
Gambling in Contests with Regret

Han Feng∗ David Hobson†

November 4, 2013

Abstract

This paper discusses the gambling contest introduced in Seel & Strack [7]
and considers the impact of adding a penalty associated with failure to
follow a winning strategy.

The Seel & Strack model consists of n-agents each of whom privately
observes a transient diffusion process and chooses when to stop it. The
player with the highest stopped value wins the contest, and each player’s
objective is to maximise her probability of winning the contest. We give
a new derivation of the results of Seel & Strack [7] based on a Lagrangian
approach. Moreover, we consider an extension of the problem to one in
which an agent is penalised when her strategy is suboptimal, in the sense
that her chosen strategy does not win the contest, but there existed an
alternative strategy which would have resulted in victory.

1 Introduction

In [7], Seel & Strack introduced a model of a gambling contest between agents
in which the objective of each agent is not to maximise her return, but rather
to maximise the probability that her return is the highest amongst the set of
agents. One motivation for studying such a problem is that it provides a stylised
model for competing fund managers, only the most successful of whom will be
given funds to invest over the next time period. Another distinct strand of the
literature on modelling competition between fund managers is represented by
Basak and Makarov [2].

In the Seel & Strack paper each agent privately observes a stochastic process
and chooses a stopping time to produce a stopped value. The agent wins the
contest if her stopped value X is greater than the stopped value of every other
agent, and the objective of the agent is to maximise the probability that she
wins the contest. In particular the objective of the agent is to maximise the
probability that X ≥ Y where Y is the maximum of the stopped values of the
other competing agents.
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Our aim is to add a behavioural finance aspect to the problem, in the form
of regret theory in the sense of Loomes & Sugden [5]. Again the objective of
the agent is to maximise her chances of winning the contest, but now she is
penalised if she has not won the contest, and she has behaved sub-optimally,
in the sense that there was an alternative strategy which would have led to her
winning the contest. Thus a fund manager who has followed a poor strategy
is not merely given a new role within the firm, but instead is terminated with
disgrace.

Although the problem described in [7] is very simple, the solution is re-
markably rich and subtle. Firstly, in equilibrium agents must use randomised
strategies, so that the level at which the agent should stop is stochastic. Sec-
ondly, the set of values at which the agent should stop forms an interval which
is bounded above. Several variants are discussed in Seel & Strack, including
the extension to the asymmetric case where the starting values of the processes
observed by the agents are different.

We will consider the following variant of the problem. The agent’s choice of
stopping rule determines her stopped value X. But if with hindsight we look at
the best possible time she could have chosen then we get a maximum value M
she might have attained. We consider a problem in which the agent receives a
reward of 1 if her stopped value is higher than the the highest stopped value Y
across all agents, but she is penalised K if her stopped value is not highest, and
if she had stopped at the maximum

value she might have attained M then she would have been the winner. If
she is not the winner, and there is no strategy she might have followed which
would led to her being the winner then her reward is zero. Thus, her objective
is to maximise P(X ≥ Y )−KP(X < Y ≤M).

In fact we consider three variants of the problem, in which an omniscient
being (or the agent’s supervisor) penalises the agent for stopping too soon, for
stopping too late, or for stopping too soon or too late. In the first case the agent
faces regret over stopping too soon, and we consider the maximum value to be
the maximum value attained by her process after the moment she chose to stop.
In the second case the maximum is taken only over that part of the path which
occurs before the chosen stopping time and the agent faces regret over stopping
too late. In the third case we take the maximum over the whole path.

Our results are that in the first problem, the effect of the penalty is precisely
equivalent to an increase in the number of opponents. An increase in K incen-
tivises the agent to aim for higher values, at the cost of stopping at low values
more often. This is the same as the effect of competition from more opposing
agents. In the second problem, which is both harder and more interesting, the
optimal strategy is modified in a more subtle way. This case is relevant if the
agent’s process is unobservable from the point at which it is stopped, for in-
stance if it is the gains from trade process arising from a dynamic investment
strategy chosen by the agent. Now the agent faces a risk of a penalty whenever
she stops below the value of the current maximum. For this reason she is re-
luctant to do so, although it is also sub-optimal to wait until her process hits
zero, as this is a sure losing strategy. An increase in K incentivises her to stop
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more quickly. The third problem might be expected to be a combination of the
two previous problems, but in fact there is a natural simplification which leads
to the optimum being the same solution as the original Seel & Strack problem.

The remainder of this paper is constructed as follows. In the next section we
describe the original contest introduced in Seel & Strack [7]. We rederive the
Nash equilibrium, using a different approach based on a Lagrangian method.
Then in Section 3 we introduce the problem with regret, which we then solve in
the three cases described above in Sections 4, 5 and 6. In Section 7 we explain
the origin of the optimal multipliers and the candidate Nash equilibrium distri-
butions. The ideas of the proofs are different to those in [7] in that instead of
trying to write down the value function for the agents we use a Lagrangian suffi-
ciency theorem. This brings new insights and yields a simpler proof even in the
standard problem of Seel & Strack and facilitates our analysis of the extended
problem. Finally we show how our results for Brownian motion absorbed at
zero extend to time homogeneous diffusions.

2 Contest without regret

2.1 The model

There are n players with labels i ∈ I = {1, 2, . . . , n} who take part in the contest.
Player i privately observes the continuous-time realisation of a Brownian motion
Xi = (Xi

t)t∈R+ absorbed at zero with Xi
0 = x0 where x0 is positive and the same

for all agents. Let F it = σ({Xi
s : s < t}) and set Fi = (F it )t≥0.

The space of strategies for agent i is the space of Fi-stopping times τ i. Since
zero is absorbing for Xi, without loss of generality we may restrict attention
to τ i ≤ Hi

0 = inf{t ≥ 0 : Xi
t = 0}. Player i observes her own process Xi, but

not Xj for j 6= i; nor does she observe the stopping times chosen by the other
agents. Moreover, the processes Xi are independent.

The player who stops at the highest value wins unit reward, that is, ∀i ∈ I,
player i wins 1 if she stops at time τ i such that Xi

τ i > Xj
τj ∀j 6= i. If there are

k players who stop at the equal highest value then these players each win 1
k .

Therefore player i with stopping value Xi
τ i receives payoff

1

k
1{Xi

τi
=maxj∈I X

j

τj
},

where k =
∣∣∣{i ∈ I : Xi

τ i = maxj∈I X
j
τj

}∣∣∣.
The key insight of Seel & Strack [7] is to observe that the problem of choosing

the optimal stopping time can be reduced to a problem of finding the optimal law
for Xi

τ i or equivalently an optimal target distribution. The payoffs to the agents
only depend upon τ i via the distribution of Xi

τ i . Hence, the problem can be
considered in two stages, firstly find an optimal target distribution F i, and then
verify that there is a choice of τ i such that Xi

τ i has law F i. But, the problem
of finding τ such that Xτ has law F is a classical problem in probability theory,
and is known as the Skorokhod embedding problem (Skorokhod [8]). Since X
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is a Brownian motion started at x0 and absorbed at 0, any distribution on R+

with mean less than or equal to x0 can be embedded with a finite stopping time
τ (and conversely, for any τ the law of Xτ has mean less than or equal to x0).

Note that there are multiple solutions to the Skorokhod embedding problem
for F , so there will be several alternative stopping rules which will bring equal
probability of success to an agent. However, the optimal target distribution is
unique.

Our aim is to find Nash equilibria for the problem. By the above remarks,
a Nash equilibrium can be identified with a family of distribution functions
(F i)i∈I . We will say that (F i)i∈I is a Nash equilibrium if, for each i ∈ I, if the
other agents use stopping rules τ j such that Xj

τj ∼ F
j , then the optimal target

distribution for agent i is F i, and she may use any stopping rule τ i such that
Xi
τ i ∼ F

i. We will say a Nash equilibrium is symmetric if F i does not depend on
i, and we will say that a Nash equilibrium is atom-free if each F i is atom-free.
Given the symmetry of the situation in the sense that each agent observes a
martingale process started from the same level x0, it seems natural that a Nash
equilibria is symmetric. Moreover, simple arguments over rearranging mass can
be used to show that it is never optimal for two agents to put mass at the
same positive point x — either of them could benefit by modifying the target
distribution to put a proportion N/(N + 1) of this mass at (x + N−2) and a
proportion 1/(N + 1) at (x − N−1), where N is a sufficiently large constant –
and then it is possible to deduce that any optimal solution is atom-free.

Theorem 2.1. [Seel & Strack [7]] Any Nash equilibrium has the property that
it is symmetric and atom-free.

Remark 2.1. The fact that the Nash equilibrium is atom-free relies on the
fact that the situation is symmetric in the sense that all agents stop Brownian
motions started from a common value x0. If the agents observe processes with
different starting points, then the Nash equilibria may have masses at zero for
some agents. In that case, for a Nash equilibrium, no agent places mass at a
positive point, and at least one agent has an atom-free distribution. We will
only consider the symmetric case.

Remark 2.2. In the Seel & Strack setting, which we call the standard case,
we will focus on proving that there exists a unique symmetric, atom-free Nash
equilibrium. It will then follow from the results of Seel & Strack [7] that this
is the unique Nash equilibrium for our problem. Our methods can be extended
to show that every Nash equilibrium has the property that it is symmetric and
atom-free, but we will not present those arguments here. When we consider
the problem with a penalty for using a losing strategy when a winning strategy
exists, we will again prove the existence of a symmetric, atom-free Nash equi-
librium. Moreover there is exactly one symmetric, atom-free Nash equilibrium.
Intuition gained from the standard case indicates that this equilibrium is the
unique Nash equilibrium, but we do not prove this result.
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2.2 Derivation of the equilibrium distribution

This section is devoted to a proof of the following result, first proved in Seel
and Strack [7] using different methods.

Theorem 2.2. There exists a symmetric, atom-free Nash equilibrium for the
problem for which Xi

τ i has law F (x), where for x ≥ 0

F (x) = min

{
n−1

√
x

nx0
, 1

}
Proof. Let A be the set of non-decreasing functions f : [0,∞) 7→ [0,∞) which
are null at zero, and let AD(x0) be the subset of A corresponding to distribution
functions of random variables with mean x0. Then,

AD(x0) =

{
f : [0,∞) 7→ [0,∞) such that f(0) = 0, f non-decreasing, lim

x↑∞
f(x) = 1,

∫ ∞
0

xf(dx) = x0

}
.

We seek a symmetric atom-free Nash equilibrium. Since there are no atoms,
we do not need to consider how to break ties and a symmetric Nash equilibrium
is identified with a distribution function G∗ ∈ AD(x0) with the property that∫ ∞

0

G∗(x)n−1G∗(dx) ≥
∫ ∞

0

G∗(x)n−1G(dx) ∀G ∈ AD(x0).

(Then if all other agents for a strategy yielding a stopped value with distribution
G∗, the agent has a higher probability of winning by following a strategy yielding
a stopped value also with probability G∗ than with a strategy yielding any other
distribution.)

Suppose that the other players all choose F (x) as their target distribution.
Then the problem facing the agent is to choose G to solve

max
G(x)∈A

∫ ∞
0

F (x)n−1G(dx) subject to

∫ ∞
0

xG(dx) = x0 and

∫ ∞
0

G(dx) = 1.

(1)
Introducing multipliers λ and γ for the two constraints, the Lagrangian for the
optimization problem (1) is then

LF (G;λ, γ) =

∫ ∞
0

[
F (x)n−1 − λx− γ

]
G(dx) + λx0 + γ.

Now we state a variant of the Lagrangian sufficiency theorem for our problem.

Proposition 2.1. If G∗, λ∗ and γ∗ exist such that G∗ ∈ AD(x0) and

LG∗(G∗;λ∗, γ∗) ≥ LG∗(G;λ∗, γ∗) (2)

for all G ∈ A, then G∗ is a symmetric, atom-free Nash equilibrium.

5



Proof. If G ∈ AD(x0) then∫ ∞
0

G∗(x)n−1G(dx) = LG∗(G;λ∗, γ∗).

Then, under the hypotheses of the proposition,∫ ∞
0

G∗(x)n−1G∗(dx) = LG∗(G∗;λ∗, γ∗) ≥ LG∗(G;λ∗, γ∗) =

∫ ∞
0

G∗(x)n−1G(dx).

Return to the proof of Theorem 2.2. On [0,∞) letG∗(x) = min
{

n−1
√
x/(nx0), 1

}
,

λ∗ = 1/(nx0) and γ∗ = 0. We verify that for these multipliers (2) holds and
that G∗ ∈ AD(x0). The latter follows immediately from the explicit form of
G∗. For the former

LG∗(G;λ∗, γ∗) =

∫ ∞
0

[
G∗(x)n−1 − λ∗x− γ∗

]
G(dx) + λ∗x0 + γ∗

=

∫ ∞
nx0

[
1− x

nx0

]
G(dx) +

1

n
≤ 1

n
= LG∗(G∗;λ∗, γ∗).

Thus there exists a symmetric, atom-free Nash equilibrium of the given form.

Remark 2.3. Seel & Strack [7] solve the problem by writing down a candidate
value function for the problem, and then verifying that the candidate value
function is a martingale under an optimal stopping rule for each agent.

3 Contests with regret

Our goal is to solve an extended version of the problem in which agents are
penalised for following losing strategies, if they had an alternative stopping rule
which would have won the contest. The idea is that there is an omniscient
judge who can observe the path of Xi, and not just the stopped value, and
who penalises the agent for the failure to use a winning stopping rule if such a
strategy exists. This judge represents the supervisor of the agent, and the agent
faces penalties (such as dismissal) in cases where after the fact she is seen to
have followed a losing strategy, when a winning strategy existed.

In our model there are n contestants, each of whom privately observes her
own process Xi and the player with the highest stopping value wins unit reward.
That is, ∀i ∈ I, player i wins 1 if she stops at time τ i such that Xi

τ i > Xj
τj

∀j 6= i. In addition the player is penalised K ≥ 0 if her stopped value is not
highest, and if she had an alternative strategy which would, with the benefit
of hindsight, have allowed her to win. (The case K = 0 corresponds to the
standard problem.) Given that the best strategy for agent i is to stop at the
maximum value M i attained by Xi this means that player i loses K if she stops
at τ i such that Xi

τ i < maxj 6=iX
j
τj < M i.
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There are several different potential definitions for the quantity M i which
represents the maximum the agent could have achieved. Depending on the inter-
pretation, this could be the maximum over the entire path M i = max{Xi

t ; 0 ≤
t ≤ Hi

0}, or it could be that only that part of the path before the agent’s chosen
stopping time is considered, M i = max{Xi

t ; 0 ≤ t ≤ τ i}, or only that part of
the path after the agent’s chosen stopping time, M i = max{Xi

t ; τ
i ≤ t ≤ Hi

0},
where Hi

0 = inf{t ∈ R+ : Xi
t = 0}. These different interpretations will lead

to different Nash equilibria. We consider the three cases separately in the next
three sections.

As before, ties are broken randomly. If there are k players who stop at the
highest value then these players each wins 1

k . Further, player i loses K2 if she

stops at τ i such that Xi
τ i < maxj 6=iX

j
τj = M i, where 0 ≤ K2 ≤ K. Hence

player i who stops at Xi
τ i with maximum value M i has payoff

1

k
1{Xi

τi
=maxj∈I X

j

τj
} −K1{Xi

τi
<maxj 6=iX

j

τj
<Mi} −K21{Xi

τi
<maxj 6=iX

j

τj
=Mi},

where k =
∣∣∣{i ∈ I : Xi

τ i = maxj∈I X
j
τj

}∣∣∣.
Our objective is to find a Nash equilibria which is represented by a family of

stopping rules (τ i). Since the values (Xi
τ i ,M

i) are a sufficient statistic for the
problem, the Nash equilibria can be characterised by the law νi of (Xi

τ i ,M
i).

Then in equilibrium, the agent can use any stopping rule for which (Xi
τ i ,M

i)
has law νi. We write F i for the marginal of ν which corresponds to the law of
Xi
τ i .

In the standard case, every Nash equilibrium is symmetric and atom-free.
In our generalised setting we will limit our search to symmetric atom-free Nash
equilibria, and we will show that there exists a unique such equilibrium. Then,
since there are no atoms, the probability of a tie is zero. Thus neither the
method of breaking ties nor the value of K2 will affect our results. In fact,
motivated by the situation in the standard case, we conjecture that every Nash
equilibrium is symmetric and atom-free and therefore that we have found the
unique equilibrium.

Suppose that the other players all choose F (x) as their target distribution
of Xτ . Let Y = maxj 6=iX

j
τj . Then Y has cumulative distribution function FY

given by FY (y) = F (x)n−1 and conditional on (Xi
τi = x,M i = m), the expected

payoff to agent i is

P(Y i ≤ x)−KP(x < Y ≤ m) = F (x)n−1−K(F (m)n−1−F (x)n−1) = (1+K)F (x)n−1−KF (m)n−1.

We say ν = ν(dx, dm) is a feasible measure if ν is a possible joint law of
(Xi

τ i ,M
i). Then the aim of agent i is to choose a feasible measure to max-

imise
(1 +K)E[F (Xi

τ i)
n−1 −KF (M i)n−1.

Note that the set of feasible measures depends on the definition of M .
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Then agent i aims to choose a feasible measure ν(x, y) for (Xi
τ i ,M

i) to
maximise

E
[
F (Xi

τ i)
n−1
]
−KE

[
F (M i)n−1 − F (Xi

τ i)
n−1
]

= (1 +K)E
[
F (Xi

τ i)
n−1
]
−KE

[
F (M i)n−1

]
,

=

∫ ∞
0

∫ ∞
0

[
(1 +K)F (x)n−1 −KF (y)n−1

]
ν(dx, dy), (3)

which is her expected payoff when she stops at τ i.
So far we have been imprecise about the definition of M i. The quantity M i

represents the maximum the agent could have achieved. Depending on the inter-
pretation, this could be the maximum over the entire path M i = max{Xi

t ; 0 ≤
t ≤ Hi

0}, or it could be that only that part of the path before the agent’s chosen
stopping time is considered, M i = max{Xi

t ; 0 ≤ t ≤ τ i}, or only that part of
the path after the agent’s chosen stopping time, M i = max{Xi

t ; τ
i ≤ t ≤ Hi

0},
where Hi

0 = inf{t ∈ R+ : Xi
t = 0}. These different interpretations will lead

to different Nash equilibria. We consider the three cases separately in the next
three sections.

4 Contest with regret over future failure to stop

In this section we consider the contest in which the agent is penalised for stop-
ping too soon. We consider the maximum value M i to be defined by

M i := M i
[τ i,Hi0] = sup

τ i≤t≤Hi0
Xi
t .

Theorem 4.1. There exists a symmetric, atom-free Nash equilibrium for the
problem for which Xi

τ i has law F (x), where for x ≥ 0

F (x) = min

{
N−1

√
x

Nx0
, 1

}
with N = n+K(n− 1).

Remark 4.1. The agent follows exactly the same optimal strategy as an agent
in a different setup, where there is no penalty, but the total number of contes-
tants is increased to N = n+K(n− 1).

Proof. Denote by ν the joint distribution of Xi
τ i and M i

[τ i,Hi0]
and denote by

G(x) the marginal distribution of Xi
τ i . Then using the strong Markov property

and the martingale property of X,

ν([0, x]× [0, y]) = P(Xi
τ i ≤ x,M

i
[τ i,Hi0] ≤ y) =

∫ x

0

P(M i
[τ i,Hi0] ≤ y|X

i
τ i = z)G(dz)

=

∫ x

0

P(Hi
0 < Hi

y|Xi
0 = z)G(dz) =

∫ x

0

y − z
y

G(dz), (4)
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where Hi
y = inf{t ∈ R+ : Xi

t = y}.
Suppose that the other players all choose F (x) as the target distribution of

Xτ . Substituting (4) into (3), the expected payoff of player i becomes∫ ∞
0

∫ ∞
0

[
(1 +K)F (x)n−1 −KF (y)n−1

]
ν(dx, dy)

=

∫ ∞
0

(1 +K)F (x)n−1G(dx)−
∫ ∞

0

∫ ∞
x

KF (y)n−1 x

y2
dyG(dx)

=

∫ ∞
0

[
(1 +K)F (x)n−1 −Kx

∫ ∞
x

F (y)n−1

y2
dy

]
G(dx).

Given other players’ choices, player i would like to choose G ∈ A to solve

max
G∈A

∫ ∞
0

[
(1 +K)F (x)n−1 −Kx

∫ ∞
x

F (y)n−1

y2
dy

]
G(dx) subject to

∫ ∞
0

xG(dx) = x0 and

∫ ∞
0

G(dx) = 1.

(5)
Introducing multipliers λ and γ for the two constraints, the Lagrangian for the
optimization problem (5) is then

LF (G;λ, γ) =

∫ ∞
0

[
(1 +K)F (x)n−1 −Kx

∫ ∞
x

F (y)n−1

y2
dy − λx− γ

]
G(dx)+λx0+γ.

On [0,∞) let G∗(x) = min
{

1, N−1
√
x/(Nx0)

}
, λ∗ = 1/(Nx0) and γ∗ = 0, where

N = n+K(n− 1). It is easy to check that G∗ ∈ AD(x0). Moreover,

LG∗(G;λ∗, γ∗) =

∫ ∞
0

[
(1 +K)G∗(x)n−1 −Kx

∫ ∞
x

G∗(y)n−1

y2
dy − λ∗x− γ∗

]
G(dx) + λ∗x0 + γ∗

=

∫ ∞
Nx0

[
1− x

Nx0

]
G(dx) +

1

N
≤ 1

N
= LG∗(G∗;λ∗, γ∗).

Hence, by the Lagrangian sufficiency theorem (Proposition 2.1) G∗ is a sym-
metric, atom-free Nash equilibrium.

Remark 4.2. In this version of the problem, the stopping decision depends on
the current value of X alone, and not on the current maximum. This is because
the penalty depends on the future maximum, which conditional on the current
value of the process is independent of the past maximum.

5 Contest with regret over past failure to stop

This section discusses the contest with regret over past failure to stop, that is
player is penalised when she could have won if she had stopped sooner. This
case is relevant when the omniscient being can only observe the realisation of
Xi up to the stopping time chosen by the agent. In this case the maximum
value M i is defined by

M i := M i
τ i = sup

0≤t≤τ i
Xi
t .
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Consider the problem facing a single agent under the assumption that the
strategies of the competing agents are fixed. Temporarily we drop the subscript
denoting the label of the agent. Recall that the payoff to the agent is (1 +
K)F (Xτ )n−1−KF (Mτ )n−1. For a continuous martingale Kertz and Rösler [4]
characterise all possible joint laws of (Xτ ,Mτ ) and hence the problem is reduced
to a search over measures with these characteristics. However, an alternative
is to split the optimisation problem into a two-stage procedure: first for any
feasible distribution of Xτ (a non-negative random variable with mean x0) find
the joint law of (Xτ ,Mτ ) for which Mτ is as small as possible in distribution
(in the sense of first order stochastic dominance)— such a joint law exists by
results of Perkins [6] — and then minimise a modified objective function over
feasible laws of Xτ .

For a given atom-free law of Xτ (recall that we are seeking a symmetric,
atom-free distribution, so we focus on this case) the joint law of (Xτ ,Mτ )
for which Mτ is minimised is such that mass is placed only on the set A =
{(x, x);x ≥ x0} ∪ {(x,Φ(x));x < x0} where Φ : (0, x0) 7→ (x0,∞) is a strictly
decreasing function. Let φ be inverse to Φ. Then, if G denotes the marginal law
of X, we can conclude from Doob’s submartingale inequality1, in conjunction
with the set identity (Mτ ≥ m) = (Xτ ≥ m) ∪ (Xτ ≤ φ(m)), that for m ≥ x0

0 = E[m−Xτ ;Xτ ≥ m]+E[m−Xτ ;Xτ ≤ φ(m)] =

∫ ∞
m

(m−y)G(dy)+

∫ φ(m)

0

(m−y)G(dy)

(6)
which, since Xτ has mean x0, is equivalent to

0 = m− x0 + (m− φ(m))G(φ(m))−
∫ m

φ(m)

G(y)dy. (7)

In differential form, assuming G and φ are differentiable, this becomes

0 = φ′(m)(m− φ(m))G′(φ(m)) + 1 +G(φ(m))−G(m). (8)

It follows from the results of Perkins [6] and Hobson and Pedersen [3], that if
G is the law of an atom-free non-negative random variable, then there exists a
decreasing function φ solving (6). Further, if ξ is a random variable such that
for s ≥ x0

P(ξ ≥ s) = exp

(
−
∫

(x0,s)

G(du)

1−G(u) +G(φ(u))

)
and if τ = τξ ∧ τφ where τξ = inf{t > 0|Mt ≥ ξ} and τφ = inf{t > 0|Xt ≤
φ(Mt)}, then Xτ has law G and (Xτ ,Mτ ) places no mass off A. Moreover,
amongst the class of joint laws for (Xτ ,Mτ ) such that Xτ has law G, Mτ is as
small as possible in distribution.

1By the final remark of Section 2.2, we may assume (Xt∧τ )t≥0 is a martingale, and then
we have, for m ≥ x0, mP(Mτ ≥ m) = E[Xτ ;Mτ ≥ m]. Hence 0 = E[m−Xτ ;Mτ ≥ m].

10



Theorem 5.1. Suppose there exists a finite real number r > x0, a once differ-
entiable strictly decreasing function φ : [x0, r] 7→ [0, x0], a thrice differentiable
strictly increasing and strictly convex function ψ : [x0, r] 7→ [0, 1] and a once
differentiable strictly decreasing function θ : [x0, r] 7→ [0, 1] such that φ, ψ and
θ solve the following system of equations

(†)


φ′(y)ψ′(y) = (1 +K)θ′(y), (9)

Kψ′(y) = (y − φ(y))ψ′′(y), (10)

y − φ(y)

n− 1
θ′(y) =

(
ψ(y)

1
n−1 − 1

)
θ(y)

n−2
n−1 − θ(y), (11)

and satisfy that φ(x0) = x0, ψ(r) = 1, ψ′(r−) = K+1
r , ψ′′(r−) = K(K+1)

r2 and
θ(x0) = ψ(x0).

i) Then

θ(y) = ψ(y)− K

K + 1

ψ′(y)2

ψ′′(y)
. (12)

ii) Moreover, there exists a symmetric, atom-free Nash equilibrium for the
problem for which Xi

τ i and M i
τ i have joint law ν∗ that is determined by the

marginal distribution G∗ of Xi
τ i , given by G∗(x) = 0 for x ≤ 0, G∗(x) = 1 for

x ≥ r and

G∗(x) =

{
θ(φ−1(x))

1
n−1 , if 0 < x < x0,

ψ(x)
1

n−1 , if x0 ≤ x < r,
(13)

otherwise, and the conditional distribution of M i
τ i given Xi

τ i such that

M i
τ i =

{
Xi
τ i , if Xi

τ i ≥ x0,

φ−1(Xi
τ i) , if 0 ≤ Xi

τ i < x0.

Proof. The conditions in the theorem imply some properties of function φ: let

y = r− in (10) then since ψ′(r−) = K+1
r and ψ′′(r−) = K(K+1)

r2 we have
φ(r) = 0; since (10) holds and by the positivity of ψ′ and ψ′′ we have φ(y) < y
on (x0, r).

i) Integrating (9) with respect to y,

(K+1)θ(z)−(K+1)θ(x0) =

∫ z

x0

φ′(y)ψ′(y)dy = φ(z)ψ′(z)−φ(x0)ψ′(x0+)−
∫ z

x0

φ(y)ψ′′(y)dy.

(14)
Rearranging (10) and integrating,∫ z

x0

φ(y)ψ′′(y)dy =

∫ z

x0

yψ′′(y)dy −
∫ z

x0

Kψ′(y)dy = zψ′(z)− x0ψ
′(x0+)− (1 +K)ψ(z) + (1 +K)ψ(x0).

Combining this equation with (14) we find

θ(y) =
1

K + 1
(φ(y)− y)ψ′(y) + ψ(y). (15)

11



Then substituting (10) into (15), (12) follows.
ii) Let E(x0) be the set of measures ν(dx, dy) on [0,∞) × [0,∞) such that

ν(dx, dy) has no mass on {(x, y) : y < x or y < x0}, and let ED(x0) be the subset
of E(x0) corresponding to probability measures of a pair of random variables
X ≤ Y such that X is a continuous random variable with mean x0 and E[X −
z;Y ≥ z] = 0 for all z ≥ x0. Note that the last equation comes from the Doob’s
submartingale inequality, applied in the continuous martingale case.

Suppose that the other players all choose F (x) as the target distribution of
Xτ . Then the aim of player i is to choose ν ∈ E(x0) to solve

max
ν∈E(x0)

{∫ ∞
0

∫ ∞
0

[
(1 +K)F (x)n−1 −KF (y)n−1

]
ν(dx, dy)

}
(16)

subject to
∫∞

0

∫∞
0
xν(dx, dy) = x0,

∫∞
0

∫∞
0
ν(dx, dy) = 1 and

∫∞
x=0

∫∞
y=z

(x −
z)ν(dx, dy) = 0 ∀z ≥ x0.

Introduce multipliers λ and γ for the first two constraints, and for each z ≥
x0 introduce a Lagrange multiplier η (z) for the last constraint: the constraint
becomes

∫∞
0

∫∞
0

∫ y
z=x0

{η(z)(x− z)dz} ν(dx, dy) = 0. Then the Lagrangian for

the optimization problem (16) is

LF (ν;λ, γ, η) (17)

=

∫ ∞
0

∫ ∞
0

[
(1 +K)F (x)n−1 −KF (y)n−1 − λx− γ −

∫ y

x0

η(z)(x− z)dz
]
ν(dx, dy) + λx0 + γ.

By a simple extension of the Lagrangian sufficiency theorem given in Proposition
2.1 we have that

Proposition 5.1. If ν∗, λ∗, γ∗ and η∗ exist such that ν∗ ∈ ED(x0) and

LG∗(ν∗;λ∗, γ∗, η∗) ≥ LG∗(ν;λ∗, γ∗, η∗) (18)

for all ν ∈ E(x0), where G∗(x) = ν∗([0, x] × (0,∞)), then ν∗ is a symmetric,
atom-free Nash equilibrium.

On [0,∞) × [0,∞) let ν∗ be the joint law given in the theorem and G∗ be
its marginal distribution with respect to Xτ . In particular, G∗ is given by (13).
Let λ∗ = ψ′(x0+), γ∗ = ψ(x0)− x0ψ

′(x0+), η∗(y) = ψ′′(y) for x0 < y < r, and
η∗(y) = 0 for y ≥ r. We will show that for these multipliers (18) holds and that
ν∗ ∈ ED(x0).

To prove ν∗ ∈ ED(x0), we need to show G∗(0) = 0, limy↑∞G∗(y) = 1,
G∗(y) is continuous and non-decreasing,

∫∞
0
uG∗(du) = x0 and

∫∞
x=0

∫∞
y=z

(x −
z)ν∗(dx, dy) = 0 for all z ≥ x0.

Letting y = r− in (12), we find θ(r) = 0. Then since φ(r) = 0, we have
G∗(0) = θ(φ−1(0))1/(n−1) = θ(r)1/(n−1) = 0. Moreover, limy↑∞G∗(y) = 1
follows from the finiteness of r. We have φ−1(x0) = x0 and hence G∗ is con-
tinuous at x0. Since both φ and θ are decreasing and continuous on [x0, r],

12



G∗ (x) = θ(φ−1(x))1/(n−1) is increasing for x ∈ [0, x0]. Then, since ψ(y) is in-
creasing on [x0, r], G

∗ is continuous and non-decreasing on the whole interval
of [0, r]. Note that this implies r = sup{x ≥ 0 : G∗(x) < 1}.

For y > x0 we have G∗(φ(y)) = θ(y)1/(n−1) and so φ′(y)(G∗)′(φ(y)) =
θ(y)1/(n−1)−1θ′(y)/(n− 1). Then, using (11)

φ′(y)(y−φ(y))(G∗)′(φ(y)) = θ(y)
2−n
n−1

y − φ(y)

n− 1
θ′(y) = ψ(y)

1
n−1−1−θ(y)

1
n−1 = G∗(y)−1−G∗(φ(y)).

Hence

φ′(y)(y − φ(y))(G∗)′(φ(y)) + (1− φ′(y))G∗(φ(y)) = G∗(y)− 1− φ′(y)G∗(φ(y)),

and integrating from x to r

−(x− φ(x))G∗(φ(x)) = −(r − x) +

∫ r

x

G∗(y)dy +

∫ φ(x)

0

G∗(y)dy. (19)

Then, setting x = x0 we recover x0 =
∫ r

0
(1−G∗(y))dy so that a random variable

with distribution function G∗ has mean x0.
Finally, from its construction we have that ν∗ only puts mass on A. Hence,

from (8),∫ ∞
x=0

∫ ∞
y=z

(x− z)ν∗(dx, dy) =

∫ φ(z)

0

(x− z)G∗(dx) +

∫ r

z

(x− z)G∗(dx) = 0.

Now we prove that (18) holds. Let L∗(x, y) = (1+K)G∗(x)n−1−KG∗(y)n−1−
λ∗x−γ∗−

∫ y
x0
η∗(z)(x−z)dz and then LG∗(ν;λ∗, γ∗, η∗) =

∫∞
0

∫∞
0
L∗(x, y)ν(dx, dy)+

λ∗x0 + γ∗.
For notational convenience, extend the domain of ψ to [0, r] by defining

ψ(x) = θ(φ−1(x)) for x ∈ [0, x0). Then, for x < x0, ψ′(x) = θ′(φ−1(x))
φ′(φ−1(x)) =

ψ′(φ−1(x))
K+1 > 0 where the last equality comes from (9). Moreover ψ′′ (x) =
ψ′′(φ−1(x))

(1+K)φ′(φ−1(x)) < 0. Thus ψ is increasing on [0, r], ψ′′(x) < 0 if x ∈ (0, x0) and

ψ′′(x) > 0 if x ∈ (x0, r).
Fix y ∈ [x0, r]. For any 0 ≤ x ≤ y,

L∗(x, y) = (1 +K)ψ(x)−Kψ(y)− ψ′(x0+)x− ψ(x0) + x0ψ
′(x0+)−

∫ y

x0

ψ′′(z)(x− z)dz

= (1 +K)(ψ(x)− ψ(y)) + (y − x)ψ′(y). (20)

We have L∗(φ(y), y) = (1 +K)(θ(y)−ψ(y)) + (y−φ(y))ψ′(y) and then by (12)
and (10), L∗(φ(y), y) = 0. It is also clear that L∗(y, y) = 0.

Differentiating (20) with respect to x,

∂L∗

∂x
(x, y) = (1 +K)ψ′(x)− ψ′(y);

∂2L∗

∂x2
(x, y) = (1 +K)ψ′′(x).

13



Then ∂2L∗

∂x2 (x, y) < 0 on (0, x0) and ∂2L∗

∂x2 (x, y) > 0 on (x0, y). Since ∂L∗

∂x (φ(y), y) =

(1+K)ψ′(φ(y))−ψ′(y) = (1+K)ψ
′(y)
K+1 −ψ

′(y) = 0 and ∂L∗

∂x (y, y) = Kψ′(y) > 0,

it follows that ∂L∗

∂x (x, y) > 0 if x ∈ (0, φ(y)), ∂L
∗

∂x (x, y) < 0 if x ∈ (φ(y), x̃) and
∂L∗

∂x (x, y) > 0 if x ∈ (x̃, y), where x̃ ∈ (x0, y) is such that ∂L∗

∂x (x, y)|x=x̃ = 0. It
follows that L∗(x, y) < 0 for x ∈ [0, φ(y)) ∪ (φ(y), y).

Now fix y > r. For any 0 ≤ x ≤ y, and writing ψ̃(x) = ψ(x)− x/r,

L∗(x, y) = (1 +K)ψ(x)−K − ψ′(x0+)x− ψ(x0) + x0ψ
′(x0+)−

∫ r

x0

ψ′′(z)(x− z)dz

= (1 +K)(ψ(x)− 1) + (r − x)ψ′(r−) = (1 +K)
(
ψ(x)− x

r

)
= (1 +K)ψ̃(x).

If x ∈ (r, y] then L∗(x, y) = (1 +K) 1
r [r− x] < 0. Now suppose x ∈ (0, r). Since

φ(r) = 0, we have ψ′(0+) = 1
r and thus ψ̃′(0+) = 0. Further ψ̃′(r−) = K

r > 0.

Then by the sign of ψ′′(x), we get ψ̃′(x) is negative and then positive on (0, r).
Since ψ̃(0) = ψ̃(r) = 0, we deduce that ψ̃(x) < 0 on (0, r). Thus L∗(x, y) < 0
for x ∈ (0, r).

From above analysis, we know L∗(x, y) ≤ 0 for any (x, y) such that 0 ≤ x ≤ y
and y ≥ x0. This means that ∀ν ∈ E(x0)

LG∗(ν;λ∗, γ∗, η∗) =

∫ ∞
0

∫ ∞
0

L∗(x, y)ν(dx, dy) + λ∗x0 + γ∗

=

∫ ∞
0

∫ ∞
0

L∗(x, y)ν(dx, dy) + ψ(x0) ≤ ψ(x0) = LG∗(ν∗;λ∗, γ∗, η∗).

Thus ν∗ is a symmetric, atom-free Nash equilibrium from Proposition 5.1.

It remains to show that there exists a constant r and functions (φ, θ, ψ)
which satisfy the hypotheses of Theorem 5.1 and hence that a symmetric atom-
free Nash equilibrium always exists. The following lemma is key in defining the
appropriate entities.

Lemma 5.1. Let J(u) solve the ordinary differential equation

J ′(u) =
J(u) + 1− (1− u)1/(n−1)

(K + 1) [1− u− J(u)n−1]
(21)

subject to J(0) = 0 and u ≥ 0. Let u∗ = sup
{
u : J(u) < (1− u)1/(n−1)

}
.

i) Define

H(z) =
K

(K + 1) [z − J(1− z)n−1]

on [z∗, 1], where z∗ = 1 − u∗. Then z∗ > 0, H is positive on (z∗, 1) and∫ 1

z∗
exp

(∫ 1

w
H(v)dv

)
dw < (K + 1).

ii) Define

r =
x0(K + 1)

(K + 1)−
∫ 1

z∗
exp

(∫ 1

w
H(v)dv

)
dw

14



and

Ψ(z) =
r

K + 1

[
(K + 1)−

∫ 1

z

exp

(∫ 1

w

H(v)dv

)
dw

]
on [z∗, 1]. Let ψ = Ψ−1 be the inverse function of Ψ. Then x0 < r < ∞
and ψ : [x0, r] 7→ [0, 1] is a strictly increasing and strictly convex function that

satisfies ψ(r) = 1, ψ′(r−) = K+1
r and ψ′′(r−) = K(K+1)

r2 .
iii) Define

φ(y) = y − Kψ′(y)

ψ′′(y)
. (22)

Then φ : [x0, r] 7→ [0, x0] is a strictly decreasing function with φ(x0) = x0.
iv) Define

θ(y) = ψ(x0) +
1

K + 1

∫ y

x0

φ′(z)ψ′(z)dz

Then θ : [x0, r] 7→ [0, 1] is a strictly decreasing function with θ(x0) = ψ(x0).
Moreover, θ(y) = ψ(y)− (y − φ(y))ψ′(y)/(K + 1).

Proof. It is easily seen that J(u) is a strictly increasing function at least until
J(u) = n−1

√
1− u, and that u∗ < 1.

i) Since u∗ < 1, z∗ = 1 − u∗ > 0. Since J is increasing, for any u ∈ (0, u∗)
J(u)n−1 ≤ J(u∗)n−1 and thus 1 − u − J(u)n−1 ≥ 1 − u − J(u∗)n−1 = u∗ − u.
This means for any z ∈ (z∗, 1) we have z − J(1− z)n−1 ≥ z − z∗ > 0 and then
0 < H(z) ≤ K

(K+1)(z−z∗) . Moreover,

∫ 1

z∗
exp

(∫ 1

w

K

(K + 1)(v − z∗)
dv

)
dw =

∫ 1

z∗
exp

(
K

K + 1
ln

1− z∗

w − z∗

)
dw =

∫ 1

z∗

(
1− z∗

w − z∗

) K
K+1

dw

= (1− z∗)
K
K+1 (1− z∗)

1
K+1 (K + 1) = (1− z∗)(K + 1) < (K + 1),

and it follows that
∫ 1

z∗
exp

(∫ 1

w
H(v)dv

)
dw < (K + 1).

ii) Since 0 < (K+1)−
∫ 1

z∗
exp

(∫ 1

w
H(v)dv

)
dw < (K+1), we have that x0 <

r <∞. Taking derivatives of Ψ on (z∗, 1), we find Ψ′(z) = r
K+1 exp

(∫ 1

z
H(v)dv

)
>

0 and Ψ′′(z) = −H(z)Ψ′(z) < 0. Then since Ψ(z∗) = x0 and Ψ (1) = r, Ψ is
a strictly increasing and strictly concave function from [z∗, 1] to [x0, r]. Thus
ψ = Ψ−1 : [x0, r] 7→ [0, 1] is a strictly increasing and strictly convex function
satisfying ψ(r) = 1.

Moreover, ψ′(y) = 1
Ψ′(ψ(y)) and thus ψ′′(y) = −Ψ′′(ψ(y))ψ′(y)

Ψ′(ψ(y))2 . Then since

Ψ(1) = r, Ψ′(1−) = r
K+1 and Ψ′′(1−) = − rK

(K+1)2 , we get ψ(r) = 1, ψ′(r−) =

1
Ψ′(1−) = K+1

r and ψ′′(r−) = −Ψ′′(1−)ψ′(r−)
Ψ′(1−)2 = K(K+1)

r2 .

iii) Letting u = 1 − z in (21), we get J ′(1 − z) = J(1−z)+1−z1/(n−1)

(K+1)[z−J(1−z)n−1] =

15



H(z)
K

(
J(1− z) + 1− z

1
n−1

)
. Thus,

H ′(z) = −
K
[
1 + (n− 1)J(1− z)n−2J ′(1− z)

]
(K + 1) [z − J(1− z)n−1]

2

= −K + 1

K
H(z)2

[
1 + (n− 1)J(1− z)n−2H(z)

K

(
J(1− z) + 1− z

1
n−1

)]
= −K + 1

K
H(z)2 − (K + 1)(n− 1)

K2
H(z)3

[
J(1− z)n−1 + J(1− z)n−2

(
1− z

1
n−1

)]
(23)

It is clear from the middle line above that H′(z)
H(z)2 < −

K+1
K .

Note that φ′(y) = 1−K
(

1− ψ′(y)ψ′′′(y)
ψ′′(y)2

)
. Since H(z) = −Ψ′′(z)

Ψ′(z) = ψ′′(Ψ(z))
ψ′(Ψ(z))2 ,

we have that

H(ψ(y)) =
ψ′′(y)

ψ′(y)2
(24)

and thusH ′(ψ(y))ψ′(y) = ψ′′′(y)
ψ′(y)2−

2ψ′′(y)2

ψ′(y)3 . Thus 1−ψ
′(y)ψ′′′(y)
ψ′′(y)2 = −H ′(ψ(y)) ψ

′(y)4

ψ′′(y)2−
1 and therefore

φ′(y) = K
H ′(ψ(y))

H(ψ(y))2
+K + 1. (25)

It follows that φ′(y) < 0.
Since ψ′(r−) = K+1

r , ψ′(y) > 0 and ψ′′(y) > 0 on (x0, r), we know ψ′(x0+) is

bounded. Then, since ψ′′(x0+)
ψ′(x0+)2 = H(ψ(x0)) = H(z∗) = +∞, we get ψ′′(x0+) =

+∞. Substituting these values into (22) we obtain φ(x0) = x0.
iv) The statements about θ are either trivial, or follow as in the derivation

of (15).

Theorem 5.2. Let r, ψ, φ, θ be as defined in Lemma 5.1.
Then there exists a symmetric, atom-free Nash equilibrium for the problem

for which Xi
τ i has distribution F where F (x) = 0 for x ≤ 0, F (x) = 1 for x ≥ r

and otherwise

F (x) =

{
θ(φ−1(x))

1
n−1 if 0 < x < x0,

ψ(x)
1

n−1 if x0 ≤ x < r.

Proof. By (22) and (24), 1
H(ψ(y)) = ψ′(y)2

ψ′′(y) = y−φ(y)
K ψ′(y). Hence θ(y) = ψ(y)−

K
(K+1)H(ψ(y)) = J(1− ψ(y))n−1. Thus letting z = ψ(y) in (23),

H ′(ψ(y)) = −K + 1

K
H(ψ(y))2− (K + 1)(n− 1)

K2
H(ψ(y))3

[
θ(y) +

(
1− ψ(y)

1
n−1

)
θ(y)

n−2
n−1

]
,

and using (25) and rearranging above equation,

y − φ(y)

n− 1

φ′(y)ψ′(y)

K + 1
= −

[
θ(y) +

(
1− ψ(y)

1
(n−1)

)
θ(y)

n−2
n−1

]
.
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Figure 1: Graph of G∗(x) for different K with x0 = 1 and n = 3.

Then substituting (9) into above equation, (11) follows. Therefore, (†) holds.
Then using Theorem 5.1, we obtain the symmetric, atom-free Nash equilibrium
given in Theorem 5.2.

Example 5.1. As an example we consider a 3-player contest. Set x0 = 1 and
n = 3. In Figures 1 and 2 we give graphs of the optimal distribution G∗(x) and
its density function g∗(x) for various values of K.

As we can see in Figure 1, the right endpoint r = r(K) of G∗(x) decreases
as K increases. Moreover r(K) tends to n = 3 as K decreases to 0 and tends
to x0 as K increases to +∞. We also find that G∗(x) tends to the equilibrium
distribution of the original contest as K decreases to 0 and G∗(x) tends to the
Heaviside function H{x≥x0} as K increases to +∞. From Figure 2, we find g∗(x)
jumps at x0 if K > 0 and g∗(x) tends to +∞ as y tends to 0.

Intuitively, if K is very large then the player does not aim for large values
of the stopped process, for then she risks a moderate value of the maximum
together with a small and losing value for the stopped process. Because of the
large penalty she wishes to avoid such outcomes.

Example 5.2. In the 2-player contest we can give explicit expressions for several
of the quantities of interest.
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Set n = 2. Substituting (9), (10) and (12) into (11), we get

(y − φ(y))
1

1 +K
φ′(y)ψ′(y) = (ψ(y)− 1)− ψ(y) +

K

K + 1

y − φ(y)

K
ψ′(y).

Defining ϕ(y) = y − φ(y) the above equation simplifies to ϕ(y)ϕ′(y) = K+1
ψ′(y) .

Differentiating this expression and using (10) we have

[ϕ(y)ϕ′(y)]
′

= −(K + 1)
ψ′′(y)

ψ′(y)2
= −(K + 1)

K

ϕ(y)ψ′(y)
= −Kϕ′(y),

and then
ϕ(y)ϕ′(y) = −Kϕ(y) +Kϕ(r) + ϕ(r)ϕ′(r−). (26)

Since ϕ(r) = r and ψ′(r−) = K+1
r we have ϕ′(r−) = 1. Then (26) becomes

ϕ(y)ϕ′′(y) = −Kϕ(y) + r(K+ 1), which using the boundary condition ϕ(r) = r
has solution

r − y =
r(K + 1)

K2
ln

(
(K + 1)− Kϕ(y)

r

)
− r − ϕ(y)

K

Using ϕ(x0) = x0 − φ(x0) = 0, we find

r = x0
K2

(K + 1) [K − ln (1 +K)]

and therefore the implicit form of ϕ(y) for y ∈ [x0, r] is

y = x0 −
ϕ(y)

K
− x0

K − ln (1 +K)
ln

[
1− ϕ(y)

K − ln (1 +K)

Kx0

]
and φ(y) = y−ϕ(y). It is possible to express ψ and θ in terms of ϕ, and thence
the optimal distribution G∗ of Xi

τ i and the optimal conditional distribution of
M i
τ i given Xi

τ i , but these expressions are not so compact.

6 Contest with regret over failure to stop at the
best time

In this section we discuss the contest with regret over failure to stop at a win-
ning time, when alternative times both before and after the chosen time are
permitted. A player experiences regret if she could have won if she had stopped
at the maximum value over the whole path. The maximum value M i is given
by

M i := M i
Hi0

= sup
0≤t≤Hi0

Xi
t .
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Theorem 6.1. There exists a symmetric, atom-free Nash equilibrium for the
problem for which Xi

τ i has law F (x), where for x ≥ 0

F (x) = min

{
n−1

√
x

nx0
, 1

}
.

Proof. The agent’s expected payoff is

(1 +K)E[F (Xi
τ i)

n−1]−KE[F (M i
Hi0

)n−1]

But the latter term is independent of the stopping rule used by the agent.
Hence, in determining her optimal strategy the agent need only consider (1 +
K)E[F (Xi

τ i)
n−1]. Modulo the initial constant, this is the same objective func-

tion as in the standard case.

Remark 6.1. The agent follows exactly the same Nash equilibrium strategy
as an agent in the original contest, in which there is no penalty. The intuition
behind is that the regret is determined by M i

Hi0
but player cannot change the

distribution of M i
Hi0

by changing the choices of stopping time τ i.

7 Derivation of the equilibrium distribution

This section is intended to illustrate how we derived the optimal multipliers
and the candidate Nash equilibrium in Sections 2, 4 and 5 and also the bound-
ary conditions in Section 5. The Lagrangian approach gives a general method
for finding the optimal solution, which is distinct from the ideas in Seel and
Strack [7], and can be generalised to other settings.

7.1 Contest without regret or with regret over stopping
too soon

Recall the definitions of the Lagrangian LF (G;λ, γ) for the optimization prob-
lems (1) and (5). (We cover the more complicated case of regret from continuing
beyond a winning time in a separate section.)

Denote by LF (x) the integrand in LF , so that LF (G;λ, γ) =
∫∞

0
LF (x)G(dx)+

λx0 + γ. In order to have a finite optimal solution we require LF (x) ≤ 0 on
[0,∞). Let DF be the set of (λ, γ) such that LF (·;λ, γ) has a finite maximum.
Then DF is defined by

DF = {(λ, γ) : LF (x) ≤ 0 on [0,∞)}.

In order to reach the maximum value, we require G(dx) = 0 when LF (x) < 0.
This means that for (λ, γ) ∈ DF the maximum of LF (·;λ, γ) occurs at G∗ such
that G∗(dx) = 0 when LF (x) < 0. Conversely we expect that G∗(dx) > 0
when LF (x) = 0. If the Nash equilibrium is symmetric then we must have
G∗(x) = F (x) and then LG∗(x) ≤ 0, and LG∗(x) = 0 when G∗(dx) > 0.
Introduce a = inf{x : G∗(x) > 0} and b = sup{x : G∗(x) < 1} which are the
limits on the support of G∗.
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7.1.1 Contest without regret

For the optimization problem (1), LF (x) = F (x)n−1 − λx − γ. Observe that

0 ≤ F (0)
n−1

so that if (λ, γ) ∈ DF then γ is non-negative.
Since LG∗(x) = G∗(x)n−1 − λx − γ, we must have G∗(x) = n−1

√
λx+ γ at

least when G∗(dx) > 0. Since we are searching for atom-free solutions we must
have G∗(x) = n−1

√
λx+ γ on the whole of the interval [a, b]. Moreover, since G∗

is non-decreasing and not constant we must have λ > 0.
Since G∗ is atom-free, G∗(a) = 0 and hence λa + γ = 0. Then by the non-

negativity of a and γ and the positivity of λ it follows that γ = 0 = a. Thus
G∗(x) = n−1

√
λx on [0, b] for some λ and b which we must find.

For a feasible solution,
∫∞

0
G∗(dx) = 1 and

∫∞
0
xG∗(dx) = x0, so that

1 =

∫ b

0

d
(
n−1
√
λx
)

=
n−1
√
λb. x0 =

∫ b

0

xd
(
n−1
√
λx
)

=
n−1
√
λ

n
b

n
n−1 =

n−1
√
λb
b

n
;

Hence b = nx0 and λ = 1/(nx0). This gives us that G∗ is the distribution
function given in Theorem 2.2.

7.1.2 Contest with regret from stopping too soon

Now we have that LF (x) = (1 + K)F (x)n−1 − Kx
∫∞
x

F (y)n−1

y2 dy − λx − γ.

Then LF (0) = (1 + K)F (0)n−1 − γ and as before, if (λ, γ) ∈ DF then γ is
non-negative.

Let ψ(x) = G∗(x)n−1 then LG∗(x) becomes

LG∗(x) = (1 +K)ψ(x)−Kx
∫ ∞
x

ψ(y)

y2
dy − λx− γ. (27)

Thus we expect ψ(x) is the solution to LG∗(x) = 0 at least when ψ(dx) > 0.
Setting LG∗(x) = 0 and differentiating (27) twice with respect to x, we find

(1 +K)ψ′′(x)x+Kψ′(x) = 0.

Thus ψ(x) = C1x
1

K+1 + C2, where C1 and C2 are some constants, and then

G∗(x) =
n−1

√
C1x

1
K+1 + C2 at least when G∗(dx) > 0. Since we are seeking

an atom-free solution we must have G∗(x) =
n−1

√
C1x

1
K+1 + C2 on the whole

interval of [a, b], where C1 > 0.

Substituting ψ(x) = G∗(x)n−1 = (C1x
1

K+1 + C2) ∧ 1 into (27), and setting
LG∗(x) = 0 we have ∀x ∈ [a, b]

0 = (1 +K)
(
C1x

1
K+1 + C2

)
−Kx

∫ b

x

C1y
1

K+1 + C2

y2
dy −Kx

∫ ∞
b

1

y2
dy − λx− γ

=
[
(1 +K)C1b

1
K+1 +KC2 −K − λb

] x
b

+ C2 − γ.

This gives us optimal multipliers γ∗ = C2 and λ∗ = 1
b

[
(1 +K)C1b

1
K+1 +KC2 −K

]
.
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Since G∗ is atom-free, G∗(a) = 0 and hence C1a
1

K+1 + C2 = 0, and from
the non-negativity of a and γ∗ = C2 and the positivity of C1 it follows that

C2 = a = 0. Thus G∗(x) =
n−1

√
C1x

1
K+1 on [0, b] for some C1 and b which can

be identified using the fact that G∗ corresponds to a probability distribution
with mean x0. In particular, setting N = 1 + (K + 1)(n − 1) for a feasible
solution,

1 =
∫ b

0
d

(
n−1

√
C1x

1
K+1

)
= n−1

√
C1b1/(K+1),

x0 =
∫ b

0
xd

(
n−1

√
C1x

1
K+1

)
=

n−1
√
C1

(K+1)(n−1)+1b
(K+1)(n−1)+1
(K+1)(n−1) = N−1

√
CK+1

1 b bN .

Hence C1 = b−1/(K+1) and then b = Nx0 and C1 = K+1

√
1

Nx0
. Thus G∗(x) =

N−1
√
x/Nx0 on [0, Nx0].

7.2 Contest with regret over past failure

Recall the definition of the Lagrangian LF (ν;λ, γ, η) for the optimization prob-
lem of Section 5. Let LF (x, y) be the integrand in the definition of LF as given
in (17). In order to have a finite optimal solution we require LF (x, y) ≤ 0 on
[0,∞) × [x0,∞). Let DF be the set of (λ, γ, η) such that LF (·;λ, γ, η) has a
finite maximum. Then DF is defined by

DF = {(λ, γ, η) : LF (x, y) ≤ 0;x ≥ 0, y ≥ x0}.

For (λ, γ, η) ∈ DF the maximum of LF (·;λ, γ, η) occurs at a measure ν∗ such
that ν∗(dx, dy) = 0 when LF (x, y) < 0. Conversely we expect that ν∗(dx, dy) >
0 when LF (x, y) = 0.

Let G∗(x) = ν∗({(u, y) : u ≤ x, x0 ≤ y < ∞}) be the marginal of ν∗.
If the Nash equilibrium is symmetric then we must have G∗(x) = F (x) and
LG∗(x, y) = 0 when ν∗(dx, dy) > 0. Motivated by the results of previous sections
we expect G∗ to place mass on an interval [a, b] where 0 = a < x0 < b. In this
section we write b = r for the upper limit.

It follows from the discussion before Theorem 5.1 that for an optimal solution
either Xi

τ i = M i
τ i or Xi

τ i = φ(M i
τ i) for some decreasing function φ. Hence, for

x0 ≤ y ≤ r we expect ν∗(dx, dy) > 0 if and only if either x = y or x = φ(y).
Let ψ(x) = G∗(x)n−1. Then LG∗(x, y) becomes

L(x, y) := LG∗(x, y) = (1 +K)ψ(x)−Kψ(y)− λx− γ −
∫ y

x0

η(z)(x− z)dz.

Fixing y ∈ (x0, r), and using L(x, y) ≤ 0 for any 0 ≤ x ≤ y, together with
L(φ(y), y) = 0 we expect ∂L

∂x (φ(y), y) = 0.
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Thus ∀y ∈ (x0, r), ψ and φ must solve

L(y, y) = ψ(y)− λy − γ −
∫ y

x0

η(z)(y − z)dz = 0, (28)

L(φ(y), y) = (1 +K)ψ(φ(y))−Kψ(y)− λφ(y)− γ −
∫ y

x0

η(z)(φ(y)− z)dz = 0,(29)

∂L

∂x
(φ(y), y) = (1 +K)ψ′(φ(y))− λ−

∫ y

x0

η(z)dz = 0. (30)

Differentiating (28) with respect to y, yields

ψ′(y)− λ−
∫ y

x0

η(z)dz = 0. (31)

Comparing (30) with (31), we find ψ′(y) = (1 + K)ψ′(φ(y)). If we now set
θ(y) = ψ(φ(y)), then (9) follows. From (31) we find

ψ′′(y)− η(y) = 0. (32)

Then, differentiating (29) with respect to y, and using (30) we obtain −Kψ′(y)−
η(y)(φ(y) − y) = 0, and (10). Finally, (11) comes directly from (8) on noting
that G(φ(m)) = θ(m)1/(n−1).

Next we deduce the boundary conditions. First note that from (6) we can
infer that φ(x0) = x0 and φ(r) = 0. Hence θ(x0) = ψ(x0) and θ(r) = 0.
Given that (9) and (10) hold, as in the proof of Theorem 5.1, we have that
(15) holds. Letting y = r and using ψ(r) = 1, φ(r) = 0 and θ(r) = 0, we find
0 = −r

K+1ψ
′(r−)+ψ(r) and hence ψ′′(r−) = K+1

r . Further, letting y = r in (10)

we get ψ′′(r−) = K(K + 1)/r2 as required.
Lastly, we derive the optimal multipliers which we write as η∗, λ∗ and γ∗.

From (32), η∗(y) = ψ′′(y) for y ∈ (x0, r). Then, from (31), λ∗ = ψ′(y) −∫ y
x0
η∗(z)dz = ψ′(y)−

∫ y
x0
ψ′′(z)dz = ψ′(x0+). Finally (28) yields,

γ∗ = ψ(y)−λy−
∫ y

x0

η∗(z)(y−z)dz = ψ(y)−yψ′(x0+)−
∫ y

x0

ψ′′(z)(y−z)dz = ψ(x0)−x0ψ
′(x0+).

8 Extension to the case of time homogeneous
diffusions

Our results can be extended to the case where the processes observed by the
agents are independent copies of some time-homogeneous diffusion process Y
which converges almost surely to the lower bound on its state space. The idea
is to use a change of scale, and, in the setting of Skorokhod embeddings, can be
traced back to Azéma and Yor [1]. In addition to Brownian motion (absorbed
at zero), canonical examples include exponential Brownian motion and drifting
Brownian motion with negative drift (with or without absorption at zero). Seel
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& Strack [7] consider the problem when Y i is a Brownian motion with positive
drift, absorbed at zero, but then they need to impose a further condition on the
model parameters to ensure the finiteness of the candidate solution.

Let the state space of the time-homogeneous diffusion Y be an interval S
with endpoints {l, r} with −∞ ≤ l < Y0 = y0 < r ≤ ∞. Suppose that Y
is a solution of the stochastic differential equation dY = a(Y )dB + b(Y )dt
and let s = s(y) be the scale function2. Then s is an increasing solution of
a(y)2s′′(y) + 2b(y)s′(y) = 0 and X = s(Y ) is a continuous local martingale
with starting value x0 = s(y0), and hence a time-change of Brownian motion.
Moreover, our assumption that Y converges to the lower boundary implies that
s(l) is finite whereas s(r) =∞ and without loss of generality we may set s(l) = 0.
Then X = s(Y ) converges to zero almost surely (and if zero can be reached in
finite time, then zero is absorbing).

Note that s(·) is a continuous strictly increasing function. Hence the payoff of
player i with stopping value Y iτ i can be expressed as 1

k1{Xi
τi

=maxj∈I X
j

τj
}, where

k =
∣∣∣{i ∈ I : Xi

τ i = maxj∈I X
j
τj

}∣∣∣, and Xi
τ i = s(Y iτ i). Then the contest in

which players privately observe Y i is equivalent to the contest in which players
privately observe Xi, and the choice of the optimal τ i is the same for both
problems. In particular, if we have a Nash equilibrium for which τ i is optimal
for the processes Xi, then we also have a Nash equilibrium for the processes Y i.

The problem is then to find a Nash equilibrium (Gi)i∈I for Y iτ i and then
verify that there exists τ i such that Y iτ i has law Gi. Under our transformation,
this is the same as finding a Nash equilibrium (F i)i∈I for Xi

τ i where F i =
Gi ◦ s−1, where s−1 is the inverse of s. To solve the problem for X, then either
we argue that the only properties of X that we use are the strong Markov
property, the local martingale property, and the fact that X converges to zero,
so that the theory of this section applies to the local martingale diffusion X, or
we argue that since X is a non-negative martingale diffusion, X is a time-change
of Brownian motion and Xt = BΓt for some increasing functional Γt. Then if
F is any distribution with mean less than or equal to x0, and σ is a stopping
time such that Bσ ∼ F , then we may take τ = Γ−1 ◦ σ and then Xτ = Bσ ∼ F
and τ is an embedding of G in Y .

Note that if Xτ ∼ F and F has mean x1 < x0, then there exists (F̃ , τ̃) such
that F̃ has mean x0, F̃ ≥ F and Xτ̃ ∼ F̃ . Clearly τ̃ dominates τ as a strategy.
Hence we may restrict attention to stopping times τ such that the distribution
F of X has mean x0, and then (Xt∧τ )t≥0 is a martingale and not just a local
martingale.

2If Y is exponential Brownian motion, dY = aY dB + bY dt then s(y) = yκ with κ =
1 − 2b/a2. Note that we need parameters such that κ > 0 to ensure that Y is transient
to zero. If Y is downward drifting Brownian motion, dY = adB + bdt with b < 0, then
s(y) = e−ηy with η = 2b/a2.
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