_{\tilde{e}_{1}}\left(e_{0}\right)$ is normally close to 1

Our Explanation (Cont'd)

- Recall

$$
1+r_{f} \approx \frac{1}{\beta w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)}\left[1+\alpha \bar{g}+\frac{w^{\prime \prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)}{w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)} f_{\tilde{e}_{1}}\left(e_{0}\right) e_{0} \bar{g}\right]
$$

■ We have argued $1-F_{\tilde{e}_{1}}\left(e_{0}\right)$ is normally close to 1
■ Therefore, for an inverse-S shaped $w, w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)$ will be larger than one

Our Explanation (Cont'd)

- Recall

$$
1+r_{f} \approx \frac{1}{\beta w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)}\left[1+\alpha \bar{g}+\frac{w^{\prime \prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)}{w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)} f_{\tilde{e}_{1}}\left(e_{0}\right) e_{0} \bar{g}\right]
$$

■ We have argued $1-F_{\tilde{e}_{1}}\left(e_{0}\right)$ is normally close to 1
■ Therefore, for an inverse-S shaped $w, w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)$ will be larger than one

- Our interest rate model indicates that an appropriate w can render a lower risk-free rate than EUT model

Our Explanation (Cont'd)

- Recall

$$
1+r_{f} \approx \frac{1}{\beta w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)}\left[1+\alpha \bar{g}+\frac{w^{\prime \prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)}{w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)} f_{\tilde{e}_{1}}\left(e_{0}\right) e_{0} \bar{g}\right]
$$

■ We have argued $1-F_{\tilde{e}_{1}}\left(e_{0}\right)$ is normally close to 1
■ Therefore, for an inverse- S shaped $w, w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)$ will be larger than one

- Our interest rate model indicates that an appropriate w can render a lower risk-free rate than EUT model
- The presence of a suitable probability weighting function will simultaneously increase equity premium and decrease risk-free rate under RDUT, diminishing the gap seen under EUT

Economic Data 1889-1978 (Mehra and Prescott 1985)

Periods	Consumption growth		riskless return		equity premium		S\&P 500 return	
	Mean	S.D.	Mean	S.D.	Mean	S.D.	Mean	S.D.
1889-1978	1.83	3.57	0.80	5.67	6.18	16.67	6.98	16.54
1889-1898	2.30	4.90	5.80	3.23	1.78	11.57	7.58	10.02
1899-1908	2.55	5.31	2.62	2.59	5.08	16.86	7.71	17.21
1909-1918	0.44	3.07	-1.63	9.02	1.49	9.18	-0.14	12.81
1919-1928	3.00	3.97	4.30	6.61	14.64	15.94	18.94	16.18
1929-1938	-0.25	5.28	2.39	6.50	0.18	31.63	2.56	27.90
1939-1948	2.19	2.52	-5.82	4.05	8.89	14.23	3.07	14.67
1949-1958	1.48	1.00	-0.81	1.89	18.30	13.20	17.49	13.08
1959-1968	2.37	1.00	1.07	0.64	4.50	10.17	5.58	10.59
1969-1978	2.41	1.40	-0.72	2.06	0.75	11.64	0.03	13.11

Negative Real Interest Rates

■ Four periods, 1909-1918, 1939-1948, 1949-1958, and 1969-1978, during which $\bar{g}>0$ but $r_{f}<0$

Negative Real Interest Rates

■ Four periods, 1909-1918, 1939-1948, 1949-1958, and 1969-1978, during which $\bar{g}>0$ but $r_{f}<0$
■ Not possible under EUT, since $r_{f} \geq \alpha \bar{g}>0$ if $\bar{g}>0$

Negative Real Interest Rates

■ Four periods, 1909-1918, 1939-1948, 1949-1958, and 1969-1978, during which $\bar{g}>0$ but $r_{f}<0$
■ Not possible under EUT, since $r_{f} \geq \alpha \bar{g}>0$ if $\bar{g}>0$
■ It can be accounted for by rank-dependent CCAPM

Negative Real Interest Rates

■ Four periods, 1909-1918, 1939-1948, 1949-1958, and 1969-1978, during which $\bar{g}>0$ but $r_{f}<0$
■ Not possible under EUT, since $r_{f} \geq \alpha \bar{g}>0$ if $\bar{g}>0$
■ It can be accounted for by rank-dependent CCAPM

- Recall

$$
1+r_{f} \approx \frac{1}{\beta w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)}\left[1+\alpha \bar{g}+\frac{w^{\prime \prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)}{w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)} f_{\tilde{e}_{1}}\left(e_{0}\right) e_{0} \bar{g}\right]
$$

Negative Real Interest Rates

■ Four periods, 1909-1918, 1939-1948, 1949-1958, and 1969-1978, during which $\bar{g}>0$ but $r_{f}<0$
■ Not possible under EUT, since $r_{f} \geq \alpha \bar{g}>0$ if $\bar{g}>0$
■ It can be accounted for by rank-dependent CCAPM

- Recall

$$
1+r_{f} \approx \frac{1}{\beta w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)}\left[1+\alpha \bar{g}+\frac{w^{\prime \prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)}{w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)} f_{\tilde{e}_{1}}\left(e_{0}\right) e_{0} \bar{g}\right]
$$

■ It requires only a sufficiently large value of $\beta w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)$ explainable by a proper inverse-S shaped w

Great Depression

■ Great Depression (1929-1938) is the only 10-year period during which $\bar{g}<0$

Great Depression

■ Great Depression (1929-1938) is the only 10-year period during which $\bar{g}<0$
$\square 1-F_{\tilde{e}_{1}}\left(e_{0}\right)=\mathrm{P}\left(\tilde{e}_{1}>e_{0}\right)$ would have lain in the concave domain of w due to the overwhelmingly negative outlook of economy

Great Depression

■ Great Depression (1929-1938) is the only 10 -year period during which $\bar{g}<0$
$\square 1-F_{\tilde{e}_{1}}\left(e_{0}\right)=\mathrm{P}\left(\tilde{e}_{1}>e_{0}\right)$ would have lain in the concave domain of w due to the overwhelmingly negative outlook of economy
■ Recall $\bar{r}-r_{f} \approx\left[\alpha+\frac{w^{\prime \prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)}{w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)} f_{\tilde{e}_{1}}\left(e_{0}\right) e_{0}\right] \operatorname{Cov}(\tilde{g}, \tilde{r})$

Great Depression

■ Great Depression (1929-1938) is the only 10-year period during which $\bar{g}<0$
■ $1-F_{\tilde{e}_{1}}\left(e_{0}\right)=\mathrm{P}\left(\tilde{e}_{1}>e_{0}\right)$ would have lain in the concave domain of w due to the overwhelmingly negative outlook of economy

- Recall $\bar{r}-r_{f} \approx\left[\alpha+\frac{w^{\prime \prime}\left(1-F_{\bar{e}_{1}}\left(e_{0}\right)\right)}{w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)} f_{\tilde{e}_{1}}\left(e_{0}\right) e_{0}\right] \operatorname{Cov}(\tilde{g}, \tilde{r})$
$\square \frac{w^{\prime \prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)}{w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)} f_{\tilde{e}_{1}}\left(e_{0}\right) e_{0}$ should be negative

Great Depression

■ Great Depression (1929-1938) is the only 10-year period during which $\bar{g}<0$
■ $1-F_{\tilde{e}_{1}}\left(e_{0}\right)=\mathrm{P}\left(\tilde{e}_{1}>e_{0}\right)$ would have lain in the concave domain of w due to the overwhelmingly negative outlook of economy
■ Recall $\bar{r}-r_{f} \approx\left[\alpha+\frac{w^{\prime \prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)}{w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)} f_{\tilde{e}_{1}}\left(e_{0}\right) e_{0}\right] \operatorname{Cov}(\tilde{g}, \tilde{r})$
■ $\frac{w^{\prime \prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)}{w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)} f_{\tilde{e}_{1}}\left(e_{0}\right) e_{0}$ should be negative
■ Our model would have predicted a lower equity premium

Great Depression

■ Great Depression (1929-1938) is the only 10-year period during which $\bar{g}<0$
■ $1-F_{\tilde{e}_{1}}\left(e_{0}\right)=\mathrm{P}\left(\tilde{e}_{1}>e_{0}\right)$ would have lain in the concave domain of w due to the overwhelmingly negative outlook of economy
■ Recall $\bar{r}-r_{f} \approx\left[\alpha+\frac{w^{\prime \prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)}{w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)} f_{\tilde{e}_{1}}\left(e_{0}\right) e_{0}\right] \operatorname{Cov}(\tilde{g}, \tilde{r})$
■ $\frac{w^{\prime \prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)}{w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)} f_{\tilde{e}_{1}}\left(e_{0}\right) e_{0}$ should be negative
■ Our model would have predicted a lower equity premium
■ Corresponding premium, 0.18%, is lowest in Table 1

Great Depression

■ Great Depression (1929-1938) is the only 10-year period during which $\bar{g}<0$
■ $1-F_{\tilde{e}_{1}}\left(e_{0}\right)=\mathrm{P}\left(\tilde{e}_{1}>e_{0}\right)$ would have lain in the concave domain of w due to the overwhelmingly negative outlook of economy

- Recall $\bar{r}-r_{f} \approx\left[\alpha+\frac{w^{\prime \prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)}{w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)} f_{\tilde{e}_{1}}\left(e_{0}\right) e_{0}\right] \operatorname{Cov}(\tilde{g}, \tilde{r})$

■ $\frac{w^{\prime \prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)}{w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)} f_{\tilde{e}_{1}}\left(e_{0}\right) e_{0}$ should be negative

- Our model would have predicted a lower equity premium
- Corresponding premium, 0.18%, is lowest in Table 1

■ In general, at times when most people believe that economy is in a downturn, expected rate of return provided by RDUT is smaller than that provided by EUT model

Great Depression

■ Great Depression (1929-1938) is the only 10-year period during which $\bar{g}<0$
■ $1-F_{\tilde{e}_{1}}\left(e_{0}\right)=\mathrm{P}\left(\tilde{e}_{1}>e_{0}\right)$ would have lain in the concave domain of w due to the overwhelmingly negative outlook of economy

- Recall $\bar{r}-r_{f} \approx\left[\alpha+\frac{w^{\prime \prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)}{w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)} f_{\tilde{e}_{1}}\left(e_{0}\right) e_{0}\right] \operatorname{Cov}(\tilde{g}, \tilde{r})$

■ $\frac{w^{\prime \prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)}{w^{\prime}\left(1-F_{\tilde{e}_{1}}\left(e_{0}\right)\right)} f_{\tilde{e}_{1}}\left(e_{0}\right) e_{0}$ should be negative
■ Our model would have predicted a lower equity premium
■ Corresponding premium, 0.18%, is lowest in Table 1

- In general, at times when most people believe that economy is in a downturn, expected rate of return provided by RDUT is smaller than that provided by EUT model
■ Hence we should investigate asset pricing by differentiating periods of economic growth from those of economic depression

Section 7

Summary and Further Readings

Summary

- Conditions on an RDUT economy provided under which the Arrow-Debreu equilibrium exists uniquely

Summary

■ Conditions on an RDUT economy provided under which the Arrow-Debreu equilibrium exists uniquely
■ Motivated to re-study RDUT portfolio choice problem without any monotonicity condition

Summary

■ Conditions on an RDUT economy provided under which the Arrow-Debreu equilibrium exists uniquely
■ Motivated to re-study RDUT portfolio choice problem without any monotonicity condition
■ At equilibrium one cannot distinguish between RDUT and EUT economies; however, representative risk aversion level is (possibly substantially) altered

Summary

■ Conditions on an RDUT economy provided under which the Arrow-Debreu equilibrium exists uniquely
■ Motivated to re-study RDUT portfolio choice problem without any monotonicity condition

■ At equilibrium one cannot distinguish between RDUT and EUT economies; however, representative risk aversion level is (possibly substantially) altered

- Asset prices not only depend upon level of risk aversion and beta, but also upon agents' belief on economic growth

Summary

■ Conditions on an RDUT economy provided under which the Arrow-Debreu equilibrium exists uniquely
■ Motivated to re-study RDUT portfolio choice problem without any monotonicity condition

■ At equilibrium one cannot distinguish between RDUT and EUT economies; however, representative risk aversion level is (possibly substantially) altered

- Asset prices not only depend upon level of risk aversion and beta, but also upon agents' belief on economic growth
■ Probability weighting may offer a new way of thinking in explaining many economic phenomena

Essential Readings

- H. Shefrin. A Behavioral Approach to Asset Pricing (2nd Edition), Elsevier, Amsterdam, 2008.
■ J. Xia and X. Zhou. Arrow-Debreu equilibria for rank-dependent utilities, Working paper, 2012; available at http://people.maths.ox.ac.uk/~ zhouxy/download/AB.pdf
■ R.A. Dana. Existence and uniqueness of equilibria when preferences are additively separable, Econometrica, 61: 953-957, 1993.

Other Readings

- M. Abdellaoui. A genuine rank-dependent generalization of the von Neumann-Morgenstern expected utility theorem, Econometrica, 70:717-736, 2002.
- E.M. Azevedo and D. Gottlieb. Risk-neutral firms can extract unbounded profits from consumers with prospect theory preferences, Journal of Economic Theory, 147:1291-1299, 2012.

■ N. Barberis and M. Huang. Stocks as lotteries: The implications of probability weighting for security prices, American Economic Review, 98:2066-2100, 2008.

- R.A. Dana. Existence, uniqueness and determinacy of Arrow-Debreu equilibria in finance models, Journal of Mathematical Economics, 22:563-579, 1993.
- R.A. Dana. Comonotonicity, efficient risk-sharing and equilibria in markets with short-selling for concave law-invariant utilities, Journal of Mathematical Economics, 47:328-335, 2011.
- E. De Giorgi, T. Hens and M. O. Rieger. Financial market equilibria with cumulative prospect theory, Journal of Mathematical Economics, 46:633-651, 2010.
- H. Föllmer and A. Schied. Stochastic Finance: An Introduction in Discrete Time (3rd edition), Walter de Gruyter, Berlin, 2011.
- X. He and X. Zhou. Portfolio choice under cumulative prospect theory: An analytical treatment, Management Science, 57:315-331, 2011.

